气候变化研究进展 ›› 2020, Vol. 16 ›› Issue (4): 491-504.doi: 10.12006/j.issn.1673-1719.2019.111
李柔珂1,2(), 韩振宇1(), 徐影1, 石英1, 吴佳1
收稿日期:
2019-05-16
修回日期:
2019-07-18
出版日期:
2020-07-30
发布日期:
2020-08-05
通讯作者:
韩振宇
作者简介:
李柔珂,女,助理研究员, 基金资助:
LI Rou-Ke1,2(), HAN Zhen-Yu1(), XU Ying1, SHI Ying1, WU Jia1
Received:
2019-05-16
Revised:
2019-07-18
Online:
2020-07-30
Published:
2020-08-05
Contact:
HAN Zhen-Yu
摘要:
基于RCP4.5(中等温室气体排放)情景下5个全球模式模拟结果的降尺度数据,及SSP2社会经济路径下的GDP和人口密度数据,对21世纪京津冀地区(北京、天津和河北的统称)未来2021—2040年(近期)、2046—2065年(中期)、2080—2099年(末期)的高温GDP和人口暴露度进行多模式集合预估。结果表明:未来京津冀地区热事件将增加,21世纪末期京津冀东南部平原和沿海地区的闷热事件、中部平原地区的高温事件出现频率明显增加。GDP和人口暴露度大值区主要分布在北京、天津、保定、石家庄和邯郸等经济发达、交通便利、人口聚集的城市及其周边地区。21世纪京津冀地区的GDP暴露度区域平均值持续增加,21世纪末期多年平均值约为参照时段的58.9倍;各城市的区域平均值也表现出一致增加。京津冀地区人口暴露度区域平均值在21世纪中期达到最大,为参照时段的2.3倍;北京、秦皇岛、张家口、承德和唐山人口暴露度区域平均值将持续增长,其他城市人口暴露度区域平均值在21世纪中期达到最大。GDP暴露度的变化主要取决于非线性因子,且其贡献率随时间逐渐增加,到21世纪末期可达70.9%。21世纪近期和中期人口暴露度的变化主要取决于非线性因子,气候因子在末期占主导地位。
李柔珂, 韩振宇, 徐影, 石英, 吴佳. 高分辨率区域气候变化降尺度数据对京津冀地区高温GDP和人口暴露度的集合预估[J]. 气候变化研究进展, 2020, 16(4): 491-504.
LI Rou-Ke, HAN Zhen-Yu, XU Ying, SHI Ying, WU Jia. An ensemble projection of GDP and population exposure to high temperature events over Jing-Jin-Ji district based on high resolution combined dynamical and statistical downscaling datasets[J]. Climate Change Research, 2020, 16(4): 491-504.
图1 夏半年TX、TN和RH集合平均模拟误差的泰勒图(a)及集合平均模拟的HD和SD与观测的差(b、c) 注:标记“+”指模拟与观测的差值达到0.05显著性水平的点。
Fig. 1 Taylor diagram for ensemble average simulation error of TX, TN and RH in the summer half year by using the station data (a); differences of HD (b) and SD (c) over the entire Jing-Jin-Ji area between the ensemble mean and observation
表1 降尺度数据5个集合成员和集合平均模拟的京津冀HD和SD与观测的空间相关系数、平均误差和均方根误差
Table 1 The correlation coefficient, mean error and root mean square error of HD and SD over the entire Jing-Jin-Ji area between the simulations and observation
图2 京津冀地区致灾危险度在参照时段(1986—2005年)以及未来变化的空间分布(相对于参照时段)
Fig. 2 Spatial distribution of the present day (1986-2005) and spatial distribution of the future change of hazard factor over the Jing-Jin-Ji district compared with the present day
图3 京津冀地区区域平均致灾危险度相对于参照时段的变化值序列(a、b)和区域平均GDP和人口的数值序列(c) 注:图(c)中蓝色五角星表示GDP增长过程中数值开始超过参照时段平均值1倍的时间点,红色五角星表示人口下降过程中数值开始低于参照时段平均值的时间点。
Fig. 3 Future change of hazard factor over the Jing-Jin-Ji district compared with the present day (a, b), and regional average value of GDP and population (c) (In (c), blue star indicates the time point when the regional average value exceeds 1 time of average value of the reference period in the process of GDP rising, and red star indicates the time point when the regional average value is lower than the value of reference period in the process of population falling)
图4 京津冀GDP 和人口密度在参照时段和21世纪各时段的变化的空间分布
Fig. 4 Spatial distribution of GDP and population in the present day and the change of future periods in the 21st century over the Jing-Jin-Ji district
图5 京津冀GDP和人口高温暴露度在参照时段和21世纪各时段的变化空间分布
Fig. 5 Spatial distribution of GDP and population exposure in the present day and the change of future periods in the 21st century over the Jing-Jin-Ji district
表2 京津冀主要城市的GDP和人口暴露度相对于参照时段的倍率的时空变化
Table 2 Regional mean changes of GDP/population exposures ratio compared with the present day (1986—2005) over some cities of Jing-Jin-Ji district, respectively
表3 京津冀地区高温的GDP/人口暴露度变化的影响因子贡献率分析
Table 3 Analysis of the influencing factors of population exposure and GDP exposure to high temperature in Jing-Jin-Ji district
图7 21世纪近期、中期、末期京津冀地区及各城市GDP/人口暴露度影响因子贡献率
Fig. 7 Contribution rates of influencing factors of GDP/population exposures in cities of Jing-Jin-Ji district during three future periods
[1] | Blumberg G, Dphil S M. Assessing the potential impact of heat waves in cities: implications for hazard preparation and planning[J]. Procedia Economics and Finance, 2014,18:727-735. DOI: 10.1016/S2212-5671(14) 00996-4 |
[2] | Zhao Y, Sultan B, Vautard R, et al. Potential escalation of heat-related working costs with climate and socioeconomic changes in China[J]. PNAS, 2016,113(17):4640-4645. DOI: 10.1073/pnas.1521828113 |
[3] | 郭建平, 高素华. 高温、高CO2对农作物影响的试验研究[J]. 中国生态农业学报, 2002,10(1):17-20. |
Guo J P, Gao S H. The experimental study on impacts of high temperature and high CO2 concentration on crops[J]. Chinese Journal of Eco-Agriculture, 2002,10(1):17-20 (in Chinese) | |
[4] | 李琪, 任景全, 王连喜. 未来气候变化情景下江苏水稻高温热害模拟研究I: 评估孕穗—抽穗期高温热害对水稻产量的影响[J]. 中国农业气象, 2014,35(1):91-96. |
Li Q, Ren J Q, Wang L X. Simulation of the heat injury on rice production in Jiangsu province under the climate change scenarios I: impact assessment of the heat injury on rice yield from booting to heading stage[J]. Chinese Journal of Agrometeorology, 2014,35(1):91-96 (in Chinese) | |
[5] | Kalkstein S, Scott J G. An evaluation of climate/mortality relationships in large U.S. cities and the possible impacts of a climate change[J]. Environmental Health Perspectives, 1997,105(1):84-93. DOI: 10.1289/ehp.9710584 |
[6] | Chen K, Bi J, Chen J, , et al. Influence of heat wave definitions to the added effect of heat waves on daily mortality in Nanjing, China[J]. Science of the Total Environment, 2015,506/507:18-25. DOI: 10.1016/j.scitotenv.2014.10.092 |
[7] | 刘珂, 许吟隆, 陶生才, 等. 多模式集合对中国气温的模拟效果及未来30年中国气温变化预估[J]. 高原气象, 2011,30(2):363-370. |
Liu K, Xu Y L, Tao S C, et al. Validation of multi-model ensemble to air temperature of china and projection of air temperature change in China for the next three decades[J]. Plateau Meteorology, 2011,30(2):363-370 (in Chinese) | |
[8] | 姚遥, 罗勇, 黄建斌. 8个CMIP5模式对中国极端气温的模拟和预估[J]. 气候变化研究进展, 2012 (4):250-256. |
Yao Y, Luo Y, Huang J B. Evaluation and projection of temperature extremes over china based on 8 modeling data from CMIP5[J]. Climate Change Research, 2012 (4):250-256 (in Chinese) | |
[9] | 吴绍洪. 综合风险防范[M]. 北京: 科学出版社, 2011. |
Wu S H. Integrated risk governance [M]. Beijing: Science Press, 2011 (in Chinese) | |
[10] | 董思言, 徐影, 周波涛, 等. 基于CMIP5模式的中国地区未来高温灾害风险预估[J]. 气候变化研究进展, 2014,10(5):365-369. |
Dong S Y, Xu Y, Zhou B T, et al. Projected risk of extreme heat in China based on CMIP5 models[J]. Climate Change Research, 2014,10(5):365-369 (in Chinese) | |
[11] | 黄大鹏, 张蕾, 高歌. 未来情景下中国高温的人口暴露度变化及影响因素研究[J]. 地理学报, 2016,71(7):1189-1200. DOI: 10.11821/dlxb201607008. |
Huang D P, Zhang L, Gao G. Changes in population exposure to high temperature under a future scenario in China and its influencing factors[J]. Acta Geographica Sinica, 2016,71(7):1189-1200. DOI: 10.11821/dlxb201607008 (in Chinese) | |
[12] | 张蕾, 黄大鹏, 杨冰韵. RCP4.5情景下中国人口对高温暴露度预估研究[J]. 地理研究, 2016,35(12):2238-2248. |
Zhang L, Huang D P, Yang B Y. Future population exposure to high temperature in China under RCP4.5 scenario[J]. Geographical Research, 2016,35(12):2238-2248 (in Chinese) | |
[13] | Gao X J, Shi Y, Song R V, et al. Reduction of future monsoon precipitation over China: comparison between a high resolution RCM simulation and the driving GCM[J]. Meteorology and Atmospheric Physics, 2008,100(1-4):73-86. DOI: 10.1007/s00703-008-0296-5 |
[14] | Gao X J, Shi Y, Zhang D F, et al. Uncertainties in monsoon precipitation projections over China: results from two high resolution RCM simulations[J]. Climate Research, 2012,52:213-226. DOI: 10.3354/cr01084 |
[15] | 吴婕, 高学杰, 徐影. RegCM4模式对雄安及周边区域气候变化的集合预估[J]. 大气科学, 2018,42(3):696-705. |
Wu J, Gao X J, Xu Y. Climate change projection over Xiong'an district and its adjacent areas: an ensemble of RegCM4 simulations[J]. Chinese Journal of Atmospheric Sciences, 2018,42(3):696-705 (in Chinese) | |
[16] | 高学杰, 石英, 张冬峰, 等. RegCM3对21世纪中国区域气候变化的高分辨率模拟[J]. 科学通报, 2012,57(5):374-381. |
Gao X J, Shi Y, Zhang D F, et al. High resolution simulation of regional climate change in China in the 21st century by RegCM3[J]. Chinese Science Bulletin, 2012,57(5):374-381 (in Chinese) | |
[17] | 郎咸梅, 隋月. 全球变暖2℃情景下中国平均气候和极端气候事件变化预估[J]. 科学通报, 2013,58(8):734-742. |
Lang X M, Sui Y. Prediction of changes of average climate and extreme climate events in China under the scenario of global warming at 2℃[J]. Chinese Science Bulletin, 2013,58(8):734-742 (in Chinese) | |
[18] | 李东欢, 邹立维, 周天军. 全球1.5℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017 (4):446-457. |
Li D H, Zou L W, Zhou T J. Changes of extreme indices over China in response to 1.5℃global warming projected by a regional climate model[J]. Advances in Earth Science, 2017 (4):446-457 (in Chinese) | |
[19] | 石英, 韩振宇, 徐影, 等. 6.25 km高分辨率降尺度数据对雄安新区及整个京津冀地区未来极端气候事件的预估[J]. 气候变化研究进展, 2019,15(2):140-149. |
Shi Y, Han Z Y, Xu Y, et al. Future changes of climate extremes in Xiong'an New Area and Jing-Jin-Ji district based on high resolution (6.25 km) combined statistical and dynamical downscaling datasets[J]. Climate Change Research, 2019,15(2):140-149 (in Chinese) | |
[20] | van Vuuren D P, Edmonds J, Kainuma M, et al. The representative concentration pathways: an overview[J]. Climatic Change, 2011,109:5-31. DOI: 10.1007/s10584-011-0148-z |
[21] | Kriegler E, O'Neill B C, Hallegatte S, et al. The need for and use of socio-economic scenarios for climate change analysis: a new approach based on shared socio-economic pathways[J]. Global Environmental Change, 2012,22(4):807-822. DOI: 10.1016/j.gloenvcha.2012.05.005 |
[22] |
O'Neill B C, Kriegler E, Riahi K, et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways[J]. Climatic Change, 2014,122(3):387-400. DOI: 10.1007/s10584-013-0905-2
doi: 10.1007/s10584-013-0905-2 URL |
[23] | Han Z Y, Shi Y, Wu J, et al. Combined dynamical and statistical downscaling for high-resolution projections of multiple climate variables in the Beijing-Tianjin-Hebei region of China[J]. Journal of Applied Meteorology and Climatology, 2019,58(11):2387-2403. DOI: 10.1175/JAMC-D-19-0050.1 |
[24] | Jones B, O'Neill B C. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways[J]. Environmental Research Letters, 2016,11(8):084003. DOI: 10.1088/1748-9326/11/8/084003 |
[25] | Geiger T, Murakami D, Frieler K, et al. Spatially-explicit Gross Cell Product (GCP) time series: past observations (1850-2000) harmonized with future projections according the Shared Socioeconomic Pathways (2010-2100) [DB/OL]. GFZ Data Services. 2017 [2019-05-16]. http://dataservices.gfz-potsdam.de/pik/showshort.php?id=escidoc:2740907 |
[26] | Murakami D, Yamagata Y. Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling[J]. Sustainability, 2019,11(7):2106. DOI: 10.3390/su11072106 |
[27] | 张可慧, 李正涛, 刘剑锋, 等. 河北地区高温热浪时空特征及其对工业、交通的影响研究[J]. 地理与地理信息科学, 2011,27(6):90-95. |
Zhang K H, Li Z T, Liu J F, et al. Temporal-spatial feature analysis on the high-temperature and heatwaves in Hebei and its influence on industry and transportation[J]. Geography and Geo-Information Science, 2011,27(6):90-95 (in Chinese) | |
[28] | Wu J, Gao X J, Giorgi F, et al. Changes of effective temperature and cold/hot days in late decades over China based on a high-resolution gridded observation dataset[J]. International Journal of Climatology, 2017,37(1):788-800. DOI: 10.1002/joc.5038 |
[29] |
Cheng X S, Su H. Effects of climatic temperature stress on cardiovascular diseases[J]. European Journal of Internal Medicine, 2010,21(3):164-167. DOI: 10.1016/j.ejim.2010.03.001
URL pmid: 20493415 |
[30] | 邢娟娟. 井下高温作业的矿工生理、生化测定研究[J]. 中国安全科学学报, 2001,11(4):45-47. |
Xing J J. Study on physiological and biological changes for miners exposed to heat in underground Pit[J]. China Safety Science Journal, 2001,11(4):45-47 (in Chinese) | |
[31] | Robinson P J. On the definition of a heat wave[J]. Journal of Applied Meteorology, 2001,40(4):762-775. DOI: 10.1175/1520-0450(2001)040< 0762:OTDOAH>2.0.CO;2 |
[32] | Ding T, Qian W H. Geographical patterns and temporal variations of regional dry and wet heatwave events in China during 1960-2008[J]. Advances in Atmospheric Sciences, 2011,28(2):322-337. DOI: 10.1007/s00376-010-9236-7 |
[33] | IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change [M]. Cambridge: Cambridge University Press, 2012: 582 |
[34] | Jones B, O'Neill B C, McDaniel L, et al. Future population exposure to US heat extremes[J]. Nature Climate Change, 2015,5(7):652-655. DOI: 10.1038/nclimate2631 |
[35] | Jones B, Tebaldi C, Brian C, et al. Avoiding population exposure to heat-related extremes: demographic change vs climate change[J]. Climatic Change, 2018,146(3-4):1-15. DOI: 10.1007/s10584-017-2133-7 |
[36] | Harrington L J, Otto F E L. Changing population dynamics and uneven temperature emergence combine to exacerbate regional exposure to heat extremes under 1.5 ℃ and 2℃of warming[J]. Environmental Research Letters, 2018,13(3):034011. DOI: 10.1088/1748-9326/aaaa99 |
[37] | Park T-W, Deng Y, Cai M. Feedback attribution of the El Niño-Southern Oscillation: related atmospheric and surface temperature anomalies[J]. Journal of Geophysical Research: Atmospheres, 2012,117(D23), D23101. DOI: 10.1029/2012JD018468 |
[1] | 史培军, 杨文涛. 山区孕灾环境下地震和极端天气气候对地质灾害的影响[J]. 气候变化研究进展, 2020, 16(4): 405-414. |
[2] | 徐粒, 李倩, 王瑛, 黄靖玲, 许映军. 气候变化情景下泥石流危险性响应分析[J]. 气候变化研究进展, 2020, 16(4): 415-423. |
[3] | 陈曦, 李宁, 张正涛, 刘佳伟, 王芳. 全球热浪人口暴露度预估——基于热应力指数[J]. 气候变化研究进展, 2020, 16(4): 424-432. |
[4] | 王天鹏, 滕飞. 可计算一般均衡框架下的气候变化经济影响综合评估[J]. 气候变化研究进展, 2020, 16(4): 480-490. |
[5] | 袁媛, 李国庆. 日本多主体适应气候变化框架机制及对中国的启示——基于法律政策的视角[J]. 气候变化研究进展, 2020, 16(4): 505-515. |
[6] | 田丹宇, 郑文茹. 国外应对气候变化的立法进展与启示[J]. 气候变化研究进展, 2020, 16(4): 526-534. |
[7] | 张奇谋,王润,姜彤,陈松生. RCPs情景下汉江流域未来极端降水的模拟与预估[J]. 气候变化研究进展, 2020, 16(3): 276-286. |
[8] | 黄鹤楼,邹旭恺,丁烨毅,陈鲜艳,石英,肖风劲. 气候变化对宁波四明山人体舒适度的影响[J]. 气候变化研究进展, 2020, 16(3): 316-324. |
[9] | 张小全, 谢茜, 曾楠. 基于自然的气候变化解决方案[J]. 气候变化研究进展, 2020, 16(3): 336-344. |
[10] | 樊星,王际杰,王田,高翔. 马德里气候大会盘点及全球气候治理展望[J]. 气候变化研究进展, 2020, 16(3): 367-372. |
[11] | 王朋岭,黄磊,巢清尘,袁佳双,陈超. IPCC SROCC的主要结论和启示[J]. 气候变化研究进展, 2020, 16(2): 133-142. |
[12] | 成里京. SROCC:海洋热含量变化评估[J]. 气候变化研究进展, 2020, 16(2): 172-181. |
[13] | 蔡榕硕,韩志强,杨正先. 海洋的变化及其对生态系统和人类社会的影响、风险及应对[J]. 气候变化研究进展, 2020, 16(2): 182-193. |
[14] | 翁宇威,蔡闻佳,王灿. 共享社会经济路径(SSPs)的应用与展望[J]. 气候变化研究进展, 2020, 16(2): 215-222. |
[15] | 贾根锁. IPCC《气候变化与土地特别报告》对陆气相互作用的新认知[J]. 气候变化研究进展, 2020, 16(1): 9-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|