气候变化研究进展 ›› 2021, Vol. 17 ›› Issue (1): 18-26.doi: 10.12006/j.issn.1673-1719.2020.205
• 巴黎协定目标下我国的减排路径和政策专栏 • 上一篇 下一篇
收稿日期:
2020-09-07
修回日期:
2020-10-23
出版日期:
2021-01-30
发布日期:
2021-02-04
通讯作者:
袁家海
作者简介:
张文华,男,博士研究生, 基金资助:
ZHANG Wen-Hua1(), YAN Qing-You1,2, HE Gang3, YUAN Jia-Hai1,2()
Received:
2020-09-07
Revised:
2020-10-23
Online:
2021-01-30
Published:
2021-02-04
Contact:
YUAN Jia-Hai
摘要:
为理清应对气候变化约束下推动电力系统转型中面临的挑战和潜力,形成有效精准抓手,研究从气候变化约束对电力需求的影响出发,系统梳理温升目标下电力系统转型路径相关研究,并通过综述在低碳转型过程中与电力系统密切相关的煤电退出问题、可再生能源并网问题以及电网优化问题提出相应政策建议。研究发现,温升约束下煤电规模需快速下降,可再生能源发电大规模并网及远距离输送将成为最显著的特征,气电将承担比现在更重大的责任,核电需抛开争议加速发展。加快完善市场化机制、严控煤电规模、着力提升能效、统筹加强灵活性资源管理以及优化跨区负荷管理应成为监管部门重点推进的方向。
张文华, 闫庆友, 何钢, 袁家海. 气候变化约束下中国电力系统低碳转型路径及策略[J]. 气候变化研究进展, 2021, 17(1): 18-26.
ZHANG Wen-Hua, YAN Qing-You, HE Gang, YUAN Jia-Hai. The pathway and strategy of China’s power system low-carbon transition under the constraints of climate change[J]. Climate Change Research, 2021, 17(1): 18-26.
表1 不同机构不同情景下的装机容量与可再生电源占比对比[9,10,11,12,13,14]
Table 1 Comparision of total capacity and renewable energy proportion by different institutions[9,10,11,12,13,14]
[1] | Hong C P, Zhang Q, Zhang Y, et al. Impacts of climate change on future air quality and human health in China[J]. PNAS, 2019, 16(35): 17193-17200 |
[2] |
Mora C, Spirandelli D, Franklin E C, et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions[J]. Nature Climate Change, 2018, 8: 1062-1071
doi: 10.1038/s41558-018-0315-6 URL |
[3] | IPCC. Climate change 2014: synthesis report [M]. Cambridge: Cambridge University Press, 2014 |
[4] | Lawrence Berkeley National Laboratory. China’s greenhouse gas emission scenarios [R/OL]. 2010 [2020-01-01]. https://escholarship.org/uc/lbnl |
[5] | IEA. Global energy outlook 2010 [R/OL]. 2010 [2020-01-01]. https://www.iea.org/reports/world-energy-outlook-2010 |
[6] | McKinsey. Green China development report [R/OL]. 2010 [2020-01-01]. https://www.mckinsey.com/~/media/mckinsey/dotcom/client_service/Sustainability/cost%20curve%20PDFs/china_green_revolution.ashx |
[7] | IRENA. Global energy transformation: a roadmap to 2050 [R/OL]. Abu Dhabi: International Renewable Energy Agency, 2018 [2020-01-01]. https://www.irena.org/publications/2019/Apr/Global-energy-transformation-A-roadmap-to-2050-2019Edition |
[8] | 国家可再生能源中心. 美丽中国2050年的能源生态系统[R/OL]. 2018[2020-01-01]. https://max.book118.com/html/2018/0420/162194247.shtm. |
National Renewable Energy Center. Beautiful China’s energy ecosystem in 2050 [R/OL]. 2018 [2020-01-01]. https://max.book118.com/html/2018/0420/162194247.shtm (in Chinese) | |
[9] | 国家发改委能源研究所. 我国实现全球1.5℃目标下的能源排放情景研究[R]. 北京: NRDC中国煤控项目, 2018. |
Energy Institute of National Development and Reform Commission. Energy emission scenario under the global 1.5℃ target in China [R]. Beijing: NRDC Cap Coal Project, 2018 (in Chinese) | |
[10] | IEA. Power system transition in China [R/OL]. 2018 [2020-01-01]. https://webstore.iea.org/china-power-system-transformation |
[11] |
顾佰和, 谭显春, 穆泽坤, 等. 中国电力行业CO2减排潜力及其贡献因素[J]. 生态学报, 2015, 35(19): 6405-6413.
doi: 10.5846/stxb201402170272 URL |
Gu B H, Tan X C, Mu Z K, et al. CO2 emission reduction potential and contributing factors in China’s power industry[J]. Ecology, 2015, 35(19): 6405-6413 (in Chinese) | |
[12] |
苏楽榮, 赵锦洋, 胡建信. 中国电力行业1990—2050年温室气体排放研究[J]. 气候变化研究进展, 2015, 11(5): 353-362.
doi: 10.3969/j.issn.1673-1719.2015.05.009 URL |
Su S S, Zhao J Y, Hu J X. Research on greenhouse gas emissions of China’s power industry from 1990 to 2050[J]. Climate Change Research, 2015, 11(5): 353-362 (in Chinese) | |
[13] | 刘铠诚, 何桂雄, 王珺瑶, 等. 电力行业实现2030年碳减排目标的路径选择及经济效益分析[J]. 节能技术, 2018, 36(3): 263-269. |
Liu K C, He G X, Wang J Y, et al. Path selection and economic benefit analysis for the electric power industry to achieve carbon emission reduction targets in 2030[J]. Energy Conservation Technology, 2018, 36(3): 263-269 (in Chinese) | |
[14] | 霍沫霖, 邢璐, 单葆国, 等. 中国电力生产碳减排潜力自下向上测算及方法研究[J]. 中国电力, 2014, 47(11): 155-160. |
Huo M L, Xing L, Shan B G, et al. Research on the bottom-up estimation and methodology of China’s electricity production carbon emission reduction potential[J]. China Electric Power, 2014, 47(11): 155-160 (in Chinese) | |
[15] | 黄晓勇. 2019年世界能源蓝皮书 [M]. 北京: 社会科学文献出版社, 2019. |
Huang X Y. The world energy blue book 2019 [M]. Beijing: Social Sciences Literature Press, 2019 (in Chinese) | |
[16] | Lawrence Berkeley National Laboratory. Energy and CO2 implications of decarbonization strategies for China beyond efficiency: modeling 2050 maximum renewable resources and accelerated electrification impacts [EB/OL]. 2019 [2020-01-01]. https://eta-publications.lbl.gov/sites/default/files/khanna_et_al_china_2050_electricification_max_re_modeling_manuscript.pdf |
[17] |
Li J F, Ma Z Y, Zhang Y X, et al. Analysis on energy demand and CO2 emissions in China following the energy production and consumption revolution strategy and China dream target[J]. Advances in Climate Change Research, 2018, 9(1): 16-26
doi: 10.1016/j.accre.2018.01.001 URL |
[18] |
Khanna N, Zhou N, Fridley D, et al. Quantifying the potential impacts of China’s power-sector policies on coal input and CO2 emissions through 2050: a bottom-up perspective[J]. Utilities Policy, 2016, 41: 128-138
doi: 10.1016/j.jup.2016.07.001 URL |
[19] | Jiang K J, He C M, Xu X Y, et al. Transition scenarios of power generation in China under global 2℃and 1.5℃ targets[J]. Global Energy Interconnection, 2018, 1(4): 477-486 |
[20] | 马里兰大学全球可持续发展中心能源研究所. 加快中国燃煤电厂退出: 通过逐厂评估探索可行的退役路径 [R]. 北京: 国家发展和改革委员会能源研究所, 2020. |
Energy Research Institute of Global Sustainable Development in Maryland. Accelerating the exit of China’s coal-fired power plants: exploring feasible decommissioning paths through plant-by-plant evaluation [R]. Beijing: Energy Research Institute, National Development and Reform Commission, 2020 (in Chinese) | |
[21] | 张博庭. 能源革命下的水电发展机遇[J]. 能源, 2018 (1): 107-111. |
Zhang B T. Hydropower development opportunities under the energy revolution[J]. Energy, 2018 (1): 107-111 (in Chinese) | |
[22] | 国网能源院. 中国能源电力发展展望 [M]. 北京: 中国电力出版社, 2018. |
State Grid Energy Institute. China’s energy and power development prospects [M]. Beijing: China Electric Power Press, 2018 (in Chinese) | |
[23] | 国家能源局. 我国已建成全球最大清洁煤电供应体系[EB/OL]. 2019 [2020-01-01]. http://www.nea.gov.cn/2019-02/12/c_137815509.htm. |
National Energy Administration. China has established the world’s largest clean coal power supply system [EB/OL]. 2019 [2020-01-01]. http://www.nea.gov.cn/2019-02/12/c_137815509.htm (in Chinese) | |
[24] | Clean Coal Technology Center. Clean coal technology and clean energy policy [R/OL]. 2019 [2020-01-01]. http://www.rmcmi.org/education/clean-coal-technology#.X82EeDPrZmM |
[25] |
Li J J, Yang H R, Wu Y X, et al. Effects of the updated national emission regulation in China on circulating fluidized bed boilers and the solutions to meet them[J]. Environmental Science & Technology, 2013, 47(12): 6681-6687
doi: 10.1021/es4001888 URL pmid: 23676203 |
[26] | 袁家海. 以中长期视角回看煤电地位和发展路径.电力决策与舆情参考[J]. 电力决策与舆情参考, 2019 (2): 22-27. |
Yuan J H. Looking back at the status and development path of coal power from a medium and long-term perspective[J]. Power Decision and Public Opinion Reference, 2019 (2): 22-27 (in Chinese) | |
[27] | Carbon Tracker Institute. Chasing the dragon? China’s coal overcapacity crisis and what it means for investors [EB/OL]. 2016 [2020-01-01]. https://www.carbontracker.org/reports/chasing-the-dragon-china-coal-power-plants-stranded-assets-five-year-plan/ |
[28] | Oxford University. Stranded costs of coal-fired power plants in China: investment risks and policy implications [R/OL]. 2017 [2020-01-01]. https://www.smithschool.ox.ac.uk/research/sustainable-finance/publications/Stranded-Assets-and-Thermal-Coal-in-China-Working-Paper-February2017.pdf |
[29] | Xu Y, Yang K, Yuan J H. China’s power transition under the global 1.5℃ target: preliminary feasibility study and prospect[J]. Environmental Science and Pollution Research, 2020, 10: 23-41 |
[30] | 康重庆, 姚忠良. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 11(9): 2-11. |
Kang C Q, Yao Z L. Key scientific issues and theoretical research framework of high-proportion renewable energy power systems[J]. Automation of Electric Power Systems, 2017, 11(9): 2-11 (in Chinese) | |
[31] | 康重庆, 夏清, 徐玮. 电力系统不确定性分析[M]. 北京: 科学出版社, 2011. |
Kang C Q, Xia Q, Xu W. Uncertainty analysis of power system [M]. Beijing: Science Press, 2011 (in Chinese) | |
[32] |
Wang Y, Zhang N, Chen Q X, et al. Dependent discrete convolution-based probabilistic load flow for the active distribution system[J]. IEEE Transactions on Sustainable Energy, 2017, 8(3): 1000-1009
doi: 10.1109/TSTE.2016.2640340 URL |
[33] |
白建华, 辛颂旭, 刘俊, 等. 中国实现高比例可再生能源发展路径研究[J]. 中国电机工程学报, 2015, 35(14): 3699-3705.
doi: 10.13334/j.0258-8013.pcsee.2015.14.026 URL |
Bai J H, Xin S X, Liu J, et al. Research on the development path of China’s realization of a high proportion of renewable energy[J]. Journal of Electrical Engineering, 2015, 35(14): 3699-3705 (in Chinese) | |
[34] |
Majzoobi A, Khodaei A. Application of microgrids in supporting distribution grid flexibility[J]. IEEE Transactions on Power System, 2017, 32(5): 3660-3669
doi: 10.1109/TPWRS.2016.2635024 URL |
[35] | 肖云鹏, 王锡凡, 王秀丽, 等. 面向高比例可再生能源的电力市场研究综述[J]. 中国电机工程学报, 2018, 38(3): 663-674. |
Xiao Y P, Wang X F, Wang X L, et al. A review of power market research facing a high proportion of renewable energy[J]. Journal of Electrical Engineering, 2018, 38(3): 663-674 (in Chinese) | |
[36] |
Liu J K, Zhang N, Kang C Q, et al. Cloud energy storage for residential and small commercial consumers: a business case study[J]. Applied Energy, 2017, 188: 226-236
doi: 10.1016/j.apenergy.2016.11.120 URL |
[37] |
Forfia D, Knight M, Melton R. The view from the top of the mountain: building a community of practice with the gridwise transactive energy framework[J]. IEEE Power and Energy Magazine, 2016, 14(3): 25-33
doi: 10.1109/MPE.2016.2524961 URL |
[38] | 鲁宗相, 李海波, 乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 49(13): 147-157. |
Lu Z X, Li H B, Qiao Y. Flexibility planning and challenges of power system containing a high proportion of renewable energy[J]. Power System Automation, 2016, 49(13): 147-157 (in Chinese) | |
[39] |
张宁, 康重庆, 肖晋宇, 等. 风电容量可信度研究综述与展望[J]. 中国电机工程学报, 2015, 35(1): 82-94.
doi: 10.13334/j.0258-8013.pcsee.2015.01.011 URL |
Zhang N, Kang C Q, Xiao J Y, et al. Review and prospects of wind power capacity reliability research[J]. Journal of Electrical Engineering, 2015, 35(1): 82-94 (in Chinese) | |
[40] | 潘尔生, 王新雷, 徐彤, 等. 促进可再生能源电力接纳的技术与实践[J]. 电力建设, 2017, 38(2): 1-11. |
Pan E S, Wang X L, Xu T, et al. Technology and practice to promote the acceptance of renewable energy power[J]. Electric Power Construction, 2017, 38(2): 1-11 (in Chinese) | |
[41] |
姚美齐, 李乃湖. 欧洲超级电网的发展及其解决方案[J]. 电网技术, 2014, 38(3): 549-555.
doi: 10.13335/j.1000-3673.pst.2014.03.001 URL |
Yao M Q, Li N H. The development of the European super grid and its solutions[J]. Power System Technology, 2014, 38(3): 549-555 (in Chinese) | |
[42] | 曾慧娟, 特高压. 引领中国能源战略转型[J]. 科学世界, 2014 (2): 1. |
Zeng H J. Ultra-high voltage, leading China’s energy strategic transformation[J]. Science World, 2014 (2): 1 (in Chinese) | |
[43] |
Peng W, Yuan J H, Zhao Y, et al. Air quality and climate benefits of long-distance electricity transmission in China[J]. Environmental Research Letters, 2017, 12(6): 064012
doi: 10.1088/1748-9326/aa67ba URL |
[44] | 龚思宇, 魏炜, 徐元孚, 等. 面向分布式电源最大消纳的配电网重构[J]. 电力系统及其自动化学报, 2017, 29(3): 7-11. |
Gong S Y, Wei W, Xu Y F, et al. Distribution network reconfiguration for maximum consumption of distributed power sources[J]. Journal of Electric Power System and Automation, 2017, 29(3): 7-11 (in Chinese) | |
[45] | 李文汗, 赵冬梅, 王心, 等. 考虑分布式电源并网的配电网适应性评价方法[J]. 电网与清洁能源, 2017, 33(2): 117-123. |
Li W H, Zhao D M, Wang X, et al. Evaluation method for adaptability of distribution network considering distributed power grid connection[J]. Power System and Clean Energy, 2017, 33(2): 117-123 (in Chinese) | |
[46] |
曾鸣, 杨雍琦, 刘敦楠, 等. 能源互联网“源-网-荷-储”协调优化运营模式及关键技术[J]. 电网技术, 2016, 40(1): 114-124.
doi: 10.13335/j.1000-3673.pst.2016.01.016 URL |
Zeng M, Yang Y Q, Liu D N, et al. Energy internet “source-grid-load-storage” coordinated and optimized operation mode and key technologies[J]. Power System Technology, 2016, 40(1): 114-124 (in Chinese) | |
[47] | 艾琳. 电网安全性与经济性评估若干问题研究[D]. 北京: 华北电力大学, 2009. |
Ai L. Research on several issues of power grid security and economic evaluation[D]. Beijing: North China Electric Power University, 2009 (in Chinese) |
[1] | 袁志逸, 李振宇, 康利平, 谭晓雨, 周新军, 李晓津, 李超, 彭天铎, 欧训民. 中国交通部门低碳排放措施和路径研究综述[J]. 气候变化研究进展, 2021, 17(1): 27-35. |
[2] | 张雅欣, 罗荟霖, 王灿. 碳中和行动的国际趋势分析[J]. 气候变化研究进展, 2021, 17(1): 88-97. |
[3] | 左佳鹭, 张磊, 陈敏鹏. 全球应对气候变化的合作新模式——探析“气候变化三方合作”[J]. 气候变化研究进展, 2021, 17(1): 98-106. |
[4] | 朱光熙, 效存德, 陈波, 赵映东. 气候变化背景下黑河上游春季融雪洪水预估研究[J]. 气候变化研究进展, 2020, 16(6): 667-678. |
[5] | 赵梦霞, 苏布达, 王艳君, 王安乾, 姜彤. 气候变化对东部季风区赣江和官厅流域径流的影响[J]. 气候变化研究进展, 2020, 16(6): 679-689. |
[6] | 运晓博, 汤秋鸿, 徐锡蒙, 周园园, 刘星才, 王杰, 孙思奥. 气候变化对澜湄流域上下游水资源合作潜力的影响[J]. 气候变化研究进展, 2020, 16(5): 555-563. |
[7] | 苏勃, 效存德. 冰冻圈影响区恢复力研究和实践:进展与展望[J]. 气候变化研究进展, 2020, 16(5): 579-590. |
[8] | 赵敏, 张华, 王海波, 朱丽. 2000—2018年东亚地区云顶高度的时空变化特征[J]. 气候变化研究进展, 2020, 16(5): 591-599. |
[9] | 李林, 申红艳, 刘彩红, 校瑞香. 青海湖水位波动对气候暖湿化情景的响应及其机理研究[J]. 气候变化研究进展, 2020, 16(5): 600-608. |
[10] | 孙丽丽, 崔惠娟, 葛全胜. “一带一路”沿线主要国家碳捕集、利用和封存潜力与前景研究[J]. 气候变化研究进展, 2020, 16(5): 609-616. |
[11] | 付琳, 周泽宇, 杨秀. 适应气候变化政策机制的国际经验与启示[J]. 气候变化研究进展, 2020, 16(5): 641-651. |
[12] | 史培军, 杨文涛. 山区孕灾环境下地震和极端天气气候对地质灾害的影响[J]. 气候变化研究进展, 2020, 16(4): 405-414. |
[13] | 徐粒, 李倩, 王瑛, 黄靖玲, 许映军. 气候变化情景下泥石流危险性响应分析[J]. 气候变化研究进展, 2020, 16(4): 415-423. |
[14] | 王天鹏, 滕飞. 可计算一般均衡框架下的气候变化经济影响综合评估[J]. 气候变化研究进展, 2020, 16(4): 480-490. |
[15] | 李柔珂, 韩振宇, 徐影, 石英, 吴佳. 高分辨率区域气候变化降尺度数据对京津冀地区高温GDP和人口暴露度的集合预估[J]. 气候变化研究进展, 2020, 16(4): 491-504. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|