[1] |
IPCC. Climate change 2021: the physical science basis[M]. Cambridge: Cambridge University Press, 2021
|
[2] |
Masson-Delmotte V, Zhai P, P?rtner H O, et al. Global warming of 1.5 ℃: IPCC special report on impacts of global warming of 1.5 ℃ above pre-industrial levels in context of strengthening response to climate change, sustainable development, and efforts to eradicate poverty[M]. Cambridge: Cambridge University Press, 2022
|
[3] |
Olhoff A, Christensen J M. Emissions gap report 2020[J]. UNEP DTU Partnership, 2020: 128
|
[4] |
曹龙. IPCC AR6 报告解读: 气候系统对二氧化碳移除响应[J]. 气候变化研究进展, 2021, 17 (6): 664-670.
|
|
Cao L. Climate system response to carbon dioxide removal[J]. Climate Change Research, 2021, 17 (6): 664-670 (in Chinese)
|
[5] |
MacDougall A H. Reversing climate warming by artificial atmospheric carbon-dioxide removal: can a Holocene-like climate be restored?[J]. Geophysical Research Letters, 2013, 40 (20): 5480-5485
|
[6] |
Zickfeld K, Eby M, Weaver A J, et al. Long-term climate change commitment and reversibility: an EMIC intercomparison[J]. Journal of Climate, 2013, 26 (16) : 5782-5809
|
[7] |
Schwinger J, Tjiputra J. Ocean carbon cycle feedbacks under negative emissions[J]. Geophysical Research Letters, 2018, 45 (10): 5062-5070
|
[8] |
Joos F, Roth R, Fuglestvedt J S, et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis[J]. Atmospheric Chemistry and Physics, 2013, 13 (5): 2793-2825
|
[9] |
Jones C D, Arora V, Friedlingstein P, et al. C4MIP: The coupled climate-carbon cycle model intercomparison project: experimental protocol for CMIP6[J]. Geoscientific Model Development, 2016, 9 (8): 2853-2880
|
[10] |
Zickfeld K, Azevedo D, Mathesius S, et al. Asymmetry in the climate: carbon cycle response to positive and negative CO2 emissions[J]. Nature Climate Change, 2021, 11 (7): 613-617
|
[11] |
Weaver A J, Eby M, Wiebe E C, et al. The UVic Earth System Climate Model:model description, climatology, and applications to past, present and future climates [M]. Routledge:Data, Models and Analysis, 2019: 169-236
|
[12] |
Fanning A F, Weaver A J. An atmospheric energy-moisture balance model: climatology, interpentadal climate change, and coupling to an ocean general circulation model[J]. Journal of Geophysical Research: Atmospheres, 1996, 101 (D10): 15111-15128
|
[13] |
Pacanowski R C. MOM 2 documentation, user’s guide and reference manual[J]. GFDL Ocean Group Tech Rep, 1995 (3): 232
|
[14] |
Bitz C M, Lipscomb W H. An energy-conserving thermodynamic model of sea ice[J]. Journal of Geophysical Research: Oceans, 1999, 10 (C7): 15669-15677
|
[15] |
Schmittner A, Oschlies A, Matthews H D, et al. Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD[J]. Global Biogeochemical Cycles, 2008, 22 (1): GB1013
|
[16] |
Orr J, Najjar R, Sabine C, et al. Abiotic-HOWTO, internal OCMIP report[R]. Saclay: LSCE/CEA, 1999: 29
|
[17] |
Meissner K, Weaver A, Matthews H, et al. The role of land surface dynamics in glacial inception: a study with the UVic Earth System Model[J]. Climate Dynamics, 2003, 21: 515-537
|
[18] |
Cao L, Jiang J. Simulated effect of carbon cycle feedback on climate response to solar geoengineering[J]. Geophysical Research Letters, 2017, 44 (24): 12, 484-412, 491
|
[19] |
MacDougall A H. Limitations of the 1% experiment as the benchmark idealized experiment for carbon cycle intercomparison in C4MIP[J]. 2019, 12 (2): 597-611
|
[20] |
Mengis N, Keller D P, MacDougall A H, et al. Evaluation of the University of Victoria Earth System Climate Model version 2.10 (UVic ESCM 2.10)[J]. Geoscientific Model Development, 2020, 13 (9): 4183-4204
|
[21] |
Eby M, Weaver A J, Alexander K, et al. Historical and idealized climate model experiments: an intercomparison of Earth System Models of intermediate complexity[J]. Climate of the Past, 2013, 9 (3): 1111-1140
|
[22] |
Friedlingstein P, Cox P, Betts R, et al. Climate: carbon cycle feedback analysis: results from the C4MIP model intercomparison[J]. Journal of Climate, 2006, 19 (14): 3337-3353
|
[23] |
Weber S, Drijfhout S, Abe-Ouchi A, et al. The modern and glacial overturning circulation in the Atlantic ocean in PMIP coupled model simulations[J]. Climate of the Past, 2007, 3 (1): 51-64
|
[24] |
Gregory J, Dixon K, Stouffer R, et al. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration[J]. Geophysical Research Letters, 2005, 32 (12): L12703
|
[25] |
Keller D P, Lenton A, Scott V, et al. The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6[J]. Geoscientific Model Development, 2018, 11 (3): 1133-1160
|
[26] |
Gloor M, Sarmiento J L, Gruber N. What can be learned about carbon cycle climate feedbacks from the CO2 airborne fraction?[J]. Atmospheric Chemistry and Physics, 2010, 10 (16): 7739-7751
|
[27] |
Revelle R, Suess H E. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades[J]. Tellus, 1957, 9 (1): 18-27
|
[28] |
Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305 (5682): 367-371
doi: 10.1126/science.1097403
pmid: 15256665
|