气候变化研究进展 ›› 2021, Vol. 17 ›› Issue (2): 223-235.doi: 10.12006/j.issn.1673-1719.2020.104
陈楠1, 林炫辰2
收稿日期:
2020-05-27
修回日期:
2020-07-20
出版日期:
2021-03-30
发布日期:
2021-04-02
作者简介:
陈楠,男,高级工程师,chennan@sino-carbon.cn
基金资助:
CHEN Nan1, LIN Xuan-Chen2
Received:
2020-05-27
Revised:
2020-07-20
Online:
2021-03-30
Published:
2021-04-02
摘要:
基于各国提交的165份国家自主贡献文件,以其中提出的减排目标为基准,尽可能充分地考虑了减排目标的范围不确定性、不同经济情景带来的碳强度减排目标不确定性、减排气体种类边界差异、碳排放达峰约束等因素,并通过蒙特卡洛模拟的方法对全球、各区域和主要经济体的温室气体排放总量、不确定度及其来源进行了定量分析。结果表明,到2030年全球温室气体排放总量将达到62.69 Gt CO2当量,其90%信度的置信区间为53.17~74.26 Gt CO2当量;由于未来经济总量预期不确定对排放量的影响最显著,因此,不同地区之间不确定性来源差异较大。同时,基于到2050年排放总量比2010年下降40%~70%的2℃目标排放情景,2030—2050年全球温室气体排放年均需要下降5.0% %。为了尽可能减小全球温室气体排放预期目标的不确定性和继续实现2℃目标,各国在进行自主贡献文件更新时进一步提出统计边界更为明确和统一且更有雄心的减排目标将是第一次全球盘点继续解决的重点问题。
陈楠, 林炫辰. 基于各国NDC/INDC目标的全球减排不确定性研究[J]. 气候变化研究进展, 2021, 17(2): 223-235.
CHEN Nan, LIN Xuan-Chen. Estimation of uncertainty based on emission reduction targets in NDC/INDCs[J]. Climate Change Research, 2021, 17(2): 223-235.
图2 NDC/INDCs减排目标不确定性分析蒙特卡洛模拟路径图 注:Ei(i=1,2,…,7)为模拟各个阶段所产生的温室气体排放量阶段值(t CO2e);Ef为模拟的最终温室气体排放量(t CO2e),包括各个国家以及相应的区域和全球合计;I为碳排放强度(t CO2e/万元)。σi(i=1,2,…,6)为各个影响因素作为随机变量考虑所引入的不确定度。具体各不确定度对应的影响因素、随机变量以及相应的分布函数如表1所示。
Fig. 2 Monte Carlo simulation analysis path of uncertainty of NDC/INDCs emission reduction target
图3 CEPII模型数据库下不同SSP情景2030年全球温室气体排放量分布 注:其中纵坐标为蒙特卡洛模拟在区间范围的结果计数。
Fig. 3 Distribution of global GHG emissions under different SSP scenarios using CEPII model database
[1] | UNFCCC. Adoption of the Paris Agreement [R/OL]. 2015 [2017-05-05]. https://unfccc.int/resource/docs/2015/cop21/eng/l09.pdf |
[2] | 何建坤. 《巴黎协定》新机制及其影响[J]. 世界环境, 2016 (1):16-18. |
He J K. New mechanism and influence of “Paris Agreement”[J]. World Environment, 2016 (1):16-18 (in Chinese) | |
[3] | 潘家华. 应对气候变化的后巴黎进程: 仍需转型性突破[J]. 环境保护, 2015, 43(24):27-32. |
Pan J H. Post-Paris process: transformational breakthrough is still needed[J]. Environmental Protection, 2015, 43(24):27-32 (in Chinese) | |
[4] | ICF International. Analysis of Intended Nationally Determined Contributions (INDCs) [R/OL]. 2016 [2019-02-25]. https://www.climatelinks.org/sites/default/files/asset/document/INDC%20White%20Paper%20-%20June%202016_public_RALI.pdf |
[5] | UNFCCC. Aggregate effect of the Intended Nationally Determined Contributions: an update [R]. Marrakech: Conference of the Parties, 2016 |
[6] | IPCC. AR5 climate change 2014: mitigation of climate change [M]. Cambridge: Cambridge University Press, 2014 |
[7] | UNEP. The emissions gap report 2017 [R/OL]. 2017 [2018-01-20]. https://wedocs.unep.org/bitstream/handle/20.500.11822/22070/EGR_2017.pdf |
[8] | UNEP. The emissions gap report 2018 [EB/OL]. 2018 [2019-02-25]. http://59.80.44.48/wedocs.unep.org/bitstream/handle/20.500.11822/26895/EGR2018_FullReport_EN.pdf?sequence=1&isAllowed=y |
[9] |
Fawcett A A, Iyer G C, Clarke L E, et al. Can Paris pledges avert severe climate change?[J]. Science, 2015, 350(6265):1168-1169
URL pmid: 26612835 |
[10] |
Rogelj J, den Elzen M, Höhne N, et al. Paris agreement climate proposals need a boost to keep warming well below 2℃[J]. Nature, 2016, 534; 631-639
doi: 10.1038/nature18307 URL pmid: 27357792 |
[11] |
Rogelj J, Fricko O, Meinshausen M, et al. Understanding the origin of Paris Agreement emission uncertainties[J]. Nature Communications, 2017, 8: 15748
doi: 10.1038/ncomms15748 URL pmid: 28585924 |
[12] | den Elzen M, Admiraal A, Roelfsema M, et al. Contribution of the G20 economies to the global impact of the Paris Agreement climate proposals[J]. Climate Change, 2016, 137(3-4):655-665 |
[13] | Vandyck T, Keramidas K, Saveyn B, et al. A global stocktake of the Paris pledges: implications for energy systems and economy[J]. Global Environmengtal Change, 2016, 41: 46-63 |
[14] | Benveniste H, Olivier B, Céline G, et al. Impacts of Nationally Determined Contributions on 2030 global greenhouse gas emissions: uncertainty analysis and distribution of emissions[J]. Environmental Research Letters, 2018, 13: 014022 |
[15] | NCI-PBL-IIASA. Greenhouse gas mitigation scenarios for major emitting countries [R/OL]. 2017 [2017-05-05]. https://newclimate.org/2017/11/01/greenhouse-gas-mitigation-scenarios-for-majoremitting-countries-2017/ |
[16] | PBL. PBL climate pledge NDC tool [R/OL]. 2016 [2017-05-05]. http://themasites.pbl.nl/climate-ndc-policies-tool/ |
[17] | CAT. Individual country assessments [R/OL]. 2016 [2017-05-05]. http://www.climateactiontracker.org/countries |
[18] | WRI. How can Indonesia achieve its climate change mitigation goal: an analysis of potential emissions reductions from energy and land-use policies [R/OL]. 2017 [2019-02-25]. https://www.wri.org/publication/how-can-indonesia-achieve-its-climate-goal |
[19] | Pasqual J C, Anaya R P, Ley A L, et al. Implications and challenges for the energy sector in Brazil and Mexico to meet the carbon emission reductions committed in their INDC during the COP 21-CMP11[J]. Edição Especial Nexo Água e Energia, 2016, 37(5):31-46 |
[20] | Panagiotis F, Nikos K. Model-based analysis of Intended Nationally Determined Contributions and 2℃ pathways for major economies[J]. Energy, 2018, 160: 965-978 |
[21] | Panagiotis F, Nikos T, Leonidas P, et al. Energy system impacts and policy implications of the European Intended Nationally Determined Contribution and low-carbon pathway to 2050[J]. Energy Policy, 2017, 100: 216-226 |
[22] | van Soest H L, Aleluia Reis L, Drouet L, et al. Low-emission pathways in 11 major economies: comparison of cost-optimal pathways and Paris climate proposals[J]. Climatic Change, 2017, 142: 491 |
[23] | Paroussos L, Fragkos P, Capros P. A model-based analysis of the European Intended Nationally Determined Contribution[M]. Paris: Studies N°07/16, IDDRI, 2016 |
[24] | O’Neill B C, Elmar K, Keywan R, et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways[J]. Climate Change, 2014, 122(3):387-400 |
[25] | Leimbach M, Elmar K, Niklas R, et al. Future growth patterns of world regions: a GDP scenario approach[J]. Global Environmental Change, 2017, 42: 215-225 |
[26] | Fouré J, Bénassy-Quéré A, Fontagné L. Modelling the world economy at the 2050 horizon[J]. Economics of Transition, 2013, 21(4):617-654 |
[27] | Dellink R, Chateau J, Lanzi E, et al. Long-term economic growth projections in the shared socioeconomic pathways[J]. Global Environmental Change, 2015, 42: 200-214 |
[28] | Crespo J. Income projections for climate change research: a framework based on human capital dynamics[J]. Global Environmental Change, 2015, 42: 226-236 |
[29] | UNFCCC. INDCs as communicated by Parties [DB/OL]. 2015 [2019-03-23]. https://www4.unfccc.int/sites/submissions/indc/Submission%20Pages/submissions.aspx |
[30] | IPCC. 2006 IPCC guidelines for national greenhouse gas inventories[M]. Japan: Institute for Global Environmental Strategies, 2006 |
[31] | IPCC. Climate change 1995: impacts, adaptations and mitigation of climate change [M]. Cambridge: Cambridge University Press, 1996 |
[32] | IPCC. Climate change 2007: synthesis report [M]. Cambridge: Cambridge University Press, 2007 |
[33] | Fu S, Zou J, Liu L W. An analysis of China’s INDC [R/OL]. 2015 [2020-05-20]. http://www.chinacarbon.info/wp-content/uploads/2015/07/Comments-on-Chinas-INDC.pdf |
[34] | den Elzen M, Fekete H, Höhne N, et al. Greenhouse gas emissions from current and enhanced policies of China until 2030: can emissions peak before 2030?[J]. Energy Policy, 2016, 89: 224-236. DOI: 10.1016/j.enpol.2015.11.030 |
[35] | Hare B, Rocha M, Schaeffer M, , et al. China, US and EU post-2020 plans reduce projected warming [R/OL]. 2014 [2020-05-20]. https://climateactiontracker.org/publications/china-us-and-eu-post-2020-plans-reduce-projected-warming/ |
[36] | Zhang X L, Karplus V J, Tian Y, et al. Carbon emissions in China: how far can new efforts bend the curve?[J]. Energy Economics, 2016, 54: 388-395. DOI: 10.1016/j.eneco.2015.12.002 |
[37] | Sanderson B M, O’Neill B C, Tebaldi C. What would it take to achieve the Paris temperature targets?[J]. Geophysical Research Letters, 2016, 43: 7133-7142. DOI: 10.1002/2016GL069563 |
[38] | Olivier J G J, Janssens-Maenhout G, Muntean M, , et al. Trends in global CO2 emissions: 2015 report [R/OL]. PBL, 2015 [2020-05-27]. https://www.pbl.nl/en/publications/trends-in-global-co2-emissions-2015-report |
[39] | Hansis E, Davis S J, Pongratz J. Relevance of methodological choices for accounting of land use change carbon fluxes[J]. Global Biogeochemical Cycles, 2015, 29(8):1230-1246 |
[40] | The World Bank. GDP (constant 2010 US$) data files [DB/OL]. 2019 [2019-11-16]. https://data.worldbank.org/indicator/NY.GDP.MKTP.KD?view=chart |
[41] | UNFCCC. Second national communication on climate change of the People’s Republic of China [R/OL]. 2013 [2019-03-24]. https://unfccc.int/documents/71515 |
[42] |
Liu Z, Guan D, Wei W, et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China[J]. Nature, 2015, 524(7565):335-338
doi: 10.1038/nature14677 URL pmid: 26289204 |
[43] | The Environment Branch of the International Civil Aviation Organization (ICAO). International Civil Aviation Organization (ICAO) 2013 ICAO environmental report [R/OL]. 2013 [2020-05-27]. https://www.icao.int/environmental-protection/Documents/ICAO%20Environmental%20Report%202016.pdf |
[44] | Advisory Council for Aeronautics Research in Europe (ACARE). Advisory Council for Aeronautics Research in Europe activity (ACARE) summary 2014-15 [R/OL]. 2020 [2020-05-27]. https://acare4europe.org/sites/acare4europe.org/files/document/ACARE%20Annual%20report%202014-15vs0%207%2025Sept15.pdf |
[45] | International Maritime Organization (IMO). Third IMO GHG study 2014 [R/OL]. 2015 [2019-03-27]. https://www.imo.org/en/OurWork/Environment/Pages/Greenhouse-Gas-Studies-2014.aspx |
[46] | United States Environmental Protection Agency. Inventory of U.S. greenhouse gas emissions and sinks: 1990-2018 [R/OL]. 2020 [2020-04-15]. https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks |
[47] | U.S. Department of State. On the U.S. withdrawal from the Paris Agreement [EB/OL]. 2019 [2020-05-10]. https://www.state.gov/on-the-u-s-withdrawal-from-the-paris-agreement/ |
[48] | Bellassen V, Le Maire G, Dhôte J F, et al. Modelling forest management within a global vegetation model. Part 1: model structure and general behavior[J]. Ecological Modelling, 2010, 221: 2458-2474. DOI: 10.1016/j.ecolmodel.2010.07.008 |
[1] | 樊星, 丁鸿达, 梁媚聪, 许玲懿, 高翔. 2020年前全球减缓目标履约进展评估分析[J]. 气候变化研究进展, 2025, 21(1): 125-134. |
[2] | 王际杰. 国际碳定价:进展、形势与应对策略[J]. 气候变化研究进展, 2024, 20(6): 773-781. |
[3] | 张娜, 孙妍雨, 赵晓军, 常思纯, 吴立言. 气候政策不确定性对企业绿色创新的影响[J]. 气候变化研究进展, 2024, 20(5): 636-650. |
[4] | 陈国荣, 王苏萨, 邓晶, 侯浩一, 尹书琪, 冯玮, 曲浩泽. 中国气候政策不确定性指数:构建、分析与应用前景[J]. 气候变化研究进展, 2024, 20(3): 361-372. |
[5] | 樊星, 李路, 高翔, 陈志华. COP28全球盘点成果解读及全球气候治理形势展望[J]. 气候变化研究进展, 2024, 20(2): 253-260. |
[6] | 谢璨阳, 董文娟, 王灿. 从千亿向万亿:全球气候治理中的资金问题[J]. 气候变化研究进展, 2023, 19(5): 653-662. |
[7] | 银朔, 段茂盛. 《巴黎协定》市场机制中的相应调整方法[J]. 气候变化研究进展, 2023, 19(4): 508-519. |
[8] | 姜克隽. IPCC AR6:长期减排路径[J]. 气候变化研究进展, 2023, 19(2): 133-138. |
[9] | 万梓文, 王伟, 吕恒, 仇培宇, 李雨竹, 卢阳. CMIP6与CMIP5对历史大气层顶和地表辐射收支模拟的时空对比[J]. 气候变化研究进展, 2022, 18(4): 468-481. |
[10] | 樊星, 高翔. 国家自主贡献更新进展、特征及其对全球气候治理的影响[J]. 气候变化研究进展, 2022, 18(2): 230-239. |
[11] | 姜晓群, 周泽宇, 林哲艳, 代兴良, 谭灵芝. “后巴黎”时代气候适应国际合作进展与展望[J]. 气候变化研究进展, 2021, 17(4): 484-495. |
[12] | 姜克隽, 冯升波. 走向《巴黎协定》温升目标:已经在路上[J]. 气候变化研究进展, 2021, 17(1): 1-6. |
[13] | 丁凯熙, 张利平, 佘敦先, 张琴, 向竣文. 全球升温1.5℃和2.0℃情景下澜沧江流域极端降水的变化特征[J]. 气候变化研究进展, 2020, 16(4): 466-479. |
[14] | 樊星,王际杰,王田,高翔. 马德里气候大会盘点及全球气候治理展望[J]. 气候变化研究进展, 2020, 16(3): 367-372. |
[15] | 柴麒敏,傅莎,祁悦,樊星. 《巴黎协定》实施细则评估与全球气候治理展望[J]. 气候变化研究进展, 2020, 16(2): 232-242. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|