气候变化研究进展 ›› 2024, Vol. 20 ›› Issue (3): 278-290.doi: 10.12006/j.issn.1673-1719.2023.210
收稿日期:
2023-09-21
修回日期:
2023-12-16
出版日期:
2024-05-30
发布日期:
2024-02-28
通讯作者:
韩振宇,男,正高级工程师,作者简介:
程阳,女,工程师,基金资助:
CHENG Yang1,2,3(), HAN Zhen-Yu4(
)
Received:
2023-09-21
Revised:
2023-12-16
Online:
2024-05-30
Published:
2024-02-28
摘要:
基于区域气候模式RegCM4对4个全球气候模式的动力降尺度模拟数据及未来人口预估数据,预估了SSP2-RCP4.5情景下全球升温1.5℃和2℃时,中国群发性高温事件(cluster high temperature events,CHTE)和CHTE人口暴露度的变化。结果表明:1.5℃和2℃升温阈值下,多模式集合(MME)预估CHTE年均频次相对于基准期分别增加31%和44%。不同强度事件中,严重CHTE事件的频次在1.5℃和2℃升温阈值下可分别增加约4.2倍和6.8倍。事件强度、持续时间、频次等指标趋向高值的发生概率更大。相对于2℃,1.5℃温升阈值下CHTE年均频次、持续时间和累计强度在全国大范围呈降低趋势,且表现出明显的区域性差异,年均频次的降幅自北到南递增,新疆和长江以南地区持续时间年均减少6 d以上(全国平均降幅为0.2 d),我国中东部地区累计强度年均减少20℃以上、新疆东部减少50℃以上(全国平均降幅为0.6℃)。此外,在1.5℃和2℃升温阈值下,MME预估CHTE影响人口的变化均呈现南增北减的空间分布,内蒙古地区略有减少,中东部地区普遍增加,全国总影响人口分别增加1.4倍和1.8倍。高温事件对城市的影响人口增幅更大(分别增加2.9倍和3.8倍),尤其是京津冀、长三角、珠三角、中原地区增幅最明显。全国的CHTE强度暴露度(分别增加2.2倍和5.2倍)和综合暴露度(分别增加1.2倍和1.8倍)呈明显增加趋势,特别是2℃升温阈值下城市的CHTE强度暴露度和综合暴露度的增幅分别高达10倍和4倍。
程阳, 韩振宇. 全球升温1.5℃和2℃下中国群发性高温事件与人口暴露度预估[J]. 气候变化研究进展, 2024, 20(3): 278-290.
CHENG Yang, HAN Zhen-Yu. Projection of the cluster high temperature events in China and population exposure under 1.5℃ and 2℃ global warming[J]. Climate Change Research, 2024, 20(3): 278-290.
![]() |
表1 RCP4.5情景下模式预估全球温度较工业革命前达到1.5℃和2℃升温阈值的时间
Table 1 The crossing time in response to global warming of 1.5℃ and 2℃ in the future relative to pre-industrial level simulated by the four climate models under the RCP4.5
![]() |
![]() |
表2 RCP4.5情景下中国群发性高温事件年均频次
Table 2 The annual mean frequency of the simulated cluster high temperature events (CHTE) averaged over China under RCP4.5 scenario
![]() |
图2 全球升温1.5℃和2℃下中国群发性高温事件各特征量年均值较基准期变化的空间分布
Fig. 2 MME projected changes (relative to 1986-2005) of annual mean frequency (a, b), duration (c, d), and cumulative intensity (e, f) of the CHTE during the crossing times of global warming of 1.5℃ and 2℃
图3 模式集合预估两种升温情景下中国群发性高温事件年均空间差值分布(1.5℃减2℃)
Fig. 3 MME projected changes of annual mean frequency (a), duration (b), and cumulative intensity (c) of the CHTEs in 1.5℃ compared with 2℃ warmer future
图4 1.5℃和2℃升温阈值下中国群发性高温事件各指标频率占比分布(较基准期的变化)
Fig. 4 MME projected changes of relative frequency distributions of each CHTE metrics in response to global warming of 1.5℃ and 2℃ (relative to 1986-2005)
图5 全国和城市人口及CHTE人口暴露度相对基准期的变化 注:图中两条竖虚线分别代表MME模拟的达到1.5℃和2℃升温阈值的时间。
Fig. 5 The relative changes in total population (a), the population affected by the CHTEs (b), CHTE cumulative intensity population exposure (c), and CHTE comprehensive intensity population exposure (d) averaged over China and urban areas relative to 1986-2005
图6 模式集合预估中国群发性高温事件年均影响人口相对于基准期变化的空间分布 注:图中显示的是每个0.25°×0.25°格点上的影响人口变化。
Fig. 6 MME projected changes of annual mean population affected by the CHTEs relative to reference period at the times of global warming of 1.5℃ and 2.0℃. (Data shown are the changes in affected population at each 0.25° ×0.25° grid point)
[1] | IPCC. Climate change 2023: synthesis report[M]. Cambridge: Cambridge University Press, 2023: 36 |
[2] | IPCC. Special report: global warming of 1.5℃[R/OL]. 2018 [2022-10-31]. https://www.ipcc.ch/sr15/ |
[3] | IPCC. Climate change 2022: impacts, adaptation and vulnerability[M]. Cambridge: Cambridge University Press, 2022: 3056 |
[4] | IPCC. Climate change 2021: the physical science basis[M]. Cambridge: Cambridge University Press, 2021 |
[5] | Guo X, Huang J, Luo Y, et al. Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models[J]. Theoretical and Applied Climatology, 2017, 128 (3): 507-522 |
[6] | Shi C, Jiang Z H, Chen W L, et al. Changes in temperature extremes over China under 1.5℃ and 2℃ global warming targets[J]. Advances in Climate Change Research, 2018, 9: 120-129 |
[7] |
李东欢, 邹立维, 周天军. 全球1.5℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32 (4): 446-457.
doi: 10.11867/j.issn.1001-8166.2017.04.0446 |
Li D H, Zou L W, Zhou T J. Changes of extreme indices over China in response to 1.5℃ global warming projected by a regional climate model[J]. Advances in Earth Science, 2017, 32 (4) : 446-457 (in Chinese) | |
[8] | Sui Y, Lang X, Jiang D. Projected signals in climate extremes over China associated with a 2℃ global warming under two RCP scenarios[J]. International Journal of Climatology, 2018, 38: 678-697 |
[9] | 张萌. 全球1.5℃和2℃温升目标下东亚-中亚地区的气候变化[D]. 兰州: 兰州大学, 2019. |
Zhang M. Climate change over East-Central Asia under the global warming limits of 1.5℃ and 2℃[D]. Lanzhou: Lanzhou University, 2019 (in Chinese) | |
[10] |
King A D, Karoly D J, Henley B J. Australian climate extremes at 1.5℃ and 2℃ of global warming[J]. Nature Climate Change, 2017, 7: 412-416
doi: 10.1038/NCLIMATE3296 |
[11] | Zhang M J, Li X C, Sun H M, et al. Changes in extreme maximum temperature events and population exposure in China under global warming scenarios of 1.5℃and 2.0℃ : analysis using the regional climate model COSMO-CLM[J]. Journal of Meteorological Research, 2018, 32 (1): 99-112 |
[12] | Wang J, Yan Z. Rapid rises in the magnitude and risk of extreme regional heat wave events in China[J]. Weather and Climate Extremes, 2021, 34 (4): 100379 |
[13] | 陈晓晨, 徐影, 姚遥. 不同升温阈值下中国地区极端气候事件变化预估[J]. 大气科学, 2015, 39 (6): 1123-1135. |
Chen X C, Xu Y, Yao Y. Changes in climate extremes over China in a 2℃, 3℃, and 4℃ warmer world[J]. Chinese Journal of Atmospheric Sciences, 2015, 39 (6): 1123-1135 (in Chinese) | |
[14] | Shi Y, Zhang D F, Xu Y, et al. Changes of heating and cooling degree days over China in response to global warming of 1.5℃, 2℃, 3℃ and 4℃[J]. Advances in Climate Change Research, 2018, 9 (3): 192-200 |
[15] | Shi C, Jiang Z, Zhu L, et al. Risks of temperature extremes over China under 1.5℃ and 2℃ global warming[J]. Advances in Climate Change Research, 2020, 11 (3): 172-184 |
[16] | Keellings D, Moradkhani H. Spatiotemporal evolution of heat wave severity and coverage across the United States[J]. Geophysical Research Letters, 2020, 47. DOI: 10.1029/2020GL087097 |
[17] | Pal J S, Eltahir E A B. Future temperature in southwest Asia projected to exceed a threshold for human adaptability[J]. Nature Climate Change, 2016, 6 (2) : 197-200 |
[18] | Lau N C, Nath M J. Model simulation and projection of European heat waves in present-day and future climates[J]. Journal of Climate, 2014, 27 (10): 3713-3730 |
[19] | Ma F, Yuan X, Jiao Y, et al. Unprecedented Europe heat in June-July 2019: risk in the historical and future context[J]. Geophysical Research Letters, 2020, 47 (11): 1-10 |
[20] | Jeff M. The top 10 weather and climate stories of 2019[EB/OL]. 2019 [2020-01-03]. https://blogs.scientificamerican.com/eye-of-the-storm/the-top-10-weather-and-climate-stories-of-2019/ |
[21] | 李莹, 叶殿秀, 高歌, 等. 2022年夏季中国气候特征及主要天气气候事件[J]. 大气科学学报, 2023, 46 (1) : 110-118. |
Li Y, Ye D X, Gao G, et al. Climate characteristics and major meteorological events in China during the summer of 2022[J]. Transactions of Atmospheric Sciences, 2023, 46 (1): 110-118 (in Chinese) | |
[22] | 崔童, 孙林海, 张驰, 等. 2022年夏季中国极端高温事件特点及成因初探[J]. 气象与环境科学, 2023, 46 (3): 1-8. |
Cui T, Sun L H, Zhang C, et al. Characteristics and causes of extreme heat events in China in summer 2022[J]. Meteorological and Environmental Sciences, 2023, 46 (3): 1-8 (in Chinese) | |
[23] | 王蕾, 张百超, 石英, 等. IPCC AR6报告关于气候变化影响和风险主要结论的解读[J]. 气候变化研究进展, 2022, 18 (4): 389-394. |
Wang L, Zhang B C, Shi Y, et al. Interpretation of the IPCC AR6 on the impacts and risks of climate change[J]. Climate Change Research, 2022, 18 (4): 389-394 (in Chinese) | |
[24] | Iyakaremye V, Zeng G, Yang X, et al. Increased high-temperature extremes and associated population exposure in Africa by the mid-21st century[J]. Science of the Total Environment, 2021, 790 (6): 148162 |
[25] |
黄大鹏, 张蕾, 高歌. 未来情景下中国高温的人口暴露度变化及影响因素研究[J]. 地理学报, 2016, 71 (7): 1189-1200.
doi: 10.11821/dlxb201607008 |
Huang D P, Zhang L, Gao G. Changes in population exposure to high temperature under a future scenario in China and its influencing factors[J]. Acta Geographica Sinica, 2016, 71 (7): 1189-1200 (in Chinese)
doi: 10.11821/dlxb201607008 |
|
[26] | Xie W X, Zhou B T, Han Z Y, et al. Substantial increase in daytime-nighttime compound heat waves and associated population exposure in China projected by the CMIP6 multimodel ensemble[J]. Environmental Research Letters, 2022, 17 (4): 045007 |
[27] | 李柔珂, 韩振宇, 徐影, 等. 高分辨率区域气候变化降尺度数据对京津冀地区高温GDP 和人口暴露度的集合预估[J]. 气候变化研究进展, 2020, 16 (4): 491-504. |
Li R K, Han Z Y, Xu Y, et al. An ensemble projection of GDP and population exposure to high temperature events over Jing-Jin-Ji district based on high resolution combined dynamical and statistical downscaling datasets[J]. Climate Change Research, 2020, 16 (4): 491-504 (in Chinese) | |
[28] |
王芳, 张晋韬.21 世纪中国温湿复合型热事件及其人口暴露度预估[J]. 地理科学, 2023, 43 (7): 1259-1269.
doi: 10.13249/j.cnki.sgs.2023.07.013 |
Wang F, Zhang J T. Projection of population exposure to compound extreme heat-humidity events in China in the 21st century[J]. Scientia Geographica Sinica, 2023, 43 (7): 1259-1269 (in Chinese)
doi: 10.13249/j.cnki.sgs.2023.07.013 |
|
[29] | 吴佳. 东亚-东南亚区域气候变化的数值模拟及不确定性分析[D]. 北京: 中国气象科学研究院, 2012. |
Wu J. Regional climate change simulations and uncertainty analysis over CORDEX-East Asia region[D]. Beijing: Chinese Academy of Meteorological Sciences, 2012 (in Chinese) | |
[30] | Gao X Y, Shi Y, Zhang D F, et al. Uncertainties in monsoon precipitation projections over China: results from two high-resolution RCM simulations[J]. Climate Research, 2012, 52 (1): 213-226 |
[31] | Gabriel F K, Thierry C F N, Ismaila D, et al. An evaluation of COSMO-CLM regional climate model in simulating precipitation over Central Africa[J]. International Journal of Climatology, 2020, 40 (5): 2891-2912 |
[32] | Jeong D I, Sushama L, Diro G T, et al. Projected changes to high temperature events for Canada based on a regional climate model ensemble[J]. Climate Dynamics, 2016, 46 (9-10): 3163-3180 |
[33] | Guo J, Huang G, Wang X, et al. Dynamically-downscaled projections of changes in temperature extremes over China[J]. Climate Dynamics, 2018, 50: 1045-1066 |
[34] | 程阳, 周波涛, 韩振宇, 等. 一组 RegCM4 动力降尺度对中国群发性高温事件的模拟评估[J]. 气候变化研究进展, 2020, 16 (6): 657-666. |
Cheng Y, Zhou B T, Han Z Y, et al. Evaluation of multi-RegCM4 dynamical downscaling simulations on cluster high temperature events in China[J]. Climate Change Research, 2020, 16 (6): 657-666 (in Chinese) | |
[35] | Giorgi F, Coppola E, Solmon F, et al. RegCM4: model description and preliminary tests over multiple CORDEX domains[J]. Climate Research, 2012, 52: 7-29 |
[36] | Gao X J, Shi Y, Giorgi F. Comparison of convective parameterizations in RegCM4 experiments over China with CLM as the land surface model[J]. Atmospheric and Oceanic Science Letters, 2016, 9: 246-254 |
[37] | Gao X J, Wu J, Shi Y, et al. Future changes in thermal comfort conditions over China based on multi-RegCM4 simulations[J]. Atmospheric and Oceanic Science Letters, 2018, 11 (4): 291-299 |
[38] | Han Z Y, Zhou B T, Xu Y, et al. Projected changes in haze pollution potential in China: an ensemble of regional climate model simulations[J]. Atmospheric Chemistry and Physics, 2017, 17: 10109-10123 |
[39] | Wang Y, Han Z, Gao R. Changes of extreme high temperature and heavy precipitation in the Guangdong-Hong Kong-Macao Greater Bay Area[J]. Geomatics, Natural Hazards and Risk, 2021, 12 (1): 1101-1126 |
[40] | 韩振宇, 徐影, 吴佳, 等. 多区域气候模式集合对中国径流深的模拟评估和未来变化预估[J]. 气候变化研究进展, 2022, 18 (3): 305-318. |
Han Z Y, Xu Y, Wu J, et al. Evaluation on the simulated runoff in China and future change projection based on multiple regional climate models[J]. Climate Change Research, 2022, 18 (3): 305-318 (in Chinese) | |
[41] | Wu J, Gao X, Zhu Y, et al. Projection of the future changes in tropical cyclone activity affecting East Asia over the western North Pacific based on multi-RegCM4 simulations[J]. Advances in Atmospheric Sciences, 2022, 39 (2): 284-303 |
[42] | Chen Y D, Guo F, Wang J C, et al. Provincial and gridded population projection for China under shared socioeconomic pathways from 2010 to 2100[J]. Scientific Data, 2020, 7 (1): 83 |
[43] | 季涤非, 刘利, 李立娟, 等. 模式内部变率引起的1.5℃和2℃升温阈值出现时间模拟的不确定性研究[J]. 气候变化研究进展, 2019, 15 (4): 343-351. |
Ji D F, Liu L, Li L J, et al. Uncertainties in the simulation of 1.5℃ and 2℃ warming threshold-crossing time arising from model internal variability based on CMIP5 models[J]. Climate Change Research, 2019, 15 (4): 343-351 (in Chinese) | |
[44] | 况雪源, 王遵娅, 张耀存, 等. 中国近50年来群发性高温事件的识别及统计特征[J]. 地球物理学报, 2014, 57 (6): 1782-1791. |
Kuang X Y, Wang Z Y, Zhang Y C, et al. Identification and statistical characteristics of the cluster high temperature events during last fifty years[J]. Chinese Journal of Geophysics, 2014, 57 (6): 1782-1791 (in Chinese) | |
[45] | Zhou B T, Cheng Y, Han Z Y, et al. Future changes of cluster high temperature events over China from RegCM4 ensemble under RCP4.5 scenario[J]. Advances in Climate Change Research, 2020, 11: 349-359 |
[46] | Ren F M, Cui D L, Gong Z Q, et al. An objective identification technique for regional extreme events[J]. Journal of Climate, 2012, 25: 7015-7027 |
[47] | 郑殿元, 黄晓军. 中国县域高温人口暴露风险及其影响因素研究[J]. 地域研究与开发, 2022, 41 (4): 143-149. |
Zheng D Y, Huang X J. Population exposure risk of heat wave and its influencing factors at county level in China[J]. Areal Research and Development, 2022, 41 (4): 143-149 (in Chinese) | |
[48] | Jiang L W, O’Neill B C. Global urbanization projections for the shared socioeconomic pathways[J]. Global Environmental Change, 2017, 42: 193-199 |
[49] | Guo Y, Fu Z. Regional coupled and decoupled day-night compound hot extremes over the mid-lower reaches of the Yangtze River: characteristics and mechanisms[J]. Climate Dynamics, 2023, 61: 2853-2864 |
[1] | 韩振宇, 徐影, 吴佳, 石英. 多区域气候模式集合对中国径流深的模拟评估和未来变化预估[J]. 气候变化研究进展, 2022, 18(3): 305-318. |
[2] | 程阳, 周波涛, 韩振宇, 徐影. 一组RegCM4动力降尺度对中国群发性高温事件的模拟评估[J]. 气候变化研究进展, 2020, 16(6): 657-666. |
[3] | 陈曦, 李宁, 张正涛, 刘佳伟, 王芳. 全球热浪人口暴露度预估——基于热应力指数[J]. 气候变化研究进展, 2020, 16(4): 424-432. |
[4] | 石英,韩振宇,徐影,周波涛,吴佳. 6.25 km高分辨率降尺度数据对雄安新区及整个京津冀地区未来极端气候事件的预估[J]. 气候变化研究进展, 2019, 15(2): 140-149. |
[5] | 韩振宇,童尧,高学杰,徐影. 分位数映射法在RegCM4中国气温模拟订正中的应用[J]. 气候变化研究进展, 2018, 14(4): 331-340. |
[6] | 徐影 周波涛 吴婕 韩振宇 张永香 吴佳. 1.5~4℃升温阈值下亚洲地区气候变化预估[J]. 气候变化研究进展, 2017, 13(4): 306-315. |
[7] | 徐经纬,徐 敏,蒋 熹,ArmelleReca C. Remedio,Dmitry V. Sein,Nikolay Koldunov,Daniela Jac. 区域气候模式REMO对中国气温和降水模拟能力的评估[J]. 气候变化研究进展, 2016, 12(4): 286-293. |
[8] | 陶辉 黄金龙 翟建青 赖锡军. 长江流域气候变化高分辨率模拟与RCP4.5情景下的预估[J]. 气候变化研究进展, 2013, 9(4): 246-251. |
[9] | 吴佳 高学杰 石英. 中国20年一遇气温和降水极值变化的高分辨率模拟[J]. 气候变化研究进展, 2012, 8(4): 243-249. |
[10] | 石英;高学杰;Fillipo Giorgi;宋瑞艳;吴佳;董文杰. 全球变暖背景下中国区域不同强度降水事件变化的高分辨率数值模拟[J]. 气候变化研究进展, 2010, 6(03): 164-169. |
[11] | 田红 许吟隆 林而达. 温室效应引起的江淮流域气候变化预估[J]. 气候变化研究进展, 2008, 4(006): 357-362. |
[12] | 宋瑞艳 高学杰 石英 张冬峰 张喜娃. 未来我国南方低温雨雪冰冻灾害变化的数值模拟[J]. 气候变化研究进展, 2008, 4(006): 352-356. |
[13] | 张冬峰;高学杰;赵宗慈;Jeremy S. PAL;Filippo GIORGI. RegCM3 区域气候模式对中国气候的模拟[J]. 气候变化研究进展, 2005, 01(03): 119-121. |
[14] | 许吟隆;黄晓莹;张勇;林万涛;林而达. 中国21世纪气候变化情景的统计分析[J]. 气候变化研究进展, 2005, 01(02): 80-83. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|