气候变化研究进展 ›› 2019, Vol. 15 ›› Issue (1): 33-40.doi: 10.12006/j.issn.1673-1719.2018.111

• 气候系统变化 • 上一篇    下一篇

青藏高原大气热源及其估算的不确定性因素

罗小青1,2,徐建军1,2   

  1. 1 广东海洋大学南海海洋气象研究院,湛江 524088
    2 广东海洋大学海洋与气象学院,湛江 524088
  • 收稿日期:2018-07-31 修回日期:2018-08-27 出版日期:2019-01-30 发布日期:2019-01-30
  • 作者简介:罗小青,女,博士研究生,luo_201709@126.com
  • 基金资助:
    中国科学院战略性先导科技专项(XDA20060503);国家重点研发专项(2018YFA0605604);国家重点研发专项(2017YFC1501802)

Estimate of atmospheric heat source over Tibetan Plateau and its uncertainties

Xiao-Qing LUO1,2,Jian-Jun XU1,2   

  1. 1 South China Sea Institute of Marine Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
    2 College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China
  • Received:2018-07-31 Revised:2018-08-27 Online:2019-01-30 Published:2019-01-30

摘要:

基于1980—2016年的4套再分析资料(NCEP/DOE资料、MERRA2资料、ERA-Interim资料和JRA-55资料),采用计算大气热源的正算法和倒算法,研究青藏高原大气热源及其计算的不确定性因素,得到以下结论:(1)计算方法和资料均会导致结果的不确定性,正算法只能得到整层热源,而倒算法可得到热源垂直结构,但其结果准确性依赖于再分析资料精度;(2)对比4套再分析资料计算结果发现,正算法结果较倒算法结果普遍偏高,采用ERA-Interim资料,基于两种方法计算的大气热源年代际变化趋势一致。基于4套资料,采用倒算法计算的热源在1980—2016年呈现明显的年代际变化特征;(3)夏半年(3—8月)强热源区主要分布在青藏高原中东部,热源自下而上呈源-汇-源分布;(4)基于正算法和ERA-Interim资料估算的夏半年的降水潜热在喜马拉雅山南坡显著偏小,高原西部地区和南部冈底斯山一带则明显偏大。

关键词: 青藏高原, 大气热源, 不确定性, 正算法, 倒算法

Abstract:

The atmospheric heat source (AHS) over Tibetan Plateau (TP) during 1980-2016 was calculated using four reanalysis data (NCEP/DOE, MERRA2, ERA-Interim and JRA-55 data), and the uncertainties was also discussed. The main conclusions are as follows: (1) Methods and data can both make deviation. Indirect method can not only get the whole layer of AHS, but also the vertical structure of AHS, while its estimation precision mainly depends on reanalysis data. (2) Compared with four reanalysis data, we found that adopting two methods with ERA-Interim data can get consistent inter-decadal variation of AHS over TP, while the AHS value calculated by direct method is greater than the indirect method. The results from four reanalysis data by indirect method obtained the obviously identical decadal variation during 1980-2016. (3) Positive AHS mainly distributed in the center and eastern of TP during March-August, and the vertical structure of AHS is “source-sink-source” from surface to high troposphere. (4) The results revealed that latent heat flux calculated by ERA-Interim data is stronger in the western and southern Gangdise, and is weaken in the south slope of Himalaya range.

Key words: Tibetan Plateau, Atmospheric heat source, Uncertainties, Direct method, Indirect method

京ICP备11008704号-4
版权所有 © 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn