气候变化研究进展 ›› 2024, Vol. 20 ›› Issue (6): 699-710.doi: 10.12006/j.issn.1673-1719.2024.092
所属专题: 创刊20周年纪念专栏
收稿日期:
2024-05-08
修回日期:
2024-07-04
出版日期:
2024-11-30
发布日期:
2024-11-12
作者简介:
欧阳志云,男,研究员,美国国家科学院外籍院士,基金资助:
OU YANG Zhi-Yun(), ZHANG Guan-Shi, YING Ling-Xiao
Received:
2024-05-08
Revised:
2024-07-04
Online:
2024-11-30
Published:
2024-11-12
摘要:
近40年来,气候变化导致青藏高原暖湿化,对森林、灌丛、草地、湿地和荒漠等生态系统的地理分布格局和功能产生了明显影响。灌丛、草地和湿地分布范围扩大、边界向西和高海拔区域扩展。气候变化影响下,青藏高原生态系统生产力、固碳和土壤保持能力得到改善,水源涵养变化在空间上表现出显著的异质性。气候变化对植物物候、植物生长速率、动植物分布范围和物种相互作用,以及生物多样性的显著影响,还有待更深入观测与研究。
欧阳志云, 张观石, 应凌霄. 气候变化对青藏高原生态系统分布范围和生态功能的影响研究进展[J]. 气候变化研究进展, 2024, 20(6): 699-710.
OU YANG Zhi-Yun, ZHANG Guan-Shi, YING Ling-Xiao. Overview of the impacts of climate change on ecosystem distribution and functions across the Tibetan Plateau[J]. Climate Change Research, 2024, 20(6): 699-710.
图1 气候变化驱动生态系统分布边界迁移 注:生态系统A、B、C泛指某类生态系统。
Fig. 1 Climate change drives the boundary movement of ecosystems. (Ecosystem A, B, C generally refer to a certain type of ecosystem)
[1] | 李文华, 赵新全, 张宪洲, 等. 青藏高原主要生态系统变化及其碳源/碳汇功能作用[J]. 自然杂志, 2013, 35 (3): 172-178. |
Li W H, Zhao X Q, Zhang X Z, et al. Change mechanism in main ecosystems and its effect of carbon source/sink function on the Qinghai-Tibetan Plateau[J]. Chinese Journal of Nature, 2013, 35 (3): 172-178 (in Chinese) | |
[2] | Wang Y, Lü Y H, Lü D, et al. Carbon and water relationships change nonlinearly along elevation gradient in the Qinghai Tibet Plateau[J]. Journal of Hydrology, 2024, 628: 130529 |
[3] |
曹晓云, 周秉荣, 周华坤, 等. 气候变化对青藏高原植被生态系统的影响研究进展[J]. 干旱气象, 2022, 40 (6): 1068-1080.
doi: 10.11755/j.issn.1006-7639(2022)-06-1068 |
Cao X Y, Zhou B R, Zhou H K, et al. Research progress on the impact of climate change on vegetation ecosystem in the Tibetan Plateau[J]. Journal of Arid Meteorology, 2022, 40 (6): 1068-1080 (in Chinese) | |
[4] | 傅伯杰, 欧阳志云, 施鹏, 等. 青藏高原生态安全屏障状况与保护对策[J]. 政策与管理研究, 2021, 36 (11): 1298-1306. |
Fu B J, Ouyang Z Y, Shi P, et al. Current condition and protection strategies of Qinghai-Tibet Plateau ecological security barrier[J]. Policy & Management Research, 2021, 36 (11): 1298-1306 (in Chinese) | |
[5] | 于海英, 许建初. 气候变化对青藏高原植被影响研究综述[J]. 生态学杂志, 2009, 28 (4): 747-754. |
Yu H Y, Xu J C. Effects of climate change on vegetations on Qinghai-Tibet Plateau: a review[J]. Chinese Journal of Ecology, 2009, 28 (4): 747-754 (in Chinese) | |
[6] |
王军, 张骁, 高岩. 青藏高原植被动态与环境因子相互关系的研究现状与展望[J]. 地学前缘, 2021, 28 (4): 70-82.
doi: 10.13745/j.esf.sf.2020.10.20 |
Wang J, Zhang X, Gao Y. The relationships between vegetation dynamics and environmental factors on the Qinghai-Tibet Plateau: a review of research progress and prospect[J]. Earth Science Frontiers, 2021, 28 (4): 70-82 (in Chinese)
doi: 10.13745/j.esf.sf.2020.10.20 |
|
[7] | 冯松, 汤懋苍, 王冬梅. 青藏高原是我国气候变化启动区的新证据[J]. 科学通报, 1998, 43 (6): 633-636. |
Feng S, Tang M C, Wang D M. New evidence that the Qinghai-Tibet Plateau is the starting point of climate change in China[J]. Chinese Science Bulletin, 1998, 43 (6): 633-636 (in Chinese) | |
[8] | Wang G X, Bai W, Li N, et al. Climate changes and its impact on tundra ecosystem in Qinghai-Tibet Plateau, China[J]. Climatic Change, 2010, 106 (3): 463-482 |
[9] | 王鸽, 韩琳. 气候变化对青藏高原陆地生态系统的影响研究进展[J]. 安徽农业科学, 2012, 40 (7): 4274-4276. |
Wang G, Han L. Advances in the research of the impacts of climatic change on terrestrial ecosystem in Tibetan Plateau[J]. Journal of Auhui Agriculture Science, 2012, 40 (7): 4274-4276 (in Chinese) | |
[10] | 朴世龙, 张宪洲, 汪涛, 等. 青藏高原生态系统对气候变化的响应及其反馈[J]. 科学通报, 2019, 64 (27): 2842-2855. |
Piao S L, Zhang X Z, Wang T, et al. Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change[J]. Chinese Science Bulletin, 2019, 64 (27): 2842-2855 (in Chinese) | |
[11] | Ji F, Fan L F, Kuang X X, et al. How does soil water content influence permafrost evolution on the Qinghai-Tibet Plateau under climate warming?[J]. Environmental Research Letters, 2022, 17 (6): 064012 |
[12] | 姚檀栋, 刘晓东, 王宁练. 青藏高原地区的气候变化幅度问题[J]. 科学通报, 2000, 45 (1): 98. |
Yao T D, Liu X D, Wang N L. The magnitude of climate change in the Qinghai Tibet Plateau region[J]. Chinese Science Bulletin, 2000, 45 (1): 98 (in Chinese) | |
[13] | 包文, 段安民, 游庆龙, 等. 青藏高原气候变化及其对水资源影响的研究进展[J]. 气候变化研究进展, 2024, 20 (2): 158-169. |
Bao W, Duan A M, You Q L, et al. Research progress on climate change and its impact on water resources over the Tibetan Plateau[J]. Climate Change Research, 2024, 20 (2): 158-169 (in Chinese) | |
[14] | 唐信英, 宋云帆, 王鸽, 等. 1970—2020年青藏高原近地面风速时空变化特征[J]. 应用与环境生物学报, 2022, 28 (4): 844-850. |
Tang X Y, Song Y F, Wang G, et al. Spatio-temporal variation of near-surface wind speed over Qinghai-Tibet Plateau from 1970 to 2020[J]. Chinese Journal of Applied and Environmental Biology, 2022, 28 (4): 844-850 (in Chinese) | |
[15] | 徐兴奎, 陈红,Jason K L. 气候变暖背景下青藏高原植被覆盖特征的时空变化及其成因分析[J]. 科学通报, 2008, 53 (4): 456-462. |
Xu X K, Chen H, Jason K L. Spatiotemporal changes and causal analysis of vegetation cover characteristics on the Qinghai Tibet Plateau under the background of climate warming[J]. Chinese Science Bulletin, 2008, 53 (4): 456-462 (in Chinese) | |
[16] |
张镱锂, 李兰晖, 丁明军, 等. 新世纪以来青藏高原绿度变化及动因[J]. 自然杂志, 2017, 39 (3): 173-178.
doi: 10.3969/j.issn.0253-9608.2017.03.003 |
Zhang Y L, Li L H, Ding M J, et al. Greening of the Tibetan Plateau and its drivers since 2000[J]. Chinese Journal of Nature, 2017, 39 (3): 173-178 (in Chinese)
doi: 10.3969/j.issn.0253-9608.2017.03.003 |
|
[17] | 张镱锂, 刘林山, 王兆锋, 等. 青藏高原土地利用与覆被变化的时空特征[J]. 科学通报, 2019, 64 (27): 2865-2875. |
Zhang Y L, Liu L S, Wang Z F, et al. Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau[J]. Chinese Science Bulletin, 2019, 64 (27): 2865-2875 (in Chinese) | |
[18] |
刘杰, 汲玉河, 周广胜, 等. 2000—2020年青藏高原植被净初级生产力时空变化及其气候驱动作用[J]. 应用生态学报, 2022, 33 (6): 1533-1538.
doi: 10.13287/j.1001-9332.202206.025 |
Liu J, Ji Y H, Zhou G S, et al. Temporal and spatial variations of net primary productivity (NPP) and its climate driving effect in the Qinghai-Tibet Plateau, China from 2000 to 2020[J]. Chinese Journal of Applied Ecology, 2022, 33 (6): 1533-1538 (in Chinese)
doi: 10.13287/j.1001-9332.202206.025 |
|
[19] | Xu B N, Li J J, Pei X J, et al. Decoupling the response of vegetation dynamics to asymmetric warming over the Qinghai-Tibet plateau from 2001 to 2020[J]. Journal of Environmental Management, 2023, 347: 119131 |
[20] | 钟秀丽, 林而达. 气候变化对我国自然生态系统影响的研究综述[J]. 生态学杂志, 2000 (5): 62-66. |
Zhong X L, Lin E D. A summary of impacts of climate changes on the ecosystems of China[J]. Chinese Journal of Ecology, 2000 (5): 62-66 (in Chinese) | |
[21] | 何点睛, 高飞乐, 王志红, 等. 1982—2015年青藏高原植被变化及其气候驱动因素[J]. 陕西林业科技, 2023, 51 (3): 12-21. |
He D J, Gao F L, Wang Z H, et al. Vegetation changes and their climate drivers on the Qinghai-Tibet Plateau from 1982 to 2015[J]. Shaanxi Forest Science and Technology, 2023, 51 (3): 12-21 (in Chinese) | |
[22] | 陈甲豪, 吴凯, 胡中民, 等. 2000—2021年青藏高原生长季植被敏感性的时空变异[J]. 生态学报, 2023, 43 (10): 4054-4065. |
Chen J H, Wu K, Hu Z M, et al. Spatio-temporal variability of vegetation sensitivity on the Qinghai-Tibet Plateau during the growing season from 2000 to 2021[J]. Acta Ecologica Sinica, 2023, 43 (10): 4054-4065 (in Chinese) | |
[23] | 杨柳, 崔光帅, 夏晨曦, 等. 高寒灌丛对气候变暖的生态响应及适应性研究进展[J]. 草业科学, 2023, 40 (2): 378-393. |
Yang L, Cui G S, Xia C X, et al. The ecological responses and adaptability of alpine shrubs to global warming[J]. Pratacultural Science, 2023, 40 (2): 378-393 (in Chinese) | |
[24] | 范泽孟. 青藏高原植被生态系统垂直分布变化的情景模拟[J]. 生态学报, 2021, 41 (20): 8178-8191. |
Fan Z M. Scenario simulation of vertical distribution changes of vegetation ecosystem in the Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica, 2021, 41 (20): 8178-8191 (in Chinese) | |
[25] | 王子滢, 李周园, 董世魁, 等. 近40年青藏高原生态格局演变及其驱动因素[J]. 生态学报, 2022, 42 (22): 8941-8952. |
Wang Z Y, Li Z W, Dong S K, et al. Evolution of ecological patterns and its driving factors on Qinghai-Tibet Plateau over the past 40 years[J]. Acta Ecologica Sinica, 2022, 42 (22): 8941-8952 (in Chinese) | |
[26] | Bao W K, Gao Q Z, Wang J S, et al. Ecological change on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60 (32): 3048-3056 |
[27] | 陈馨, 匡文慧. 1990—2015年青藏高原生态系统变化特征分析[J]. 西南民族大学学报, 2019, 45 (3): 233-242. |
Chen X, Kuang W H. Analysis of the characteristics of ecosystem changes on the Qinghai-Tibet Plateau from 1990 to 2015[J]. Journal of Southwest Minzu University, 2019, 45 (3): 233-242 (in Chinese) | |
[28] | 石春明. 青藏高原树木年轮稳定性同位素的气候学研究[D]. 北京: 中国科学院大学, 2011. |
Shi C M. Response of tree-ring stable isotopes to climate variability on Tibetan Plateau[D]. Beijing: University of Chinese Academy of Sciences, 2011 (in Chinese) | |
[29] | 王喜龙, 土艳丽, 文雪梅, 等. 藏东南兰科植物多样性及其沿海拔梯度的分布格局[J]. 中南林业科技大学学报, 2018, 38 (12): 45-51. |
Wang X L, Tu Y L, Wen X M, et al. Diversity and altitudinal distribution patterns of orchids in southeastern of Tibet[J]. Journal of Central South University of Forestry & Technology, 2018, 38 (12): 45-51 (in Chinese) | |
[30] | 程名, 田睿, 周尧治. 西藏东南部森林分布格局气候因素分析[J]. 湖南生态科学学报, 2022, 9 (2): 27-35. |
Cheng M, Tian R, Zhou Y Z. Analysis on climatic factors of forest distribution pattern in southeastern Tibet[J]. Journal of Hunan Ecological Science, 2022, 9 (2): 27-35 (in Chinese) | |
[31] | 李迈和,Norbert K. 全球高山林线研究现状与发展方向[J]. 四川林业科技, 2005 (4): 36-42. |
Li M H, Norbert K. The state of knowledge on alpine treeline and suggestions for future research[J]. Journal of Sichuan Forestry Science and Technology, 2005 (4): 36-42 (in Chinese) | |
[32] | Sun L, Li H, Wang J, et al. Impacts of climate change and human activities on NDVI in the Qinghai-Tibet Plateau[J]. Remote Sensing, 2023, 15 (3): 587 |
[33] | Wang Z Q, Cui G L, Liu X, et al. Greening of the Qinghai-Tibet Plateau and its response to climate variations along elevation gradients[J]. Remote Sensing, 2021, 13 (18): 3712 |
[34] | 陈发虎, 汪亚峰, 甄晓林, 等. 全球变化下的青藏高原环境影响及应对策略研究[J]. 中国藏学, 2021 (4): 21-28. |
Chen F H, Wang Y F, Zhen X L, et al. Research on the environmental impact and response strategies of the Qinghai-Tibet Plateau under global change[J]. Chinese Tibetology, 2021 (4): 21-28 (in Chinese) | |
[35] | 周广胜, 张新时. 植被对于气候的反馈作用[J]. 植物学报, 1996 (1): 1-7. |
Zhou G S, Zhang X S. The feedback effect of vegetation on climate[J]. Chinese Bulletin of Botany, 1996 (1): 1-7 (in Chinese) | |
[36] | 朴世龙, 张新平, 陈安平, 等. 极端气候事件对陆地生态系统碳循环的影响[J]. 中国科学:地球科学, 2019, 49 (9): 1321-1334. |
Piao S L, Zhang X P, Chen A P, et al. The impact of extreme climate events on carbon cycling in terrestrial ecosystems[J]. Scientia Sinica Terrae, 2019, 49 (9): 1321-1334 (in Chinese) | |
[37] | 周广胜, 何奇瑾. 生态系统响应全球变化的陆地样带研究[J]. 地球科学进展, 2012, 27 (5): 563-572. |
Zhou G S, He Q J. Research on terrestrial transects of ecosystem response to global change[J]. Advances in Earth Science, 2012, 27 (5): 563-572 (in Chinese) | |
[38] | Leemans R, Eickhout B. Another reason for concern: regional and global impacts on ecosystems for different levels of climate change[J]. Global Environmental Change, 2004, 14 (3): 219-228 |
[39] | 程名. 青藏高原树木分布格局的气候-地貌机制研究[D]. 林芝: 西藏农牧学院, 2023. |
Cheng M. Study on the climate geomorphic mechanism of tree distribution pattern in the Tibetan Plateau[D]. Linzhi: Xizang College of Agriculture and Animal Husbandry, 2023 (in Chinese) | |
[40] | Kong L Q, Xu W H, Xiao Y, et al. Spatial models of giant pandas under current and future conditions reveal extinction risks[J]. Nature Ecology & Evolution, 2021, 5: 1309-1316 |
[41] | 底阳平, 张扬建, 曾辉, 等. “亚洲水塔”变化对青藏高原生态系统的影响[J]. 中国科学院院刊, 2019, 34 (11): 1322-1331. |
Di Y P, Zhang Y J, Zeng H, et al. Effects of changed Asian Water Tower on Tibetan Plateau ecosystem: a review[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34 (11): 1322-1331 (in Chinese) | |
[42] | Wei Y Q, Lu H Y, Wang J N, et al. Dual influence of climate change and anthropogenic activities on the spatiotemporal vegetation dynamics over the Qinghai-Tibetan Plateau from 1981 to 2015[J]. Earth’s Future, 2022, 10 (5): 1029 |
[43] |
兰翔宇, 叶冲冲, 王毅, 等. 1995—2014年青藏高原水源涵养功能时空演变特征及其驱动力分析[J]. 草地学报, 2021, 29 (S1): 80-92.
doi: 10.11733/j.issn.1007-0435.2021.Z1.010 |
Lan X Y, Ye C C, Wang Y, et al. Spatiotemporal variation characteristics and its driving forces of water conservation function on the Tibetan Plateau from 1995 to 2014[J]. Acta Agrestia Sinica, 2021, 29 (S1): 80-92 (in Chinese) | |
[44] |
Jing X, Jiang S J, Liu H Y, et al. Complex relationships and feedback mechanisms between climate change and biodiversity[J]. Biodiversity Science, 2022, 30 (10): 22462
doi: 10.17520/biods.2022462 |
[45] | 曲孝云, 侯东杰, 陆帅志, 等. 基于文献计量分析的青藏高原草地研究[J]. 生态学报, 2023, 43 (19): 8229-8240. |
Qu X Y, Hou D J, Lu S Z, et al. Research on grassland of Qinghai-Tibet Plateau based on bibliometric analysis[J]. Acta Ecologica Sinica, 2023, 43 (19): 8229-8240 (in Chinese) | |
[46] | Zong N, Shi P L, Zhao G S, et al. Variations of nitrogen and phosphorus limitation along the environmental gradient in alpine grasslands on the northern Xizang Plateau[J]. Chinese Journal of Plant Ecology, 2021, 45 (5): 444-455 |
[47] | 毛宇昕, 戎战磊, 蒋刚. 2000—2020年青藏高原土地利用时空动态变化研究[J]. 青海科技, 2023, 30 (3): 31-43. |
Mao Y X, Rong Z L, Jiang G. A study on the spatial and temporal dynamics of land use on the Qinghai-Tibetan Plateau from 2000 to 2020[J]. Qinghai Science and Technology, 2023, 30 (3): 31-43 (in Chinese) | |
[48] | 阿旺, 张立荣, 孙建平, 等. 影响青藏高原高寒草地植物向高海拔或高纬度迁移的关键因素研究进展[J]. 生态学杂志, 2021, 40 (5): 1521-1529. |
A W, Zhang L R, Sun J P, et al. Research advance on the key factors affecting the migration of alpine grassland plants to high altitude or high latitude in Qinghai-Tibet Plateau[J]. Chinese Journal of Ecology, 2021, 40 (5): 1521-1529 (in Chinese)
doi: 10.13292/j.1000-4890.202105.001 |
|
[49] | Higgins S I, Nathan R, Cain M L. Are long-distance dispersal events in plants usually caused by nonstandard means of dispersal?[J]. Ecology, 2003, 84: 1945-1956 |
[50] |
Zhang Z J, Kleunen M V. Common alien plants are more competitive than rare natives but not than common natives[J]. Ecology Letters, 2019, 22 (9): 1378-1386
doi: 10.1111/ele.13320 pmid: 31207021 |
[51] |
Lemoine N P, Doublet D, Salminen J P, et al. Responses of plant phenology, growth, defense, and reproduction to interactive effects of warming and insect herbivory[J]. Ecology, 2017, 98 (7): 1817-1828
doi: 10.1002/ecy.1855 pmid: 28403543 |
[52] | 孙建, 周天财, 张锦涛. 青藏高原高寒草地的气候变化适应性管理探讨[J]. 环境与可持续发展, 2021, 46 (5): 55-60. |
Sun J, Zhou T C, Zhang J T. Climate change adaptive management of alpine grassland on the Tibetan Plateau[J]. Environment and Sustainable Development, 2021, 46 (5): 55-60 (in Chinese) | |
[53] | Wang Y F, Lv W W, Xue K, et al. Grassland changes and adaptive management on the Qinghai-Tibetan Plateau[J]. Nature Reviews Earth & Environment, 2022, 3 (10): 668-683 |
[54] | 朴正刚, 李湘怡, 徐浩, 等. 影响青藏高原植被生产力的极端气候阈值[J]. 中国科学:地球科学, 2024, 54 (6): 1-12. |
Piao Z G, Li X Y, Xu H, et al. Threshold of climate extremes that impact vegetation productivity over the Tibetan Plateau[J]. Scientia Sinica Terrae, 2024, 54 (6): 1-12 (in Chinese) | |
[55] | Yan L Y, Kong L Q, Wang L J, et al. Grass-livestock balance under the joint influences of climate change, human activities and ecological protection on Tibetan Plateau[J]. Ecological Indicators, 2024, 162: 112040 |
[56] | 汪涛, 朴世龙. 青藏高原陆地生态系统碳汇估算: 进展、挑战与展望[J]. 第四纪研究, 2023, 43 (2): 313-323. |
Wang T, Piao S L. Estimate of terrestrial carbon balance over the Tibetan Plateau: progresses, challenges and perspectives[J]. Quaternary Sciences, 2023, 43 (2): 313-323 (in Chinese) | |
[57] | Wang Y Y, Xiao J F, Ma Y M, et al. Persistent and enhanced carbon sequestration capacity of alpine grasslands on the Earth’s Third Pole[J]. Science Advances, 2023, 9 (20): eade6875 |
[58] | Dong S K. Revitalizing the grassland on the Qinghai-Tibetan Plateau[J]. Grassland Research, 2023, 2 (3): 241-250 |
[59] |
Wang H, Liu H Y, Cao G M, et al. Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change[J]. Ecology Letters, 2020, 23 (4): 701-710
doi: 10.1111/ele.13474 pmid: 32052555 |
[60] | Li C Y, Lai C M, Peng F, et al. Dominant plant functional group determine the response of the temporal stability of plant community biomass to 9-year warming on the Qinghai-Tibetan Plateau[J]. Frontiers in Plant Science, 2021, 12: 704138 |
[61] |
Wu L W, Zhang Y, Guo X, et al. Reduction of microbial diversity in grassland soil is driven by long-term climate warming[J]. Nature Microbiology, 2022, 7 (7): 1054-1062
doi: 10.1038/s41564-022-01147-3 pmid: 35697795 |
[62] | Klein J A, Harte J, Zhao X Q. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau[J]. Ecology Letters, 2004, 7: 1170-1179 |
[63] | 刘志伟, 李胜男, 韦玮, 等. 近三十年青藏高原湿地变化及其驱动力研究进展[J]. 生态学杂志, 2019, 38 (3): 856-862. |
Liu Z W, Li S N, Wei W, et al. Research progress on alpine wetland changes and driving forces in Qinghai-Tibet Plateau during the last three decades[J]. Chinese Journal of Ecology, 2019, 38 (3): 856-862 (in Chinese) | |
[64] | 邢宇. 青藏高原32年湿地对气候变化的空间响应[J]. 国土资源遥感, 2015, 27 (3): 99-107. |
Xing Y. Spatial responses of wetland change to climate in 32 years in Qinghai-Tibet Plateau[J]. Remote Sensing for Land and Resources, 2015, 27 (3): 99-107 (in Chinese) | |
[65] | Wang M D, Hou J Z, Lei Y B. Classification of Tibetan lakes based on variations in seasonal lake water temperature[J]. Chinese Science Bulletin, 2014, 59 (34): 4847-4855 |
[66] | 张倚浩, 阎建忠, 程先. 气候变化与人类活动对青藏高原湿地的影响研究进展[J]. 生态学报, 2023, 43 (6): 2180-2193. |
Zhang Y H, Yan J Z, Cheng X. Advances in impact of climate change and human activities on wetlands on the Tibetan Plateau[J]. Acta Ecologica Sinica, 2023, 43 (6): 2180-2193 (in Chinese) | |
[67] | 张国庆, 姚檀栋, Xie H J, 等. 青藏高原湖泊状态与丰度[J]. 科学通报, 2014, 59 (26): 2643. |
Zhang G Q, Yao T D, Xie H J, et al. Lakes’ state and abundance across the Tibetan Plateau[J]. Chinese Science Bulletin, 2014, 59 (26): 2643 (in Chinese) | |
[68] | Zhang G Q, Luo W, Chen W F, et al. A robust but variable lake expansion on the Tibetan Plateau[J]. Chinese Science Bulletin, 2019, 64 (18): 1306-1309 |
[69] |
Tang L Y, Duan X F, Kong F J, et al. Influences of climate change on area variation of Qinghai Lake on Qinghai-Tibetan Plateau since 1980s[J]. Scientific Reports, 2018, 8 (1): 7331
doi: 10.1038/s41598-018-25683-3 pmid: 29743516 |
[70] | Zhang Y, Wang G X, Wang Y B. Changes in alpine wetland ecosystems of the Qinghai-Tibetan Plateau from 1967 to 2004[J]. Environmental Monitoring and Assessment, 2010, 180: 189-199 |
[71] | Su F G, Zhang Y Q, Tang Q H, et al. Streamflow change on the Qinghai-Tibet Plateau and its impacts[J]. Chinese Science Bulletin, 2019, 64 (27): 2807-2821 |
[72] | Zhu L P, Xie M P, Wu Y H. Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co Basin of the Tibetan Plateau[J]. Chinese Science Bulletin, 2010, 55 (13): 1294-1303 |
[73] | 车涛, 郝晓华, 戴礼云, 等. 青藏高原积雪变化及其影响[J]. 中国科学院院刊, 2019, 34 (11): 1247-1253. |
Che T, Hao X H, Dai L Y, et al. Snow cover variation and its impacts over the Qinghai-Tibet Plateau[J]. Bulletin of the Chinese Academy of Sciences, 2019, 34 (11): 1247-1253 (in Chinese) | |
[74] |
Xu W H, Fan X Y, Ma J G, et al. Hidden loss of wetlands in China[J]. Current Biology, 2019, 29 (18): 3065-3071
doi: S0960-9822(19)30933-9 pmid: 31474534 |
[75] |
杨耀先, 胡泽勇, 路富全, 等. 青藏高原近60年来气候变化及其环境影响研究进展[J]. 高原气象, 2022, 41 (1): 1-10.
doi: 10.7522/j.issn.1000-0534.2021.00117 |
Yang Y X, Hu Z Y, Lu F Q, et al. Progress of recent 60 years’ climate change and its environmental impacts on the Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2022, 41 (1): 1-10 (in Chinese) | |
[76] | Wan W, Xiao P F, Feng X Z, et al. Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data[J]. Chinese Science Bulletin, 2014, 59 (10): 1021-1035 |
[77] |
王欠鑫, 曹巍, 黄麟. 青藏高原生态系统功能稳定性演化特征及分区[J]. 地理学报, 2023, 78 (5): 1104-1118.
doi: 10.11821/dlxb202305004 |
Wang Q X, Cao W, Huang L. Evolutionary characteristics and zoning of ecosystem functional stability on the Qinghai-Tibet Plateau[J]. Acta Geographica Sinica, 2023, 78 (5): 1104-1118 (in Chinese)
doi: 10.11821/dlxb202305004 |
|
[78] | 刘振坤, 刘峰, 郑光辉, 等. 基于RUSLE模型的青藏高原土壤保持功能定量评价[J]. 土壤, 2024, 56 (1): 173-181. |
Liu Z K, Liu F, Zheng G H, et al. Quantitative evaluation of soil conservation function in the Qinghai-Tibet Plateau based on RUSLE model[J]. Soil, 2024, 56 (1): 173-181 (in Chinese) | |
[79] |
张玉波, 杜金鸿, 李俊生, 等. 青藏高原生态系统发育与生物多样性[J]. 科技导报, 2017, 35 (12): 14-18.
doi: 10.3981/j.issn.1000-7857.2017.12.001 |
Zhang Y B, Du J H, Li J S, et al. Ecosystem development and biodiversity of Tibetan Plateau[J]. Science & Technology Review, 2017, 35 (12): 14-18 (in Chinese) | |
[80] | Wang X M, Geng X, Liu B, et al. Desert ecosystems in China: past, present, and future[J]. Earth-Science Reviews, 2022, 234: 104206 |
[81] | Prăvălie R. Drylands extent and environmental issues. A global approach[J]. Earth-Science Reviews, 2016, 161: 259-278 |
[82] | Olson D M, Dinerstein E, Wikramanayake E D, et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity[J]. BioScience, 2001, 51 (11): 933-938 |
[83] | Wu K, Chen J H, Yang H, et al. Spatiotemporal variations in the sensitivity of vegetation growth to typical climate factors on the Qinghai-Tibet Plateau[J]. Remote Sensing, 2023, 15 (9): 2355 |
[84] | Li Q, Zhang C L, Shen Y P, et al. Quantitative assessment of the relative roles of climate change and human activities in desertification processes on the Qinghai-Tibet Plateau based on net primary productivity[J]. Catena, 2016, 147: 789-796 |
[85] | Liu J, Luo Y H, Li D Z, et al. Evolution and maintenance mechanisms of plant diversity in the Qinghai-Tibet Plateau and adjacent regions: retrospect and prospect[J]. Biodiversity Science, 2017, 25 (2): 41-45 |
[86] | 侯一蕾, 邢方圆, 马丽, 等. 应对气候变化与保护生物多样性协同: 全球实践与启示[J]. 气候变化研究进展, 2023, 19 (1): 91-101. |
Hou Y L, Xing F Y, Ma L, et al. Addressing climate change and biodiversity conservation synergy: global practices and implications[J]. Climate Change Research, 2023, 19 (1): 91-101 (in Chinese) | |
[87] |
Zhang X, Wang J, Gao Y, et al. Variations and controlling factors of vegetation dynamics on the Qingzang Plateau of China over the recent 20 years[J]. Geography and Sustainability, 2021, 2 (1): 74-85
doi: 10.1016/j.geosus.2021.02.001 |
[88] | Li C J, Fu B J, Wang S, et al. Climate-driven ecological thresholds in China’s drylands modulated by grazing[J]. Nature Sustainability, 2023, 6: 1363-1372 |
[89] | Li X Y, Piao S L, Huntingford C, et al. Global variations in critical drought thresholds that impact vegetation[J]. National Science Review, 2023, 10 (5): nwad049 |
[90] |
Berdugo M, Delgado-Baquerizo M, Soliveres S, et al. Global ecosystem thresholds driven by aridity[J]. Science, 2020, 367 (6479): 787-790
doi: 10.1126/science.aay5958 pmid: 32054762 |
[91] | Liang X Y, Ye Q, Liu H, et al. Wood density predicts mortality threshold for diverse trees[J]. New Phytologist, 2020, 229 (6): 3053-3057 |
[92] | Peng J, Liu Z H, Liu Y H, et al. Trend analysis of vegetation dynamics in Qinghai-Tibet Plateau using hurst exponent[J]. Ecological Indicators, 2012, 14 (1): 28-39 |
[93] | Li C J, Fu B J, Wang S, et al. Drivers and impacts of changes in China’s drylands[J]. Nature Reviews Earth & Environment, 2021, 2 (12): 858-873 |
[94] | 卓嘎, 陈思蓉, 周兵. 青藏高原植被覆盖时空变化及其对气候因子的响应[J]. 生态学报, 2018, 38 (9): 3208-3218. |
Zhuo G, Chen S R, Zhou B. Spatio-temporal variation of vegetatioon coverage over the Tibetan Plateau and its responses to climate factors[J]. Acta Ecologica Sinica, 2018, 38 (9): 3208-3218 (in Chinese) | |
[95] |
Zhu Z Q, Wang H, Harrison S P, et al. Optimality principles explaining divergent responses of alpine vegetation to environmental change[J]. Global Change Biology, 2022, 29 (1): 126-142
doi: 10.1111/gcb.16459 pmid: 36176241 |
[96] | Ying L X, Wang L J, Huang X, et al. Climate change impairs the effects of vegetation improvement on soil erosion control in the Qinghai-Tibetan Plateau[J]. Catena, 2024, 241: 108062 |
[97] | Ouyang Z Y, Song C S, Zheng H, et al. Using gross ecosystem product (GEP) to value nature in decision making[J]. Proceedings of the National Academy of Sciences, 2020, 117 (25): 14593-14601 |
[98] |
Zu K L, Wang Z H. Research progress on the elevational distribution of mountain species in response to climate change[J]. Biodiversity Science, 2022, 30 (5): 21451
doi: 10.17520/biods.2021451 |
[99] | 万辛如, 程超源, 白德凤, 等. 气候变化的生态影响及适应对策[J]. 中国科学院院刊, 2023, 38 (3): 518-527. |
Wan X R, Cheng C Y, Bai D F, et al. Ecological impacts and adaptation strategies of climate change[J]. Bulletin of Chinese Academy of Sciences, 2023, 38 (3): 518-527 (in Chinese) | |
[100] | Shen X J, Liu B H, Jiang M, et al. Marshland loss warms local land surface temperature in China[J]. Geophysical Research Letters, 2020, 47 (6): e2020GL087648 |
[1] | 丁永建, 张世强, 陈仁升, 秦甲, 赵求东, 刘俊峰, 阳勇, 何晓波, 苌亚平, 上官冬辉, 韩添丁, 吴锦奎, 李向应. 气候变化对冰冻圈水文影响研究综述[J]. 气候变化研究进展, 2025, 21(1): 1-21. |
[2] | 秦卓凡, 廖宏, 代慧斌. 气候变化影响我国大气重污染事件的研究进展[J]. 气候变化研究进展, 2025, 21(1): 56-68. |
[3] | 吕学都, 陈佳琪, 葛慧, 朱乙丹. 气候金融实践与发展建议[J]. 气候变化研究进展, 2025, 21(1): 78-90. |
[4] | 吴青柏, 徐晓明, 贺建桥, 姚晓军, 张中琼. 青藏高原冰冻圈变化对工程的影响[J]. 气候变化研究进展, 2025, 21(1): 22-31. |
[5] | 仕仁睿, 蒋兴文, 王遵娅. 青藏高原雨季建立进程及其环流因子分析[J]. 气候变化研究进展, 2025, 21(1): 91-101. |
[6] | 陈德亮, 谭显春, 彭喆, 闫洪硕, 程永龙. 人工智能在气候研究和服务中的机遇与挑战[J]. 气候变化研究进展, 2024, 20(6): 669-681. |
[7] | 高翔. 国际条约下的气候资金问题辨析[J]. 气候变化研究进展, 2024, 20(6): 799-807. |
[8] | 朱磊, 张丽忠, 蒋莹, 徐剑锋, 黄艳, 孙淑欣. 工业部门的气候适应研究进展[J]. 气候变化研究进展, 2024, 20(6): 721-735. |
[9] | 陆春晖, 袁佳双, 黄磊, 张永香. 从IPCC看全球盘点中的关键科学问题及其对中国的启示[J]. 气候变化研究进展, 2024, 20(6): 736-746. |
[10] | 周泽宇, 王君华, 曹颖. 全球适应气候变化行动进展评估及相关工作建议[J]. 气候变化研究进展, 2024, 20(6): 764-772. |
[11] | 车彦军, 陈丽花, 吴佳康, 谷来磊, 武荣, 张东启, 丁明虎. 青藏高原冰前湖与冰川相互作用研究进展[J]. 气候变化研究进展, 2024, 20(5): 519-533. |
[12] | 牛振国, 景雨航, 张东启, 张波. 气候变化背景下青藏高原湿地生态系统响应特征:回顾与展望[J]. 气候变化研究进展, 2024, 20(5): 509-518. |
[13] | 吴沛泽, 陈莎, 刘影影, 李晓桐, 杜展霞, 崔淑芬, 姜克隽. 低排放分析平台LEAP:应对气候变化下的应用与挑战[J]. 气候变化研究进展, 2024, 20(5): 611-623. |
[14] | 德吉玉珍, 拉巴, 巴桑旺堆, 白玛玉措, 旦增益嘎, 平措旺丹, 德吉央宗. 近50年西藏那曲西南部湖泊变化特征及其对气候变化的响应[J]. 气候变化研究进展, 2024, 20(5): 534-543. |
[15] | 翟晓瑶, 王阔, 李正泉, 宋超辉, 方贺, 姚霞, 张含, 郁珍艳, 徐婵婵. 浙江安吉气候生态产品总值探索和评估[J]. 气候变化研究进展, 2024, 20(4): 475-484. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|