气候变化研究进展 ›› 2022, Vol. 18 ›› Issue (4): 442-451.doi: 10.12006/j.issn.1673-1719.2022.143
所属专题: IPCC第六次评估报告WGII解读专栏
收稿日期:2022-06-06
修回日期:2022-07-07
出版日期:2022-07-30
发布日期:2022-07-13
作者简介:黄存瑞,男,教授, 基金资助:Received:2022-06-06
Revised:2022-07-07
Online:2022-07-30
Published:2022-07-13
摘要:
IPCC近期发布了第六次评估报告(AR6)第二工作组(WGII)报告《气候变化:影响、适应和脆弱性》,其中第7章“健康、福祉和不断变化的社区结构”评估了气候变化对人类健康和福祉的当前影响以及未来风险,提出了应对气候变化的解决方案和适应策略。报告明确指出,气候变化对气候敏感传染病和慢性非传染性疾病,以及精神心理健康等的威胁正在增加,并表现出复合暴露和连锁事件的风险,且预计未来风险还会随着全球变暖而进一步加剧。实施积极和有效的气候变化适应措施并快速采取行动,将会在很大程度上减少和避免气候变化导致的健康风险,但不会完全消除所有风险。报告凸显了气候变化健康影响的严重性和紧迫性,未来需要加大对健康领域适应气候变化的科技创新、规划、行动和资金支持。
黄存瑞, 刘起勇. IPCC AR6报告解读:气候变化与人类健康[J]. 气候变化研究进展, 2022, 18(4): 442-451.
HUANG Cunrui, LIU Qiyong. Interpretation of IPCC AR6 on climate change and human health[J]. Climate Change Research, 2022, 18(4): 442-451.
| [1] | IPCC. Climate change 2022: impacts, adaptation and vulnerability[M]. Cambridge: Cambridge University Press, 2022 |
| [2] | IPCC. Climate change 2014:impacts, adaptation, and vulnerability[M]. Cambridge: Cambridge University Press, 2014 |
| [3] |
Wu Y, Huang C. Climate change and vector-borne diseases in China: a review of evidence and implications for risk management[J]. Biology, 2022, 11 (3): 370
doi: 10.3390/biology11030370 URL |
| [4] |
Phung D, Huang C, Rutherford S, et al. Climate change, water quality, and water-related diseases in the Mekong Delta basin: a systematic review[J]. Asia-Pacific Journal of Public Health, 2015, 27 (3): 265-276
doi: 10.1177/1010539514565448 pmid: 25563349 |
| [5] |
Ogden N H, Radojevic M, Wu X, et al. Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector ixodes scapularis[J]. Environmental Health Perspectives, 2014, 122 (6): 631-638
doi: 10.1289/ehp.1307799 URL |
| [6] | Cai W, Zhang C, Suen H P, et al. The 2020 China report of the Lancet Countdown on health and climate change[J]. The Lancet Public Health, 2021, 6 (1): 64-81 |
| [7] |
Zhang N, Song D, Zhang J, et al. The impact of the 2016 flood event in Anhui province, China on infectious diarrhea disease: an interrupted time-series study[J]. Environment International, 2019, 127: 801-809
doi: S0160-4120(19)30040-6 pmid: 31051323 |
| [8] |
Semenza J C. Cascading risks of waterborne diseases from climate change[J]. Nature Immunology, 2020, 21 (5): 484-487
doi: 10.1038/s41590-020-0631-7 pmid: 32313241 |
| [9] | Zuo S, Yang L, Dou P, et al. The direct and interactive impacts of hydrological factors on bacillary dysentery across different geographical regions in Central China[J]. Science of The Total Environment, 2021, 764: 144609 |
| [10] |
Wang P, Goggins W B, Chan E Y Y. Associations of Salmonella hospitalizations with ambient temperature, humidity and rainfall in Hong Kong[J]. Environment International, 2018, 120: 223-230
doi: S0160-4120(18)30949-8 pmid: 30103121 |
| [11] |
Lam E, Morris D H, Hurt A C, et al. The impact of climate and antigenic evolution on seasonal influenza virus epidemics in Australia[J]. Nature Communications, 2020, 11 (1): 2741
doi: 10.1038/s41467-020-16545-6 URL |
| [12] |
Giorgini P, Di Giosia P, Petrarca M, et al. Climate changes and human health: a review of the effect of environmental stressors on cardiovascular diseases across epidemiology and biological mechanisms[J]. Current Pharmaceutical Design, 2017, 23 (22): 3247-3261
doi: 10.2174/1381612823666170317143248 pmid: 28317479 |
| [13] |
Navarro K M, Kleinman M T, Mackay C E, et al. Wildland firefighter smoke exposure and risk of lung cancer and cardiovascular disease mortality[J]. Environmental Research, 2019, 173: 462-468
doi: 10.1016/j.envres.2019.03.060 URL |
| [14] |
Deng S Z, Bjalaludin B, Manto J, et al. Climate change, air pollution, and allergic respiratory diseases: a call to action for health professionals[J]. Chinese Medical Journal, 2020, 133 (13): 1552-1560
doi: 10.1097/CM9.0000000000000861 URL |
| [15] | Mulli Ns J, White C. Temperature and mental health: evidence from the spectrum of mental health outcomes[J]. IZA Discussion Papers, 2019, 68: 102240 |
| [16] |
Obradovich N, Migliorini R, Paulus M P, et al. Empirical evidence of mental health risks posed by climate change[J]. Proceedings of The National Academy of Sciences, 2018, 115 (43): 10953-10958
doi: 10.1073/pnas.1801528115 URL |
| [17] |
Burke M, González F, Baylis P, et al. Higher temperatures increase suicide rates in the United States and Mexico[J]. Nature Climate Change, 2018, 8 (8): 723-729
doi: 10.1038/s41558-018-0222-x URL |
| [18] |
Zhong S, Yang L, Toloo S, et al. The long-term physical and psychological health impacts of flooding: a systematic mapping[J]. Science of The Total Environment, 2018, 626: 165-194
doi: 10.1016/j.scitotenv.2018.01.041 URL |
| [19] |
Schwartz R, Sison C, Kerath S, et al. The impact of Hurricane Sandy on the mental health of New York area residents[J]. American Journal of Disaster Medicine, 2015, 10: 339-346
doi: 10.5055/ajdm.2015.0216 pmid: 27149315 |
| [20] | Cunsolo A, Harper S L, Minor K, et al. Ecological grief and anxiety: the start of a healthy response to climate change?[J]. The Lancet Planetary Health, 2020, 4 (7): 261-263 |
| [21] |
Noelke C, McGovern M, Corsi D J, et al. Increasing ambient temperature reduces emotional well-being[J]. Environmental Research, 2016, 151: 124-129
doi: 10.1016/j.envres.2016.06.045 URL |
| [22] |
Wang J, Obradovich N, Zheng S. A 43-million-person investigation into weather and expressed sentiment in a changing climate[J]. One Earth, 2020, 2 (6): 568-577
doi: 10.1016/j.oneear.2020.05.016 URL |
| [23] | Pecl G T, Araújo M B, Bell J D, et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being[J]. Science, 2017, 355 (6332): i9214 |
| [24] | Eckstein D, Künzel V, Schäfer L. Global climate risk index 2018 [R]. Germanwatch eV: Bonn, Germany, 2017 |
| [25] |
Ma R, Zhong S, Morabito M, et al. Estimation of work-related injury and economic burden attributable to heat stress in Guangzhou, China[J]. Science of The Total Environment, 2019, 666: 147-154
doi: 10.1016/j.scitotenv.2019.02.201 URL |
| [26] |
Watts N, Amann M, Arnell N, et al. The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate[J]. The Lancet, 2019, 394 (10211): 1836-1878
doi: 10.1016/S0140-6736(19)32596-6 URL |
| [27] |
Wang Q, Li B, Benmarhnia T, et al. Independent and combined effects of heatwaves and PM2.5 on preterm birth in Guangzhou, China: a survival analysis[J]. Environmental Health Perspectives, 2020, 128: 17006
doi: 10.1289/EHP5117 URL |
| [28] |
Swinburn B A, Kraak V I, Allender S, et al. The global syndemic of obesity, undernutrition, and climate change: the Lancet commission report[J]. The Lancet, 2019, 393 (10173): 791-846
doi: 10.1016/S0140-6736(18)32822-8 URL |
| [29] |
Alava J J, Cheung W W L, Ross P S, et al. Climate change-contaminant interactions in marine food webs: toward a conceptual framework[J]. Global Change Biology, 2017, 23 (10): 3984-4001
doi: 10.1111/gcb.13667 pmid: 28212462 |
| [30] |
Kraemer M U G, Reiner R C, Brady O J, et al. Past and future spread of the arbovirus vectors Aedes Aegypti and Aedes Albopictus[J]. Nature Microbiology, 2019, 4 (5): 854-863
doi: 10.1038/s41564-019-0376-y pmid: 30833735 |
| [31] |
Messina J P, Brady O J, Golding N, et al. The current and future global distribution and population at risk of Dengue[J]. Nature Microbiology, 2019, 4 (9): 1508-1515
doi: 10.1038/s41564-019-0476-8 pmid: 31182801 |
| [32] | McCreesh N, Nikulin G, Booth M. Predicting the effects of climate change on Schistosoma Mansoni transmission in eastern Africa[J]. Parasites & Vectors, 2015, 8 (1): 4 |
| [33] | Brubacher J, Allen D M, Déry S J, et al. Associations of five food- and water-borne diseases with ecological zone, land use and aquifer type in a changing climate[J]. Science of The Total Environment, 2020, 728: 138808 |
| [34] |
Lake I R. Food-borne disease and climate change in the United Kingdom[J]. Environmental Health, 2017, 16 (1): 117
doi: 10.1186/s12940-017-0327-0 URL |
| [35] |
Zhang B, Li G, Ma Y, et al. Projection of temperature-related mortality due to cardiovascular disease in Beijing under different climate change, population, and adaptation scenarios[J]. Environmental Research, 2018, 162: 152-159
doi: S0013-9351(17)31770-X pmid: 29306663 |
| [36] | Ma F, Yuan X. Impact of climate and population changes on the increasing exposure to summertime compound hot extremes[J]. Science of The Total Environment, 2021, 772: 145004 |
| [37] |
He Y, Deng S, Ho H C, et al. The half-degree matters for heat-related health impacts under the 1.5℃ and 2℃warming scenarios: evidence from ambulance data in Shenzhen, China[J]. Advances in Climate Change Research, 2021, 12 (5): 628-637
doi: 10.1016/j.accre.2021.09.001 URL |
| [38] |
Atkinson H G, Bruce J. Adolescent girls, human rights and the expanding climate emergency[J]. Annals of Global Health, 2015, 81 (3): 323-330
doi: 10.1016/j.aogh.2015.08.003 pmid: 26615066 |
| [39] |
Liu X. Reductions in labor capacity from intensified heat stress in China under future climate change[J]. International Journal of Environmental Research and Public Health, 2020, 17: 1278
doi: 10.3390/ijerph17041278 URL |
| [40] |
Jones B, Tebaldi C, O′Neill B C, et al. Avoiding population exposure to heat-related extremes: demographic change vs climate change[J]. Climatic Change, 2018, 146 (3): 423-437
doi: 10.1007/s10584-017-2133-7 URL |
| [41] |
Lloyd S, Bangalore M, Chalabi Z, et al. A global-level model of the potential impacts of climate change on child stunting via income and food price in 2030[J]. Environmental Health Perspectives, 2018, 126: 97007
doi: 10.1289/EHP2916 URL |
| [42] |
Springmann M, Mason-D′Croz D, Robinson S, et al. Global and regional health effects of future food production under climate change: a modelling study[J]. The Lancet, 2016, 387 (10031): 1937-1946
doi: 10.1016/S0140-6736(15)01156-3 URL |
| [43] |
Ebi K L, Boyer C, Ogden N, et al. Burning embers: synthesis of the health risks of climate change[J]. Environmental Research Letters, 2021, 16 (4): 44042
doi: 10.1088/1748-9326/abeadd URL |
| [44] |
Jay O, Capon A, Berry P, et al. Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities[J]. The Lancet, 2021, 398 (10301): 709-724
doi: 10.1016/S0140-6736(21)01209-5 URL |
| [45] |
Willett W, Rockström J, Loken B, et al. Food in the Anthropocene: the EAT-Lancet commission on healthy diets from sustainable food systems[J]. The Lancet, 2019, 393 (10170): 447-492
doi: 10.1016/S0140-6736(18)31788-4 URL |
| [46] | Schucht S, Colette A, Rao S, et al. Moving towards ambitious climate policies: monetised health benefits from improved air quality could offset mitigation costs in Europe[J]. Environmental Science & Policy, 2015, 50: 252-269 |
| [47] |
Campagnolo L, Davide M. Can the Paris deal boost SDGs achievement? An assessment of climate mitigation co-benefits or side-effects on poverty and inequality[J]. World Development, 2019, 122: 96-109
doi: 10.1016/j.worlddev.2019.05.015 |
| [48] |
Charlesworth K E, Jamieson M. Healthcare in a carbon-constrained world[J]. Australian Health Review: A Publication of The Australian Hospital Association, 2019, 43 (3): 241-245
doi: 10.1071/AH17184 URL |
| [49] | Charlesworth K, Stewart G, Sainsbury P. Addressing the carbon footprint of health organisations: eight lessons for implementation[J]. Public Health Research & Practice, 2018, 28 (4): e2841830 |
| [50] | Frumkin H. The US health care sector’s carbon footprint: stomping or treading lightly?[J]. American Journal of Public Health, 2017, 108 (S2): S56-S57 |
| [51] | 钟爽, 黄存瑞. 气候变化的健康风险与卫生应对[J]. 科学通报, 2019, 64 (19): 2002-2010. |
| Zhong S, Huang C. Climate change and human health: risks and responses[J]. Chinese Science Bulletin, 2019, 64 (19): 2002-2010 (in Chinese) |
| [1] | 丁永建, 张世强, 陈仁升, 秦甲, 赵求东, 刘俊峰, 阳勇, 何晓波, 苌亚平, 上官冬辉, 韩添丁, 吴锦奎, 李向应. 气候变化对冰冻圈水文影响研究综述[J]. 气候变化研究进展, 2025, 21(1): 1-21. |
| [2] | 秦卓凡, 廖宏, 代慧斌. 气候变化影响我国大气重污染事件的研究进展[J]. 气候变化研究进展, 2025, 21(1): 56-68. |
| [3] | 吕学都, 陈佳琪, 葛慧, 朱乙丹. 气候金融实践与发展建议[J]. 气候变化研究进展, 2025, 21(1): 78-90. |
| [4] | 陈德亮, 谭显春, 彭喆, 闫洪硕, 程永龙. 人工智能在气候研究和服务中的机遇与挑战[J]. 气候变化研究进展, 2024, 20(6): 669-681. |
| [5] | 高翔. 国际条约下的气候资金问题辨析[J]. 气候变化研究进展, 2024, 20(6): 799-807. |
| [6] | 朱磊, 张丽忠, 蒋莹, 徐剑锋, 黄艳, 孙淑欣. 工业部门的气候适应研究进展[J]. 气候变化研究进展, 2024, 20(6): 721-735. |
| [7] | 欧阳志云, 张观石, 应凌霄. 气候变化对青藏高原生态系统分布范围和生态功能的影响研究进展[J]. 气候变化研究进展, 2024, 20(6): 699-710. |
| [8] | 陆春晖, 袁佳双, 黄磊, 张永香. 从IPCC看全球盘点中的关键科学问题及其对中国的启示[J]. 气候变化研究进展, 2024, 20(6): 736-746. |
| [9] | 周泽宇, 王君华, 曹颖. 全球适应气候变化行动进展评估及相关工作建议[J]. 气候变化研究进展, 2024, 20(6): 764-772. |
| [10] | 牛振国, 景雨航, 张东启, 张波. 气候变化背景下青藏高原湿地生态系统响应特征:回顾与展望[J]. 气候变化研究进展, 2024, 20(5): 509-518. |
| [11] | 吴沛泽, 陈莎, 刘影影, 李晓桐, 杜展霞, 崔淑芬, 姜克隽. 低排放分析平台LEAP:应对气候变化下的应用与挑战[J]. 气候变化研究进展, 2024, 20(5): 611-623. |
| [12] | 德吉玉珍, 拉巴, 巴桑旺堆, 白玛玉措, 旦增益嘎, 平措旺丹, 德吉央宗. 近50年西藏那曲西南部湖泊变化特征及其对气候变化的响应[J]. 气候变化研究进展, 2024, 20(5): 534-543. |
| [13] | 张靖宇, 曹龙. 海洋和陆地碳循环对二氧化碳正负排放响应的模拟研究[J]. 气候变化研究进展, 2024, 20(4): 416-427. |
| [14] | 潘晓滨, 刘尚文. 应对气候变化背景下我国转型金融法制化路径探析[J]. 气候变化研究进展, 2024, 20(4): 465-474. |
| [15] | 包文, 段安民, 游庆龙, 胡蝶. 青藏高原气候变化及其对水资源影响的研究进展[J]. 气候变化研究进展, 2024, 20(2): 158-169. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
