气候变化研究进展 ›› 2025, Vol. 21 ›› Issue (1): 1-21.doi: 10.12006/j.issn.1673-1719.2024.230
所属专题: 创刊20周年纪念专栏
丁永建1,2,3,4(), 张世强5,6(
), 陈仁升7,4, 秦甲1,3,4, 赵求东7,2,3,4, 刘俊峰7,4, 阳勇7,4, 何晓波1,3,4, 苌亚平1,3,4, 上官冬辉1,2,3,4, 韩添丁1,3,4, 吴锦奎7,3,4, 李向应5,6
收稿日期:
2024-08-29
修回日期:
2024-09-14
出版日期:
2025-01-30
发布日期:
2024-12-26
通讯作者:
张世强,男,教授,作者简介:
丁永建,男,研究员,基金资助:
DING Yong-Jian1,2,3,4(), ZHANG Shi-Qiang5,6(
), CHEN Ren-Sheng7,4, QIN Jia1,3,4, ZHAO Qiu-Dong7,2,3,4, LIU Jun-Feng7,4, YANG Yong7,4, HE Xiao-Bo1,3,4, CHANG Ya-Ping1,3,4, SHANGGUAN Dong-Hui1,2,3,4, HAN Tian-Ding1,3,4, WU Jin-Kui7,3,4, LI Xiang-Ying5,6
Received:
2024-08-29
Revised:
2024-09-14
Online:
2025-01-30
Published:
2024-12-26
摘要:
冰冻圈水文过程对气候变化的响应及其影响已成为全球变化研究的热点问题之一。从全球尺度看,冰川的物质损失量(即冰川冰的融水量)2000—2019年整体表现为(48±16)~(57.6±13) Gt/(10 a)的加速趋势,但不同区域差异较大。从流域尺度看,不同流域冰川融水对气候变化的响应程度各异,主要取决于不同流域冰川规模大小及不同规模冰川的组成特征。尽管对全球不同冰川区的冰川融水未来变化趋势,尤其拐点出现时间的认识仍有所差异,但对于冰川融水空间变化整体格局存在共识,即未来全球冰川融水的变化趋势受控于冰盖及高纬度大型冰川的变化速率。全球变暖导致融雪期间径流年内分配出现明显变化,表现为流域融雪期明显提前,提前的日数主要集中在20 d以内,其次是消融早期的融雪径流明显增加,峰值流量到达时间提前。预估未来雨雪比增加将导致积雪储量减少,同时增加升华量,进一步强化融雪径流的提前时间,导致流域融雪径流贡献减少。气候变化通过多种方式影响多年冻土水文过程,表现在下垫面水文效应、活动层径流调蓄作用和多年冻土层上水变化三方面。在下垫面水文效应方面,地表冻融作用的加强、热融喀斯特的扩张和活动层加深,直接影响地表产汇流过程和能力,进而影响地表径流的年内分配;在活动层径流调蓄方面,活动层变化不仅影响地表径流过程,也影响活动层内垂直和水平方向的壤中流,更影响多年冻土层上水的补给和径流能力,更重要的是活动层的冻融及深度变化,对上述水文过程起到年内到长期的水文调节作用;在多年冻土层上水变化方面,通过各种方法获得的结果可以得出这样的认识,即多年冻土退化已经或多或少对地下径流产生了影响,这种影响的突出表现是多年冻土退化对河流的直接补给作用,且补给的数量似不可忽视,有些流域甚至达到一定量级。
丁永建, 张世强, 陈仁升, 秦甲, 赵求东, 刘俊峰, 阳勇, 何晓波, 苌亚平, 上官冬辉, 韩添丁, 吴锦奎, 李向应. 气候变化对冰冻圈水文影响研究综述[J]. 气候变化研究进展, 2025, 21(1): 1-21.
DING Yong-Jian, ZHANG Shi-Qiang, CHEN Ren-Sheng, QIN Jia, ZHAO Qiu-Dong, LIU Jun-Feng, YANG Yong, HE Xiao-Bo, CHANG Ya-Ping, SHANGGUAN Dong-Hui, HAN Tian-Ding, WU Jin-Kui, LI Xiang-Ying. A review of the impacts of climate change on cryospheric hydrological processes[J]. Climate Change Research, 2025, 21(1): 1-21.
图1 伦道夫冰川编目(RGI)划分的19个全球分区冰川物质变化率 注: 19个区域中,2、5、9、17细分为东、西、南、北4个部分。年冰川物质损失量由圆盘界定的内部楔形区域表示,该楔形将陆地末端(浅灰色)和海洋末端(浅蓝色)冰川物质损失量的贡献分开。圆盘底部的时间轴上显示了年冰川表面高程的变化(单位为m/a)和区域数据覆盖情况[17]。
Fig. 1 The mass change rates of glaciers in the 19 global regions classified by the Randolph Glacier Inventory (RGI)
图3 不同RCP情景下全球的年冰川净物质损失预估结果 注:实线表示多模型多气候模式集合的中位数,阴影表示±1倍标准差,为清晰起见,仅对RCP2.6和RCP8.5显示。全球图中的虚线表示所有区域集合中位数的总和[23]。
Fig. 3 Estimated global annual glacier net mass loss under different RCP scenarios
图6 不同丰枯水年份多年冻土活动层不同深度土壤含水量的变化及对降雨响应过程(疏勒河上游山区流域) 注:浅层为0~10 cm,深层为 70~80 cm,根据文献[79,125]修改。
Fig. 6 Changes in soil moisture at different depths of the active layer of permafrost in years of high and low water levels, and the response process to rainfall (Shule River upper mountainous basin)
图7 气候变化背景下多年冻土退化对流域水文过程的影响概念图(a)冻土退化前后的河流水系、湖塘、冻土活动层水文变化,(b)未来情景下冻土活动层及热融湖塘水变化,(c)冻土退化对径流年内变化过程的影响
Fig. 7 Conceptual diagram of the impact of permafrost degradation on watershed hydrological processes under climate change. (a) Hydrological changes in river systems, lakes, and the permafrost active layer before and after permafrost degradation, (b) water changes in the permafrost active layer and thermokarst lakes under future scenarios, (c) impact of permafrost degradation on the intra-annual variation of runoff
图8 祁连山疏勒河流域1985年前后的径流过程线差异 注:本图修改自文献[158]。
Fig. 8 Differences in runoff process before and after 1985 in the Shule River basin of the Qilian Mountains
[1] | Immerzeel W W, Lutz A F, Andrade M, et al. Importance and vulnerability of the world’s water towers[J]. Nature, 2020, 577 (7790): 364-369 |
[2] | IPCC. Contributors to the IPCC special report on the oceans and cryosphere in a changing climate[M]. Cambridge: Cambridge University Press, 2022 |
[3] | 丁永建, 张世强, 吴锦奎, 等. 中国冰冻圈水文过程变化研究新进展[J]. 水科学进展, 2020, 31 (5): 690-702. |
Ding Y J, Zhang S Q, Wu J K, et al. Recent progress on studies on cryospheric hydrological processes changes in China[J]. Advances in Water Science, 2020, 31 (5): 690-702 (in Chinese) | |
[4] | Li X Y, Wang N L, Ding Y J, et al. Globally elevated chemical weathering rates beneath glaciers[J]. Nature Communications, 2022, 13 (1): 1-13 |
[5] |
Yang G B, Zheng Z H, Abbott B W, et al. Characteristics of methane emissions from alpine thermokarst lakes on the Tibetan Plateau[J]. Nature Communications, 2023, 14 (1): 3121
doi: 10.1038/s41467-023-38907-6 pmid: 37253726 |
[6] | Kong H, Lin J T, Zhang Y H, et al. High natural nitric oxide emissions from lakes on Tibetan Plateau under rapid warming[J]. Nature Geoscience, 2023, 16 (6): 474-477 |
[7] | Ragettli S, Immerzeel W W, Pellicciotti F. Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains[J]. Proceedings of the National Academy of Sciences, 2016, 113 (33): 9222-9227 |
[8] |
Huss M, Hock R. Global-scale hydrological response to future glacier mass loss[J]. Nature Climate Change, 2018, 8 (2): 135-140
doi: 10.1038/s41558-017-0049-x |
[9] | Azam M F, Kargel J S, Shea J M, et al. Glaciohydrology of the Himalaya-Karakoram[J]. Science, 2021, 373 (6557): eabf3668 |
[10] | 王磊, 刘虎, 雍斌, 等. 陆地冰冻圈水文过程的研究现状及展望[J]. 北京师范大学学报 (自然科学版), 2023, 59 (3): 489-496. |
Wang L, Liu H, Yong B, et al. Hydrological processes in land cryosphere: current status and some perspectives[J]. Journal of Beijing Normal University (Natural Science), 2023, 59 (3): 489-496 (in Chinese) | |
[11] | Bliss A, Hock R, Radić V. Global response of glacier runoff to twenty-first century climate change[J]. Journal of Geophysical Research: Earth Surface, 2014, 119 (4): 717-730 |
[12] | Zemp M, Huss M, Thibert E, et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016[J]. Nature, 2019, 568 (7752): 382-386 |
[13] | Li Y J, Ding Y J, Shangguan D H, et al. Climate-driven acceleration of glacier mass loss on global and regional scales during 1961-2016[J]. Science China Earth Sciences, 2021, 64: 589-599 |
[14] | Malles J H, Marzeion B. Twentieth century global glacier mass change: an ensemble-based model reconstruction[J]. The Cryosphere, 2021, 15 (7): 3135-3157 |
[15] | Wouters B, Gardner A S, Moholdt G. Global glacier mass loss during the GRACE satellite mission (2002-2016)[J]. Frontiers in Earth Science, 2019, 7: 96 |
[16] | Jakob L, Gourmelen N. Glacier mass loss between 2010 and 2020 dominated by atmospheric forcing[J]. Geophysical Research Letters, 2023, 50 (8): e2023GL102954 |
[17] | Hugonnet R, McNabb R, Berthier E, et al. Accelerated global glacier mass loss in the early twenty-first century[J]. Nature, 2021, 592 (7856): 726-731 |
[18] | Ciraci E, Velicogna I, Swenson S. Continuity of the mass loss of the world’s glaciers and ice caps from the GRACE and GRACE follow-on missions[J]. Geophysical Research Letters, 2020, 47 (9): e2019GL086926 |
[19] |
Luo Y, Wang X L, Piao S L, et al. Contrasting streamflow regimes induced by melting glaciers across the Tien Shan-Pamir-North Karakoram[J]. Scientific Reports, 2018, 8 (1): 16470
doi: 10.1038/s41598-018-34829-2 pmid: 30405195 |
[20] | Zhang Y Q, Luo Y, Sun L. Quantifying future changes in glacier melt and river runoff in the headwaters of the Urumqi River, China[J]. Environmental Earth Sciences, 2016, 75: 1-14 |
[21] | Liu G H, Chen R S, Li K L. Glacial change and its hydrological response in three inland river basins in the Qilian Mountains, western China[J]. Water, 2021, 13 (16): 2213 |
[22] | Zhao Q D, Zhang S Q, Ding Y J, et al. Modeling hydrologic response to climate change and shrinking glaciers in the highly glacierized Kunma Like River catchment, central Tian Shan[J]. Journal of Hydrometeorology, 2015, 16 (6): 2383-2402 |
[23] | Marzeion B, Hock R, Anderson B, et al. Partitioning the uncertainty of ensemble projections of global glacier mass change[J]. Earth’s Future, 2020, 8 (7): e2019EF001470 |
[24] | Gao H K, Feng Z, Zhang T, et al. Assessing glacier retreat and its impact on water resources in a headwater of Yangtze River based on CMIP6 projections[J]. Science of the Total Environment, 2021, 765: 142774 |
[25] | Rounce D R, Hock R, Shean D E. Glacier mass change in High Mountain Asia through 2100 using the open-source python glacier evolution model (PyGEM)[J]. Frontiers in Earth Science, 2020, 7: 331 |
[26] |
Immerzeel W W, van Beek L P H, Bierkens M F P. Climate change will affect the Asian Water Towers[J]. Science, 2010, 328 (5984): 1382-1385
doi: 10.1126/science.1183188 pmid: 20538947 |
[27] | Lutz A F, Immerzeel W W, Shrestha A B, et al. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation[J]. Nature Climate Change, 2014, 4 (7): 587-592 |
[28] | Khanal S, Lutz A F, Kraaijenbrink D. et al. Variable 21st century climate change response for rivers in High Mountain Asia at seasonal to decadal time scales[J]. Water Resources Research, 2021, 57 (5): e2020WR029266 |
[29] | 丁永建, 张世强, 陈仁升. 冰冻圈水文学[M]. 北京: 科学出版社, 2020. |
Ding Y J, Zhang S Q, Chen R S. Cryosphere hydrology[M]. Beijing: Science Press, 2020 (in Chinese) | |
[30] | Beniston M, Farinotti D, Stoffel M, et al. The European mountain cryosphere: a review of its current state, trends, and future challenges[J]. The Cryosphere, 2018, 12 (2): 759-794 |
[31] |
Dong C, Menzel L. Recent snow cover changes over central European low mountain ranges[J]. Hydrological Processes, 2020, 34 (2): 321-338
doi: 10.1002/hyp.13586 |
[32] | Marty C, Schlögl S, Bavay M, et al. How much can we save? Impact of different emission scenarios on future snow cover in the Alps[J]. The Cryosphere, 2017, 11 (1): 517-529 |
[33] | Wei Y, Li X, Gu L, et al. Significant decreasing trends in snow cover and duration in Northeast China during the past 40 years from 1980 to 2020[J]. Journal of Hydrology, 2023, 626: 130318 |
[34] | Zhong X, Zhang T J, Wang K. Snow density climatology across the former USSR[J]. The Cryosphere, 2014, 8 (2): 785-799 |
[35] |
Li Z, Chen Y N, Li Y P, et al. Declining snowfall fraction in the alpine regions, Central Asia[J]. Scientific Reports, 2020, 10 (1): 3476
doi: 10.1038/s41598-020-60303-z pmid: 32103068 |
[36] | Nitzbon J, Schneider von D T, Aliyeva M, et al. No respite from permafrost-thaw impacts in the absence of a global tipping point[J]. Nature Climate Change, 2024: 1-13 |
[37] | Ma Q Q, Keyimu M, Li X Y, et al. Climate and elevation control snow depth and snow phenology on the Tibetan Plateau[J]. Journal of Hydrology, 2023, 617: 128938 |
[38] | Han J T, Liu Z W, Woods R, et al. Streamflow seasonality in a snow-dwindling world[J]. Nature, 2024, 629: 1075-1081 |
[39] | Clow D. Changes in the timing of snowmelt and streamflow in Colorado: a response to recent warming[J]. Journal of Climate, 2010, 23 (9): 2293-2306 |
[40] | Yang Y, Chen R S, Liu G H, et al. Trends and variability in snowmelt in China under climate change[J]. Hydrology and Earth System Sciences, 2022, 26 (2): 305-329 |
[41] | Burn D H, Whitfield P H. Changes in floods and flood regimes in Canada[J]. Canadian Water Resources Journal, 2016, 41 (1-2): 139-150 |
[42] | 王建, 沈永平, 鲁安新, 等. 气候变化对中国西北地区山区融雪径流的影响[J]. 冰川冻土, 2001, 23 (1): 28-33. |
Wang J, Shen Y P, Lu A X, et al. Impact of climate change on snowmelt runoff in the mountainous regions of Northwest China[J]. Journal of Glaciology and Geocryology, 2001, 23 (1): 28-33 (in Chinese) | |
[43] | Jasper K, Calanca P, Gyalistras D, et al. Differential impacts of climate change on the hydrology of two alpine river basins[J]. Climate Research, 2004, 26 (2): 113-129 |
[44] | Zierl B, Bugmann H. Global change impacts on hydrological processes in alpine catchments[J]. Water Resources Research, 2005, 41 (2): W02028 |
[45] | Hodgkins G A, Dudley R W. Changes in the timing of winter-spring streamflows in eastern North America, 1913-2002[J]. Geophysical Research Letters, 2006, 33 (6): L06402 |
[46] | 沈永平, 王国亚, 苏宏超, 等. 新疆阿尔泰山区克兰河上游水文过程对气候变暖的响应[J]. 冰川冻土, 2007, 29 (6): 845-854. |
Shen Y P, Wang G Y, Su H C, et al. Hydrological processes responding to climate warming in the upper reaches of Kelan River basin with snow-dominated of the Altay Mountains region, Xinjiang, China[J]. Journal of Glaciology and Geocryology, 2007, 29 (6): 845-854 (in Chinese) | |
[47] | Fritze H, Stewart I T, Pebesma E. Shifts in western North American snowmelt runoff regimes for the recent warm decades[J]. Journal of Hydrometeorology, 2011, 12 (5): 989-1006 |
[48] | 李宝富, 陈亚宁, 陈忠升, 等. 西北干旱区山区融雪期气候变化对径流量的影响[J]. 地理学报, 2012, 67 (11): 1461-1470. |
Li B F, Chen Y N, Chen Z S, et al. The effect of climate change during snowmelt period on streamflow in the mountainous areas of Northwest China[J]. Acta Geographica Sinica, 2012, 67 (11): 1461-1470 (in Chinese)
doi: 10.11821/xb201211003 |
|
[49] | 孙文. 气温与辐射对松花江流域融雪径流影响研究[D]. 辽宁: 沈阳农业大学, 2018. |
Sun W. Study on the impact of temperature and radiation on snowmelt runoff in the Songhua River basin[D]. Liaoning: Shenyang Agricultural University, 2018 (in Chinese) | |
[50] | Ford C, Kendall A D, Hyndman D W. Effects of shifting snowmelt regimes on the hydrology of non-alpine temperate landscapes[J]. Journal of Hydrology, 2020, 590: 125517 |
[51] | Veijalainen N, Korhonen J, Vehviläinen B, et al. Modelling and statistical analysis of catchment water balance and discharge in Finland in 1951-2099 using transient climate scenarios[J]. Journal of Water and Climate Change, 2012, 3 (1): 55-78 |
[52] | Sallinen A, Akanegbu J, Marttila H, et al. Recent and future hydrological trends of Aapa mires across the boreal climate gradient[J]. Journal of Hydrology, 2023, 617: 129022 |
[53] | Shen Y J, Shen Y, Fink M, et al. Trends and variability in streamflow and snowmelt runoff timing in the southern Tianshan Mountains[J]. Journal of Hydrology, 2018, 557: 173-181 |
[54] | Stewart I T, Cayan D R, Dettinger M D. Changes in snowmelt runoff timing in western North America under a ‘business as usual’ climate change scenario[J]. Climatic Change, 2004, 62 (1): 217-232 |
[55] | Wang J, Li H, Hao X. Responses of snowmelt runoff to climatic change in an inland river basin, Northwestern China, over the past 50 years[J]. Hydrology and Earth System Sciences, 2010, 14 (10): 1979-1987 |
[56] | Pederson G T, Gray S T, Ault T, et al. Climatic controls on the snowmelt hydrology of the northern Rocky Mountains[J]. Journal of Climate, 2011, 24 (6): 1666-1687 |
[57] | Blöschl G, Hall J, Viglione A, et al. Changing climate both increases and decreases European river floods[J]. Nature, 2019, 573 (7772): 108-111 |
[58] | Rasouli K, Pomeroy J W, Whitfield P H. The sensitivity of snow hydrology to changes in air temperature and precipitation in three North American headwater basins[J]. Journal of Hydrology, 2022, 606: 127460 |
[59] | Kormos M, Zaránd G. Quantum quenches in the sine-Gordon model: a semiclassical approach[J]. Physical Review E, 2016, 93 (6): 062101 |
[60] | Surfleet C G, Tullos D. Variability in effect of climate change on rain-on-snow peak flow events in a temperate climate[J]. Journal of Hydrology, 2013, 479: 24-34 |
[61] | McCabe G J, Clark M P, Hay L E. Rain-on-snow events in the western United States[J]. Bulletin of the American Meteorological Society, 2007, 88 (3): 319-328 |
[62] | Ye H C, Yang D Q, Robinson D. Winter rain on snow and its association with air temperature in northern Eurasia[J]. Hydrological Processes, 2008, 22 (15): 2728-2736 |
[63] |
Bintanja R. The impact of Arctic warming on increased rainfall[J]. Scientific Reports, 2018, 8 (1): 16001
doi: 10.1038/s41598-018-34450-3 pmid: 30375466 |
[64] | Jacob D, Petersen J, Eggert B, et al. EURO-CORDEX: new high-resolution Climate Change projections for European impact research[J]. Regional Environmental Change, 2014, 14 (2): 563-578 |
[65] | Juras R, BlÖcher J R, Jenicek M, et al. What affects the hydrological response of rain-on-snow events in low-altitude mountain ranges in Central Europe?[J]. Journal of Hydrology, 2021, 603: 127002 |
[66] | Seibert J, Jenicek M, Huss M, et al. Snow and ice in the hydrosphere[M]. Elsevier, 2021: 93-135 |
[67] | Li H Y, Li X, Yang D W, et al. Tracing snowmelt paths in an integrated hydrological model for understanding seasonal snowmelt contribution at basin scale[J]. Journal of Geophysical Research: Atmospheres, 2019, 124 (16): 8874-8895 |
[68] | Zhou G, Zhang D H, Wan J H, et al. Mapping reveals contrasting change patterns of rain-on-snow events in China during 2001 to 2018[J]. Journal of Hydrology, 2023, 617: 129089 |
[69] | Hanich L, Chehbouni A, Gascoin S, et al. Snow hydrology in the Moroccan Atlas Mountains[J]. Journal of Hydrology: Regional Studies, 2022, 42: 101101 |
[70] | Bhatti A M, Koike T, Shrestha M. Climate change impact assessment on mountain snow hydrology by water and energy budget-based distributed hydrological model[J]. Journal of Hydrology, 2016, 543: 523-541 |
[71] | Hao Y, Sun F, Wang H, et al. Understanding climate-induced changes of snow hydrological processes in the Kaidu River basin through the CemaNeige-GR6J model[J]. Catena, 2022, 212: 106082 |
[72] | Cho E, McCrary R, Jacobs J. Future changes in snowpack, snowmelt, and runoff potential extremes over North America[J]. Geophysical Research Letters, 2021, 48 (22): e2021GL094985 |
[73] | Nolin A W, Sproles E A, Rupp D E, et al. New snow metrics for a warming world[J]. Hydrological Processes, 2021, 35 (6): e14262 |
[74] | Liu W B, Wang L, Sun F B, et al. Snow hydrology in the upper Yellow River basin under climate change: a land surface modeling perspective[J]. Journal of Geophysical Research: Atmospheres, 2018, 123 (22): 12676-12691 |
[75] | Walvoord M A, Kurylyk B L. Hydrologic impacts of thawing permafrost: a review[J]. Vadose Zone Journal, 2016, 15 (6): vzj2016.01.0010 |
[76] |
牛富俊, 王玮, 林战举, 等. 青藏高原多年冻土区热喀斯特湖环境及水文学效应研究[J]. 地球科学进展, 2018, 33 (4): 335-342.
doi: 10.11867/j.issn.1001-8166.2018.04.0335 |
Niu F J, Wang W, Lin Z J, et al. Study on environmental and hydrological effects of thermokarst lakes in permafrost regions of the Qinghai-Tibet Plateau[J]. Advances in Earth Science, 2018, 33 (4): 335-342 (in Chinese)
doi: 10.11867/j.issn.1001-8166.2018.04.0335 |
|
[77] | 高泽永, 牛富俊, 王一博, 等. 青藏高原多年冻土区热喀斯特湖水文特征及环境效应[J]. 水科学进展, 2022, 33 (2): 174-184. |
Gao Z Y, Niu F J, Wang Y B, et al. Hydrological characteristics of thermokarst lake and its environmental effects on Qinghai-Tibet Plateau[J]. Advances in Water Science, 2022, 33 (2): 174-184 (in Chinese) | |
[78] | Ding Y J, Zhang S Q, Chen R S, et al. Hydrological basis and discipline system of cryohydrology: from a perspective of cryospheric science[J]. Frontiers in Earth Science, 2020, 8: 574707 |
[79] |
丁永建, 赵求东, 吴锦奎, 等. 中国冰冻圈水文未来变化及其对干旱区水安全的影响[J]. 冰川冻土, 2020, 42 (1): 23-32.
doi: 10.7522/j.issn.1000-0240.2020.0003 |
Ding Y J, Zhao Q D, Wu J K, et al. The future changes of Chinese cryospheric hydrology and their impacts on water security in arid areas[J]. Journal of Glaciology and Geocryology, 2020, 42 (1): 23-32 (in Chinese)
doi: 10.7522/j.issn.1000-0240.2020.0003 |
|
[80] | Tananaev N, Teisserenc R, Debolskiy M. Permafrost hydrology research domain: process-based adjustment[J]. Hydrology, 2020, 7 (1): 6 |
[81] | Zhang Z Q, Wu Q B, Gao S R, et al. Response of the soil hydrothermal process to difference underlying conditions in the Beiluhe permafrost region[J]. Environmental Earth Sciences, 2017, 76: 1-13 |
[82] | Du X Q, Fang M, Lv H, et al. Effect of snowmelt infiltration on groundwater recharge in a seasonal soil frost area: a case study in Northeast China[J]. Environmental Monitoring and Assessment, 2019, 191: 1-11 |
[83] | Tananaev N, Lotsari E. Defrosting northern catchments: fluvial effects of permafrost degradation[J]. Earth-Science Reviews, 2022, 228: 103996 |
[84] | 曹伟, 盛煜, 吴吉春, 等. 黄河源区多年冻土活动层土壤水文过程季节变异分析[J]. 水科学进展, 2018, 29 (1): 1-10. |
Cao W, Sheng Y, Wu J C, et al. Seasonal variation of soil hydrological processes of active layer in source region of the Yellow River[J]. Advances in Water Science, 2018, 29 (1): 1-10 (in Chinese) | |
[85] | 曹伟, 盛煜, 吴吉春, 等. 青藏高原坡面冻土土壤水分空间变异特性[J]. 水科学进展, 2017, 28 (1): 32-40. |
Cao W, Sheng Y, Wu J C, et al. Spatial variability of permafrost soil-moisture on the slope of the Qinghai-Tibet Plateau[J]. Advances in Water Science, 2017, 28 (1): 32-40 (in Chinese) | |
[86] | Gao T G, Zhang T J, Guo H, et al. Impacts of the active layer on runoff in an upland permafrost basin, northern Tibetan Plateau[J]. PLOS One, 2018, 13 (2): e0192591 |
[87] | Gao H K, Han C T, Chen R S, et al. Frozen soil hydrological modeling for a mountainous catchment northeast of the Qinghai-Tibet Plateau[J]. Hydrology and Earth System Sciences, 2022, 26: 4187-4208 |
[88] | Ahmed N, Wang G X, Booij M J, et al. Variations in hydrological variables using distributed hydrological model in permafrost environment[J]. Ecological Indicators, 2022, 145: 1-10 |
[89] | Yang Y Z, Wu Q B, Jin H J, et al. Delineating the hydrological processes and hydraulic connectivities under permafrost degradation on northeastern Qinghai-Tibet Plateau, China[J]. Journal of Hydrology, 2019, 569: 359-372 |
[90] | Luo J, Niu F J, Lin Z J, et al. Thermokarst lake changes between 1969 and 2010 in the Beilu River basin, Qinghai-Tibet Plateau, China[J]. Science Bulletin, 2015, 60 (5): 556-564 |
[91] | Yang Y Z, Wu Q B, Yun H B, et al. Evaluation of the hydrological contributions of permafrost to the thermokarst lakes on the Qinghai-Tibet Plateau using stable isotopes[J]. Global and Planetary Change, 2016, 140: 1-8 |
[92] | Lindborg E, Lindborg T, Berglund S, et al. Water balance and its intra-annual variability in a permafrost catchment: hydrological interactions between catchment, lake and talik[J]. Hydrology and Earth System Sciences Discussions, 2013, 10 (7): 9271-9308 |
[93] | Yang Y Z, Wu Q B, Hou Y Z, et al. Unraveling of permafrost hydrological variabilities on central Qinghai-Tibet Plateau using stable isotopic technique[J]. Science of the Total Environment, 2017, 605: 199-210 |
[94] | Pan X C, Yu Q H, You Y H, et al. Contribution of supra-permafrost discharge to thermokarst lake water balances on the northeastern Qinghai-Tibet Plateau[J]. Journal of Hydrology, 2017, 555: 621-630 |
[95] | 赵林, 胡国杰, 邹德富, 等. 青藏高原多年冻土变化对水文过程的影响[J]. 中国科学院院刊, 2019, 34 (11): 1233-1246. |
Zhao L, Hu G J, Zou D F, et al. Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34 (11): 1233-1246 (in Chinese) | |
[96] | 丁永建, 叶佰生, 刘时银, 等. 青藏高原大尺度冻土水文监测研究[J]. 科学通报, 2000, 45 (2): 208-214. |
Ding Y J, Ye B S, Liu S Y, et al. Large-scale permafrost hydrological monitoring on the Qinghai-Tibet Plateau[J]. Chinese Science Bulletin, 2000, 45 (2) : 208-214 (in Chinese) | |
[97] | Arctic Monitoring and Assessment Programme (AMAP). Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017[M]. Oslo, Norway: Arctic Monitoring and Assessment Programme (AMAP), 2017 |
[98] | McClelland J W, Holmes R M, Peterson B J, et al. Increasing river discharge in the Eurasian Arctic: consideration of dams, permafrost thaw, and fires as potential agents of change[J]. Journal of Geophysical Research: Atmospheres, 2004, 109 (D18): D18102 |
[99] | 王根绪, 张寅生, 等. 寒区生态水文学理论与实践[M]. 北京: 科学出版社, 2016. |
Wang G X, Zhang Y S, et al. Theories and practices of ecohydrology in cold regions[M]. Beijing: Science Press, 2016 (in Chinese) | |
[100] | Ye B S, Yang D Q, Zhang Z L, et al. Variation of hydrological regime with permafrost coverage over Lena Basin in Siberia[J]. Journal of Geophysical Research: Atmospheres, 2009, 114 (D7): D07102 |
[101] | Ye B S, Yang D Q, Zhang T J, et al. Hydrological process change with air temperature over the Lena Basin in Siberia[C]. In: Proceedings of the XXV General Assembly of the International Union of Geodesy and Geophysics/Cold Regions Hydrology in a Changing Climate, Melbourne, Australia, 2011, 346: 33-38 |
[102] | Li P X, Zhang Z H, Liu J P. Dominant climate factors influencing the Arctic runoff and association between the Arctic runoff and sea ice[J]. Acta Oceanologica Sinica, 2010, 29: 10-20 |
[103] | 叶柏生, 丁永建, 焦克勤, 等. 我国寒区径流对气候变暖的响应[J]. 第四纪研究, 2012, 32 (1): 103-110. |
Ye B S, Ding Y J, Jiao K Q, et al. The response of river discharge to climate warming in cold region over China[J]. Quaternary Sciences, 2012, 32 (1): 103-110 (in Chinese) | |
[104] | Song C L, Wang G X, Mao T X, et al. Linkage between permafrost distribution and river runoff changes across the Arctic and the Tibetan Plateau[J]. Science China Earth Sciences, 2020, 63: 292-302 |
[105] | Wang K, Zhang T J, Yang D Q. Permafrost dynamics and their hydrologic impacts over the Russian Arctic drainage basin[J]. Advances in Climate Change Research, 2021, 12 (4): 482-498 |
[106] | Wang P, Huang Q W, Pozdniakov S P, et al. Potential role of permafrost thaw on increasing Siberian River discharge[J]. Environmental Research Letters, 2021, 16 (3): 034046 |
[107] | Song L, Wang L, Zhou J, et al. Divergent runoff impacts of permafrost and seasonally frozen ground at a large river basin of Tibetan Plateau during 1960-2019[J]. Environmental Research Letters, 2022, 17 (12): 124038 |
[108] | Liu J S, Hayakawa N, Lu M J, et al. Hydrological and geocryological response of winter streamflow to climate warming in Northeast China[J]. Cold Regions Science and Technology, 2003, 37: 15-24 |
[109] |
陆胤昊, 叶柏生, 李翀. 近50 a来我国东北多年冻土区南缘海拉尔河流域径流变化特征分析[J]. 冰川冻土, 2014, 36 (2): 394-402.
doi: 10.7522/j.issn.1000-0240.2014.0048 |
Lu Y H, Ye B S, Li C. Changes of runoff of the Hailar River basin in the southern margin of permafrost zone, Northeast China during 1958-2008[J]. Journal of Glaciology and Geocryology, 2014, 36 (2): 394-402 (in Chinese) | |
[110] | Niu L, Ye B S, Li J, et al. Effect of permafrost degradation on hydrological processes in typical basins with various permafrost coverage in Western China[J]. Science China Earth Sciences, 2011, 54: 615-624 |
[111] | Qin J, Ding Y J, Han T D, et al. Identification of the factors influencing the baseflow in the permafrost region of the northeastern Qinghai-Tibet Plateau[J]. Water, 2017, 9 (9): 666 |
[112] | Wang T H, Yang H B, Yang D W, et al. Quantifying the streamflow response to frozen ground degradation in the source region of the Yellow River within the Budyko framework[J]. Journal of Hydrology, 2018, 558: 301-313 |
[113] | Lan C, Zhang Y X, Bohn T J, et al. Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2015, 120 (16): 8276-8298 |
[114] | Gagarin L, Wu Q B, Cao W, et al. Icings of the Kunlun Mountains on the northern margin of the Qinghai-Tibet Plateau, western China: origins, hydrology and distribution[J]. Water, 2022, 14 (15): 2396 |
[115] |
张菲, 刘景时, 巩同梁. 喜马拉雅山北坡典型高山冻土区冬季径流过程[J]. 地球科学进展, 2006, 21 (12): 1333-1338.
doi: 10.11867/j.issn.1001-8166.2006.12.1333 |
Zhang F, Liu J S, Gong T L. Winter runoff in a typical alpine permafrost region, Tibet-Himalayas[J]. Advances in Earth Science, 2006, 21 (12): 1333-1338 (in Chinese) | |
[116] | Yang J J, Wang T H, Yang D W, et al. Insights into runoff changes in the source region of Yellow River under frozen ground degradation[J]. Journal of Hydrology, 2023, 617: 128892 |
[117] | Gao T G, Zhang T J, Cao L, et al. Reduced winter runoff in a mountainous permafrost region in the northern Tibetan Plateau[J]. Cold Regions Science and Technology, 2016, 126: 36-43 |
[118] | Gao B, Coon E. Evaluating simplifications of subsurface process representations for field-scale permafrost hydrology models[J]. The Cryosphere, 2022, 16 (10): 4141-4162 |
[119] | Chang Z H, Gao H K, Yong L L, et al. Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China[J]. Hydrologyand Earth System Sciences, 2024, 28: 3897-3917 |
[120] | Chang J, Wang G X, Li C J, et al. Seasonal dynamics of suprapermafrost groundwater and its response to the freezing-thawing processes of soil in the permafrost region of Qinghai-Tibet Plateau[J]. Science China Earth Sciences, 2015, 58: 727-738 |
[121] | Wang G X, Mao T X, Chang J, et al. Processes of runoff generation operating during the spring and autumn seasons in a permafrost catchment on semi-arid plateaus[J]. Journal of Hydrology, 2017, 550: 307-317 |
[122] | Halla C, Blöthe J H, Tapia Baldis C, et al. Ice content and interannual water storage changes of an active rock glacier in the dry Andes of Argentina[J]. The Cryosphere, 2021, 15 (2): 1187-1213 |
[123] | Hilbich C, Hauck C, Mollaret C, et al. Towards accurate quantification of ice content in permafrost of the Central Andes. Part 1: geophysics-based estimates from three different regions[J]. The Cryosphere, 2022, 16 (5): 1845-1872 |
[124] | Cooper R, Hodgkins R, Wadham J, et al. The hydrology of the proglacial zone of a high-Arctic glacier (Finsterwalderbreen, Svalbard): sub-surface water fluxes and complete water budget[J]. Journal of Hydrology, 2011, 406 (1-2): 88-96 |
[125] | Qin J, Ding Y J, Han T D, et al. The hydrothermal changes of permafrost active layer and their impact on summer rainfall-runoff processes in an alpine meadow watershed, Northwest China[J]. Research in Cold and Arid Regions, 2022, 14 (6): 361-369 |
[126] |
张艳林, 常晓丽, 梁继, 等. 高寒山区冻土对水文过程的影响研究: 以黑河上游八宝河为例[J]. 冰川冻土, 2016, 38 (5): 1362-1372.
doi: 10.7522/j.issn.1000-0240.2016.0160 |
Zhang Y L, Chang X L, Liang J, et al. Influence of frozen ground on hydrological processes in alpine regions: a case study in an upper reach of the Heihe River[J]. Journal of Glaciology and Geocryology, 2016, 38 (5): 1362-1372 (in Chinese) | |
[127] | 李太兵, 王根绪, 胡宏昌, 等. 长江源多年冻土区典型小流域水文过程特征研究[J]. 冰川冻土, 2009, 31 (1): 82-88. |
Li T B, Wang G X, Hu H C, et al. Hydrological process in a typical small permafrost watershed at the headwaters of Yangtze River[J]. Journal of Glaciology and Geocryology, 2009, 31 (1): 82-88 (in Chinese) | |
[128] | Bai W, Wang G X, Liu G S. Effects of elevated air temperatures on soil thermal and hydrologic processes in the active layer in an alpine meadow ecosystem of the Qinghai-Tibet Plateau[J]. Journal of Mountain Science, 2012, 9: 243-255 |
[129] | Hu H C, Wang G X, Wang Y B, et al. Response of soil heat-water processes to vegetation cover on the typical permafrost and seasonally frozen soil in the headwaters of the Yangtze and Yellow Rivers[J]. Chinese Science Bulletin, 2009, 54 (7): 1225-1233 |
[130] | Karra S, Painter S L, Lichtner P C. Three-phase numerical model for subsurface hydrology in permafrost-affected regions (PFLOTRAN-ICE v1.0)[J]. The Cryosphere, 2014, 8 (5): 1935-1950 |
[131] | Kalyuzhnyi I L, Lavrov S A. Mechanism of the influence of soil freezing depth on winter runoff[J]. Water Resources, 2017, 44: 604-613 |
[132] | Jin X Y, Jin H J, Luo D L, et al. Impacts of permafrost degradation on hydrology and vegetation in the source area of the Yellow River on northeastern Qinghai-Tibet Plateau, Southwest China[J]. Frontiers in Earth Science, 2022, 10: 845824 |
[133] | Chen R S, Song Y X, Kang E S, et al. A cryosphere-hydrology observation system in a small alpine watershed in the Qilian Mountains of China and its meteorological gradient[J]. Arctic, Antarctic, and Alpine Research, 2014, 46 (2): 505-523 |
[134] | Painter S, Moulton J, Wilson C. Modeling challenges for predicting hydrologic response to degrading permafrost[J]. Hydrogeology Journal, 2013, 21 (1): 221-224 |
[135] | Gibson J J, Yi Y, Birks S J. Isotopic tracing of hydrologic drivers including permafrost thaw status for lakes across northeastern Alberta, Canada: a 16-year, 50-lake assessment[J]. Journal of Hydrology: Regional Studies, 2011, 403 (3-4): 352-359 |
[136] | Song L, Wang L, Li X P, et al. Improving permafrost physics in a distributed cryosphere-hydrology model and its evaluations at the upper Yellow River basin[J]. Journal of Geophysical Research: Atmospheres, 2020, 125 (18): e2020JD032916 |
[137] | Sun A L, Yu Z B, Zhou J, et al. Quantified hydrological responses to permafrost degradation in the headwaters of the Yellow River (HWYR) in High Asia[J]. Science of the Total Environment, 2020, 712: 135632 |
[138] | Zhang T J, Barry R G, Knowles K, et al. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere[J]. Polar Geography, 1999, 23 (2): 132-154 |
[139] | 王生廷, 盛煜, 曹伟, 等. 基于地貌分类的黄河源区多年冻土层地下冰储量估算[J]. 水科学进展, 2017, 28 (6): 801-810. |
Wang S T, Sheng Y, Cao W, et al. Estimation of permafrost ice reserves in the source area of the Yellow River using landform classification[J]. Advances in Water Science, 2017, 28 (6): 801-810 (in Chinese) | |
[140] | 赵林, 丁永建, 刘广岳, 等. 青藏高原多年冻土层中地下冰储量估算及评价[J]. 冰川冻土, 2010, 32 (1): 1-9. |
Zhao L, Ding Y J, Liu G Y, et al. Estimates of the reserves of ground ice in permafrost regions on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2010, 32 (1): 1-9 (in Chinese) | |
[141] | Zou D F, Pang Q Q, Zhao L, et al. Estimation of permafrost ground ice to 10 m depth on the Qinghai-Tibet Plateau[J]. Permafrost and Periglacial Processes, 2024, 35: 423-434 |
[142] | Wang S Y, He X B, Kang S C, et al. Insights into the streamwater age in the headwater catchments covered by glaciers and permafrost, central Tibetan Plateau[J]. Science of the Total Environment, 2023, 866: 161337 |
[143] | Hiyama T, Avirmed D, Asai K, et al. Groundwater age of spring discharges under changing permafrost conditions: the Khangai Mountains in central Mongolia[J]. Environmental Research Letters, 2021, 16 (1): 015008 |
[144] | Hiyama T, Yang D Q, Kane D. Permafrost hydrology: linkages and feedbacks[M]// Yang D, Kane D L. Arctic hydrology, permafrost and ecosystems. Cham: Springer, 2021: 471-491 |
[145] | Mathys T, Hilbich C, Arenson L U, et al. Towards accurate quantification of ice content in permafrost of the Central Andes. Part 2: an upscaling strategy of geophysical measurements to the catchment scale at two study sites[J]. The Cryosphere, 2022, 16 (6): 2595-2615 |
[146] |
Wang T H, Yang D W, Yang Y T, et al. Unsustainable water supply from thawing permafrost on the Tibetan Plateau in a changing climate[J]. Science Bulletin, 2023, 68 (11): 1105-1108
doi: 10.1016/j.scib.2023.04.037 pmid: 37179233 |
[147] | 范林峰, 季芳, 匡星星, 等. 喜马拉雅北麓多年冻土退化对河川径流的影响[J]. 中国科学: 地球科学, 2024, 54 (6): 2020-2030. |
Fan L F, Ji F, Kuang X X, et al. Impacts of permafrost degradation on streamflow in the northern Himalayas[J]. Scientia Sinica Terrae, 2024, 54 (6): 2020-2030 (in Chinese) | |
[148] | Wan C W, Li K, Shen S C, et al. Using tritium and 222Rn to estimate groundwater discharge and thawing permafrost contributing to surface water in permafrost regions on Qinghai-Tibet Plateau[J]. Journal of Radioanalytical and Nuclear Chemistry, 2019, 322: 561-578 |
[149] | Jiang J. Quantifying the influence of groundwater discharge induced by permafrost degradation on lake water budget in Qinghai-Tibet Plateau: using 222Rn and stable isotopes[J]. Journal of Radioanalytical and Nuclear Chemistry, 2020, 323 (3): 1125-1134 |
[150] | Ma R, Sun Z Y, Chang Q X, et al. Control of the interactions between stream and groundwater by permafrost and seasonal frost in an alpine catchment, northeastern Tibet Plateau, China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126 (5): e2020JD033689 |
[151] | Ma Q, Jin H J, Wu Q B, et al. Changes in hydrological processes in the headwater area of Yellow River, China during 1956-2019 under the influences of climate change, permafrost thaw and dam[J]. Advances in Climate Change Research, 2023, 14 (2): 237-247 |
[152] |
钟歆玥, 康世昌, 郭万钦, 等. 最近十多年来冰冻圈加速萎缩: IPCC第六次评估报告之冰冻圈变化解读[J]. 冰川冻土, 2022, 44 (3): 946-953.
doi: 10.7522/j.issn.1000-0240.2021.0090 |
Zhong X Y, Kang S C, Guo W Q, et al. The rapidly shrinking cryopshere in the past decade: an interpretation of cryospheric changes from IPCC WGI Sixth Assessment Report[J]. Journal of Glaciology and Geocryology, 2022, 44 (3): 946-953 (in Chinese) | |
[153] | 丁永建, 张世强, 陈仁升. 寒区水文导论[M]. 北京: 科学出版社, 2017. |
Ding Y J, Zhang S Q, Chen R S. Introduction to hydrology in cold regions[M]. Beijing: Science Press, 2017 (in Chinese) | |
[154] | Su B, Xiao C D, Chen D L, et al. Glacier change in China over past decades: spatiotemporal patterns and influencing factors[J]. Earth-Science Reviews, 2022, 226: 103926 |
[155] | Pulliainen J, Luojus K, Derksen C, et al. Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018[J]. Nature, 2020, 581 (7808): 294-298 |
[156] | Sun L Y, Zhang X L, Xiao P F, et al. Fusing daily snow water equivalent from 1980 to 2020 in China using a spatiotemporal XGBoost model[J]. Journal of Hydrology, 2024, 632: 130876 |
[157] | Chen R S, Han C T, Liu J F, et al. Maximum precipitation altitude on the northern flank of the Qilian Mountains, Northwest China[J]. Hydrology Research, 2018, 49 (5): 1696-1710 |
[158] | 王宁练, 贺建桥, 蒋熹, 等. 祁连山中段北坡最大降水高度带观测与研究[J]. 冰川冻土, 2009, 31 (3): 395-403. |
Wang N L, He J Q, Jiang X, et al. Study on the zone of maximum precipitation in the north slopes of the central Qilian mountains[J]. Journal of Glaciology and Geocryology, 2009, 31 (3): 395-403 (in Chinese) | |
[159] | 沈永平, 梁红. 高山冰川区大降水带的成因探讨[J]. 冰川冻土, 2004, 26 (6): 806-809. |
Shen Y P, Liang H. High precipitation in glacial region of high mountains in High Asia: possible cause[J]. Journal of Glaciology and Geocryology, 2004, 26 (6): 806-809 (in Chinese) | |
[160] | 高鑫. 中国冰川水资源变化[D]. 北京: 中国科学院大学, 2010. |
Gao X. Changes in glacier water resources in China[D]. Beijing: University of Chinese Academy of Sciences, 2010 (in Chinese) | |
[161] | Kaser G, Großhauser M, Marzeion B. Contribution potential of glaciers to water availability in different climate regimes[J]. Proceedings of the National Academy of Sciences, 2010, 107 (47): 20223-20227 |
[162] | Schaner N, Voisin N, Nijssen B, et al. The contribution of glacier melt to streamflow[J]. Environmental Research Letters, 2012, 7 (3): 034029 |
[163] | 刘国华. 基于新参数化方案度日因子模型的中国冰川径流变化研究[D]. 北京: 中国科学院大学, 2021. |
Liu G H. Study on glacier runoff changes in China based on a new parameterization scheme for degree-day factor models[D]. Beijing: University of Chinese Academy of Sciences, 2021 (in Chinese) | |
[164] | Haq M, Iqbal M J, Alam K, et al. Assessment of runoff components of river flow in the Karakoram Mountains, Pakistan, during 1995-2010[J]. Remote Sensing, 2023, 15 (2): 399 |
[165] | Pradhananga D, Pomeroy J W. Recent hydrological response of glaciers in the Canadian Rockies to changing climate and glacier configuration[J]. Hydrology and Earth System Sciences, 2022, 26 (10): 2605-2616 |
[166] | Wang H Y, Xu C C, Ying G, et al. Variations in glacier runoff contributed by the increased negative mass balance over the last forty years in the Tien Shan Mountains[J]. Water, 2022, 14 (7): 1006 |
[167] | Barnett T, Adam J, Lettenmaier D. Potential impacts of a warming climate on water availability in snow-dominated regions[J]. Nature, 2005, 438: 303-309 |
[168] |
Jennings K S, Winchell T S, Livneh B, et al. Spatial variation of the rain-snow temperature threshold across the Northern Hemisphere[J]. Nature Communications, 2018, 9 (1): 1148
doi: 10.1038/s41467-018-03629-7 pmid: 29559636 |
[169] | Pangali Sharma T P, Zhang J, Khanal N R, et al. Assimilation of snowmelt runoff model (SRM) using satellite remote sensing data in Budhi Gandaki River basin, Nepal[J]. Remote Sensing, 2020, 12 (12): 1951 |
[170] | Bjarke N R, Gutzler D S. Use of observed hydroclimatic trends to constrain projections of snowmelt season runoff in the Rio Grande headwaters[J]. JAWRA Journal of the American Water Resources Association, 2023, 59 (5): 1025-1040 |
[171] | Dumanski S, Pomeroy J, Westbrook C. Hydrological regime changes in a Canadian Prairie basin[J]. Hydrological Processes, 2015, 29 (18): 3893-3904 |
[172] | Liu Z, Lan C, Sun N. Tracking snowmelt during hydrological surface processes using a distributed hydrological model in a mesoscale basin on the Tibetan Plateau[J]. Journal of Hydrology, 2023, 616: 128796 |
[173] |
Li D, Lettenmaier D P, Margulis S A, et al. The role of rain-on-snow in flooding over the conterminous United States[J]. Water Resources Research, 2019, 55 (11): 8492-8513
doi: 10.1029/2019WR024950 |
[174] | Chang Y P, Ding Y J, Zhang S Q, et al. Quantifying the response of runoff to glacier shrinkage and permafrost degradation in a typical cryospheric basin on the Tibetan Plateau[J]. Catena, 2024, 242: 108124 |
[175] | Barnhart T B, Tague C L, Molotch N P. The counteracting effects of snowmelt rate and timing on runoff[J]. Water Resources Research, 2020, 56 (8): e2019WR026634 |
[176] |
Musselman K N, Clark M P, Liu C, et al. Slower snowmelt in a warmer world[J]. Nature Climate Change, 2017, 7 (3): 214-219
doi: 10.1038/NCLIMATE3225 |
[177] | Park H, Kim Y, Suzuki K, et al. Influence of snowmelt on increasing Arctic river discharge: numerical evaluation[J]. Progress in Earth and Planetary Science, 2024, 11 (1): 13 |
[178] | Suzuki K, Hiyama T, Matsuo K, et al. Accelerated continental-scale snowmelt and ecohydrological impacts in the four largest Siberian River basins in response to spring warming[J]. Hydrological Processes, 2020, 34 (19): 3867-3881 |
[179] | Rogger M, Chirico G B, Hausmann H, et al. Impact of mountain permafrost on flow path and runoff response in a high alpine catchment[J]. Water Resources Research, 2017, 53 (2): 1288-1308 |
[180] | 陈仁升, 张世强, 阳勇, 等. 冰冻圈变化对中国西部寒区径流的影响[M]. 北京: 科学出版社, 2019. |
Chen R S, Zhang S Q, Yang Y, et al. The Impact of cryosphere changes on runoff in the cold regions of western China[M]. Beijing: Science Press, 2019 (in Chinese) | |
[181] | Sergeant F, Therrien R, Oudin L, et al. Evolution of Arctic rivers recession flow: global assessment and data-based attribution analysis[J]. Journal of Hydrology, 2021, 601: 126577 |
[182] | Kalyuzhnyi I L, Lavrov S A. Basic physical processes and regularities of winter and spring river runoff formation under climate warming conditions[J]. Russian Meteorology and Hydrology, 2012, 37 (1): 47-56 |
[183] | Kuang X X, Liu J G, Scanlon B R, et al. The changing nature of groundwater in the global water cycle[J]. Science, 2024, 383 (6686): eadf0630 |
[184] |
Thapa S, Li H Z, Li B, et al. Impact of climate change on snowmelt runoff in a Himalayan Basin, Nepal[J]. Environmental Monitoring and Assessment, 2021, 193 (7): 393
doi: 10.1007/s10661-021-09197-6 pmid: 34101041 |
[1] | 秦卓凡, 廖宏, 代慧斌. 气候变化影响我国大气重污染事件的研究进展[J]. 气候变化研究进展, 2025, 21(1): 56-68. |
[2] | 吕学都, 陈佳琪, 葛慧, 朱乙丹. 气候金融实践与发展建议[J]. 气候变化研究进展, 2025, 21(1): 78-90. |
[3] | 陈德亮, 谭显春, 彭喆, 闫洪硕, 程永龙. 人工智能在气候研究和服务中的机遇与挑战[J]. 气候变化研究进展, 2024, 20(6): 669-681. |
[4] | 高翔. 国际条约下的气候资金问题辨析[J]. 气候变化研究进展, 2024, 20(6): 799-807. |
[5] | 朱磊, 张丽忠, 蒋莹, 徐剑锋, 黄艳, 孙淑欣. 工业部门的气候适应研究进展[J]. 气候变化研究进展, 2024, 20(6): 721-735. |
[6] | 欧阳志云, 张观石, 应凌霄. 气候变化对青藏高原生态系统分布范围和生态功能的影响研究进展[J]. 气候变化研究进展, 2024, 20(6): 699-710. |
[7] | 陆春晖, 袁佳双, 黄磊, 张永香. 从IPCC看全球盘点中的关键科学问题及其对中国的启示[J]. 气候变化研究进展, 2024, 20(6): 736-746. |
[8] | 周泽宇, 王君华, 曹颖. 全球适应气候变化行动进展评估及相关工作建议[J]. 气候变化研究进展, 2024, 20(6): 764-772. |
[9] | 姚檀栋, 王伟财, 杨威, 张国庆, 施建成, 邬光剑, 高晶, 车涛, 刘时银, Walter Immerzeel, 赵华标, 李生海, 朱美林, 徐柏青, 王宁练. 亚洲水塔失衡与冰雪变化[J]. 气候变化研究进展, 2024, 20(6): 689-698. |
[10] | 车彦军, 陈丽花, 吴佳康, 谷来磊, 武荣, 张东启, 丁明虎. 青藏高原冰前湖与冰川相互作用研究进展[J]. 气候变化研究进展, 2024, 20(5): 519-533. |
[11] | 牛振国, 景雨航, 张东启, 张波. 气候变化背景下青藏高原湿地生态系统响应特征:回顾与展望[J]. 气候变化研究进展, 2024, 20(5): 509-518. |
[12] | 吴沛泽, 陈莎, 刘影影, 李晓桐, 杜展霞, 崔淑芬, 姜克隽. 低排放分析平台LEAP:应对气候变化下的应用与挑战[J]. 气候变化研究进展, 2024, 20(5): 611-623. |
[13] | 德吉玉珍, 拉巴, 巴桑旺堆, 白玛玉措, 旦增益嘎, 平措旺丹, 德吉央宗. 近50年西藏那曲西南部湖泊变化特征及其对气候变化的响应[J]. 气候变化研究进展, 2024, 20(5): 534-543. |
[14] | 张靖宇, 曹龙. 海洋和陆地碳循环对二氧化碳正负排放响应的模拟研究[J]. 气候变化研究进展, 2024, 20(4): 416-427. |
[15] | 潘晓滨, 刘尚文. 应对气候变化背景下我国转型金融法制化路径探析[J]. 气候变化研究进展, 2024, 20(4): 465-474. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|