气候变化研究进展 ›› 2024, Vol. 20 ›› Issue (5): 519-533.doi: 10.12006/j.issn.1673-1719.2024.074
所属专题: 西风-季风协同作用下青藏高原典型水环境变化特征及其对气候变化的响应专栏
• 西风-季风协同作用下青藏高原典型水环境变化特征及其对气候变化的响应专栏 • 上一篇 下一篇
车彦军1,2,3(), 陈丽花1,3,4, 吴佳康1,3,4, 谷来磊5, 武荣1, 张东启6, 丁明虎6(
)
收稿日期:
2024-04-23
修回日期:
2024-07-05
出版日期:
2024-09-30
发布日期:
2024-08-28
通讯作者:
丁明虎,男,研究员,作者简介:
车彦军,男,副教授,基金资助:
CHE Yan-Jun1,2,3(), CHEN Li-Hua1,3,4, WU Jia-Kang1,3,4, GU Lai-Lei5, WU Rong1, ZHANG Dong-Qi6, DING Ming-Hu6(
)
Received:
2024-04-23
Revised:
2024-07-05
Online:
2024-09-30
Published:
2024-08-28
摘要:
基于已有研究,对青藏高原地区冰川与冰湖(主要为冰前湖)相互作用的机理研究进行梳理,以理解青藏高原冰川后退与冰湖扩张的过程和模式,加深对冰川与冰湖相互作用过程和机理的认识。青藏高原地区冰前湖主要分布于藏东南喜马拉雅山和念青唐古拉山,有记录和查明冰湖溃决成因的事件中,冰川动态引起冰前湖溃决事件占到冰湖溃决总事件的55%,且多分布于喜马拉雅山和念青唐古拉山等藏东南地区。冰川与冰前湖的相互作用模式表现为:冰川对冰前湖的作用和冰前湖对冰川的反作用。其中,冰川对冰湖的作用主要包括冰川退缩为冰湖发育提供了空间、冰川融水为冰湖形成和扩张提供了充足水源、冰川极端事件(冰面/内水系溃决、冰川前进/运动、冰崩等)引起冰湖溃决;冰前湖对冰川的反馈机制体现在冰前湖对冰川的热力融冰、冰前湖动力过程导致末端冰川崩解等物质亏损、冰前湖的演变对母冰川的气候效应。需要说明的是,二者之间的相互作用不是孤立的,是彼此依存、同时发生。未来冰川与冰前湖研究中,应致力于:(1)建立统一的冰川观测规范和冰湖-冰川数据集;(2)集成“气候-冰川-冰湖-灾害”为一体的综合观测体系,实现数据共享;(3)耦合冰川与冰湖模型,模拟相互作用过程与机制;(4)统一冰湖溃决灾害的评价体系和完善预警机制。此外,冰川与冰湖变化的理论相对成熟,但冰川与冰前湖相互作用的理论研究依然不够,亟需不断完善。
车彦军, 陈丽花, 吴佳康, 谷来磊, 武荣, 张东启, 丁明虎. 青藏高原冰前湖与冰川相互作用研究进展[J]. 气候变化研究进展, 2024, 20(5): 519-533.
CHE Yan-Jun, CHEN Li-Hua, WU Jia-Kang, GU Lai-Lei, WU Rong, ZHANG Dong-Qi, DING Ming-Hu. Progress in the study on the interaction between proglacial lake and lake-terminating glacier over the Qinghai-Tibet Plateau[J]. Climate Change Research, 2024, 20(5): 519-533.
图2 青藏高原冰湖及其冰湖溃决事件空间分布 注:GGLOFD和OGLOFD分别为冰前湖溃决和其他冰湖溃决。
Fig. 2 Spatial distribution of glacial lake and glacier lake outburst flood in the Qinghai-Tibet Plateau. (GGLOFD denotes a proglacial lake outburst flood, and OGLOFD denotes other glacier lake outburst flood without proglacial lake)
图3 米堆冰川-冰湖扩张概念模式示意图 注:?H为高程降低,?L为末端后退距离。a~c为Google Earth影像,d~e为冰川退缩(冰面高程下降、末端退缩),冰湖扩张(沿着冰川末端后退的方向)。
Fig. 3 Conceptual model of retreat of the Midui glacier and expansion of glacial lake
[1] | Yao T, Bolch T, Chen D, et al. The imbalance of the Asian water tower[J]. Nature Reviews Earth & Environment, 2022, 3 (10): 618-632 |
[2] | Yao T D, Yu W S, Wu G J, et al. Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings[J]. Chinese Science Bulletin, 2019, 64 (27): 2770-2782 |
[3] | Yao T, Xue Y, Chen D, et al. Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100 (3): 423-444 |
[4] | Yao T, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2 (9): 663-667 |
[5] | King O, Ghuffar S, Bhattacharya A, et al. Glaciological and climatological drivers of heterogeneous glacier mass loss in the Tanggula Shan (Central-Eastern Tibetan Plateau), since the 1960s[J]. Journal of Glaciology, 2023, 69 (277): 1149-1166 |
[6] | Zhou Y S, Li X, Zheng D H, et al. Evolution of geodetic mass balance over the largest lake-terminating glacier in the Tibetan Plateau with a revised radar penetration depth based on multi-source high-resolution satellite data[J]. Remote Sensing of Environment, 2022, 275: 113029 |
[7] | Bhattacharya A, Bolch T, Mukherjee K, et al. High Mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s[J]. Nature Communications, 2021, 12 (1): 4133 |
[8] | Immerzeel W W, Lutz A F, Andrade M, et al. Importance and vulnerability of the world’s water towers[J]. Nature, 2020, 577 (7790): 364-369 |
[9] | Hugonnet R, McNabb R, Berthier E, et al. Accelerated global glacier mass loss in the early twenty-first century[J]. Nature, 2021, 592 (7856): 726-731 |
[10] | Wu S S, Yao Z J, Huang H Q, et al. Responses of glaciers and glacial lakes to climate variation between 1975 and 2005 in the Rongxer basin of Tibet, China and Nepal[J]. Regional Environmental Change, 2012, 12 (4): 887-898 |
[11] | King O, Turner A G D, Quincey D J, et al. Morphometric evolution of Everest region debris-covered glaciers[J]. Geomorphology, 2020, 371: 107422 |
[12] | 秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学辞典[M]. 北京: 气象出版社, 2016. |
Qin D H, Yao T D, Ding Y J, et al. Glossary of cryospheric science[M]. Beijing: China Meteorological Press, 2016 (in Chinese) | |
[13] |
Yao X, Liu S, Han L, et al. Definition and classification system of glacial lake for inventory and hazards study[J]. Journal of Geographical Sciences, 2018, 28 (2): 193-205
doi: 10.1007/s11442-018-1467-z |
[14] | Wang X, Ding Y J, Liu S Y, et al. Changes of glacial lakes and implications in Tian Shan, Central Asia, based on remote sensing data from 1990 to 2010[J]. Environmental Research Letters, 2013, 8 (4): 11 |
[15] | Zhang G Q, Yao T D, Xie H J, et al. An inventory of glacial lakes in the Third Pole region and their changes in response to global warming[J]. Global and Planetary Change, 2015, 131: 148-157 |
[16] | Karimi N, Farajzadeh M, Moridnejad A, et al. Evidence for mountain glacier changes in semi-arid environments based on remote sensing data[J]. Journal of the Indian Society of Remote Sensing, 2014, 42 (4): 801-815 |
[17] | 车涛, 晋锐, 李新, 等. 近20 a来西藏朋曲流域冰湖变化及潜在溃决冰湖分析[J]. 冰川冻土, 2004, 26 (4): 397-402. |
Che T, Jin R, Li X, et al. Glacial lakes variation and the potentially dangerous glacial lakes in the Pumqu basin of Tibet during the last two decades[J]. Journal of Glaciology and Geocryology, 2004, 26 (4): 397-402 (in Chinese) | |
[18] | Chen F, Zhang M, Guo H, et al. Annual 30 m dataset for glacial lakes in High Mountain Asia from 2008 to 2017[J]. Earth System Science Data, 2021, 13 (2): 741-766 |
[19] | King O, Dehecq A, Quincey D, et al. Contrasting geometric and dynamic evolution of lake and land-terminating glaciers in the Central Himalaya[J]. Global and Planetary Change, 2018, 167: 46-60 |
[20] | Brun F, Wagnon P, Berthier E, et al. Heterogeneous influence of glacier morphology on the mass balance variability in High Mountain Asia[J]. Journal of Geophysical Research: Earth Surface, 2019, 124 (6): 1331-1345 |
[21] | Wei J, Liu S, Wang X, et al. Longbasaba Glacier recession and contribution to its proglacial lake volume between 1988 and 2018[J]. Journal of Glaciology, 2021, 67 (263): 473-484 |
[22] |
魏俊锋, 张特, 张勇, 等. 入湖冰川物质平衡序列重建与分析: 以喜马拉雅山北坡龙巴萨巴冰川为例[J]. 冰川冻土, 2022, 44 (3): 914-929.
doi: 10.7522/j.issn.1000-0240.2022.0087 |
Wei J F, Zhang T, Zhang Y, et al. Reconstruction and analysis of mass balance for lake-terminating glaciers: a case study of Longbasaba Glacier, North Himalaya[J]. Journal of Glaciology and Geocryology, 2022, 44 (3): 914-929 (in Chinese) | |
[23] |
Tsutaki S, Fujita K, Nuimura T, et al. Contrasting thinning patterns between lake- and land-terminating glaciers in the Bhutanese Himalaya[J]. Cryosphere, 2019, 13 (10): 2733-2750
doi: 10.5194/tc-13-2733-2019 |
[24] | Lee E, Carrivick J L, Quincey D J, et al. Accelerated mass loss of Himalayan glaciers since the Little Ice Age[J]. Scientific Reports, 2021, 11 (1): 24284 |
[25] | Song C Q, Sheng Y W, Ke L H, et al. Glacial lake evolution in the southeastern Tibetan Plateau and the cause of rapid expansion of proglacial lakes linked to glacial-hydrogeomorphic processes[J]. Journal of Hydrology, 2016, 540: 504-514 |
[26] | Liu Q, Guo W, Nie Y, et al. Recent glacier and glacial lake changes and their interactions in the Bugyai Kangri, Southeast Tibet[J]. Annals of Glaciology, 2016, 57 (71): 61-69 |
[27] | Peng M, Zhang G, Yu J, et al. Potential threats of glacial lake changes to the Sichuan-Tibet Railway[J]. Journal of Glaciology, 2024. DOI: 10.1017/jog.2024.401-16 |
[28] |
车彦军, 陈丽花, 谷来磊, 等. 东昆仑木孜塔格峰地区冰湖演变与冰川物质亏损[J]. 冰川冻土, 2023, 45 (4): 1254-1265.
doi: 10.7522/j.issn.1000-0240.2023.0096 |
Che Y J, Chen L H, Gu L L, et al. Evolution of glacial lakes and glacier mass loss in Ulugh Muztagh area of eastern Kunlun Mountains[J]. Journal of Glaciology and Geocryology, 2023, 45 (4): 1254-1265 (in Chinese)
doi: 10.7522/j.issn.1000-0240.2023.0096 |
|
[29] | Shrestha F, Steiner J F, Shrestha R, et al. A comprehensive and version-controlled database of glacial lake outburst floods in High Mountain Asia[J]. Earth System Science Data, 2023, 15 (9): 3941-3961 |
[30] |
张太刚, 王伟财, 高坛光, 等. 亚洲高山区冰湖溃决洪水事件回顾[J]. 冰川冻土, 2021, 43 (6): 1673-1692.
doi: 10.7522/j.issn.1000-0240.2021.0066 |
Zhang T G, Wang W C, Gao T G, et al. Glacial lake outburst floods on the High Mountain Asia: a review[J]. Journal of Glaciology and Geocryology, 2021, 43 (6): 1673-1692 (in Chinese) | |
[31] | Nie Y, Pritchard H D, Liu Q, et al. Glacial change and hydrological implications in the Himalaya and Karakoram[J]. Nature Reviews Earth & Environment, 2021, 2 (2): 91-106 |
[32] | Zheng G, Allen S K, Bao A, et al. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation[J]. Nature Climate Change, 2021, 11 (5): 411-417 |
[33] | Wang S J, Zhou L Y. Glacial lake outburst flood disasters and integrated risk management in China[J]. International Journal of Disaster Risk Science, 2017, 8 (4): 493-497 |
[34] | 李德基, 游勇. 西藏波密米堆冰湖溃决浅议[J]. 山地研究, 1992, 10 (4): 219-224. |
Li D J, You Y. Bursting of the Midui moraine lake in Bomi, Xizang[J]. Journal of Mountain Research, 1992, 10 (4): 219-224 (in Chinese) | |
[35] | Wang S, Yang Y, Gong W, et al. Reason analysis of the Jiwenco Glacial Lake Outburst Flood (GLOF) and potential hazard on the Qinghai-Tibetan Plateau[J]. Remote Sensing, 2021, 13 (16): 3114 |
[36] | Wangchuk S, Bolch T, Robson B A. Monitoring glacial lake outburst flood susceptibility using Sentinel-1 SAR data, Google Earth Engine, and persistent scatterer interferometry[J]. Remote Sensing of Environment, 2022, 271: 18 |
[37] | 张波, 张瑞, 刘国祥, 等. 基于SAR影像的贡巴冰川末端冰湖年际变化监测及溃决规律分析[J]. 武汉大学学报(信息科学版), 2019, 44 (7): 1054-1064. |
Zhang B, Zhang R, Liu G X, et al. Monitoring of interannual variabilities and outburst regularities analysisof glacial lakes at the end of Gongba Glacier utilizing SAR images[J]. Geomatics and Information Science of Wuhan University, 2019, 44 (7): 1054-1064 (in Chinese) | |
[38] |
雷东钰, 王欣, 魏俊锋, 等. 湖-冰接触型冰湖水温变化特征及影响因素[J]. 冰川冻土, 2023, 45 (4): 1266-1275.
doi: 10.7522/j.issn.1000-0240.2023.0097 |
Lei D Y, Wang X, Wei J F, et al. Variation characteristics and influencing factors of water temperature in lake-ice contact glacialakes[J]. Joural of Glaciology and Geocryology, 2023, 45 (4): 1266-1275 (in Chinese) | |
[39] | 鞠建廷, 朱立平, 黄磊, 等. 基于监测的藏东南然乌湖现代过程: 湖泊对冰川融水的响应程度[J]. 科学通报, 2015, 60 (1): 16-30. |
Ju J T, Zhu L P, Huang L, et al. Ranwu Lake, a proglacial lake with the potential to reflect glacial activity in SE Tibet[J]. Chinese Science Bulletin, 2015, 60 (1): 16-30 (in Chinese) | |
[40] | Prakash C, Nagarajan R. Glacial Lake inventory and evolution in Northwestern Indian Himalaya[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10 (12): 5284-5294 |
[41] | Qi M M, Liu S Y, Yao X J, et al. Lake inventory and potentially dangerous glacial lakes in the Nyang Qu basin of China between 1970 and 2016[J]. Journal of Mountain Science, 2020, 17 (4): 851-870 |
[42] |
Wang X, Guo X Y, Yang C D, et al. Glacial lake inventory of High-Mountain Asia in 1990 and 2018 derived from Landsat images[J]. Earth System Science Data, 2020, 12 (3): 2169-2182
doi: 10.5194/essd-12-2169-2020 |
[43] | Wang W C, Yao T D, Yang X X. Variations of glacial lakes and glaciers in the Boshula Mountain range, Southeast Tibet, from the 1970s to 2009[J]. Annals of Glaciology, 2011, 52 (58): 9-17 |
[44] | Wang S J, Xiao C D. Global cryospheric disaster at high risk areas: impacts and trend[J]. Chinese Science Bulletin, 2019, 64 (9): 891-901 |
[45] | Prakash C, Nagarajan R. Glacial lake changes and outburst flood hazard in Chandra basin, North-Western Indian Himalaya[J]. Geomatics Natural Hazards & Risk, 2018, 9 (1): 337-355 |
[46] | 李震, 陈宁生, 张建平, 等. 波曲流域冰湖及其溃决灾害链特征分析[J]. 水文地质工程地质, 2014, 41 (4): 143-148, 152. |
Li Z, Chen N S, Zhang J P, et al. Characteristics of the disaster chain of outburst and glacier lakes in the Boiqu River basin[J]. Hydrogeology & Engineering Geology, 2014, 41 (4): 143-148, 152 (in Chinese) | |
[47] | Wang X, Siegert F, Zhou A G, et al. Glacier and glacial lake changes and their relationship in the context of climate change, Central Tibetan Plateau 1972-2010[J]. Global and Planetary Change, 2013, 111: 246-257 |
[48] | Zhang G Q, Bolch T, Allen S, et al. Glacial lake evolution and glacier-lake interactions in the Poiqu River basin, Central Himalaya, 1964-2017 [J]. Journal of Glaciology, 2019, 65 (251): 347-365 |
[49] | King O, Quincey D J, Carrivick J L, et al. Spatial variability in mass loss of glaciers in the Everest region, Central Himalayas, between 2000 and 2015[J]. Cryosphere, 2017, 11 (1): 407-426 |
[50] |
王琼, 王欣, 雷东钰, 等. 山地冰川演化与冰湖发育相互作用机制[J]. 冰川冻土, 2022, 44 (3): 1041-1052.
doi: 10.7522/j.issn.1000-0240.2022.0097 |
Wang Q, Wang X, Lei D Y, et al. The interaction mechanisms between mountain glacier evolution and glacial lake development[J]. Journal of Glaciology and Geocryology, 2022, 44 (3): 1041-1052 (in Chinese)
doi: 10.7522/j.issn.1000-0240.2022.0097 |
|
[51] | Carrivick J L, Sutherland J L, Huss M, et al. Coincident evolution of glaciers and ice-marginal proglacial lakes across the Southern Alps, New Zealand: past, present and future[J]. Global and Planetary Change, 2022, 211: 103792 |
[52] | 姚治君, 段瑞, 董晓辉, 等. 青藏高原冰湖研究进展及趋势[J]. 地理科学进展, 2010, 29 (1): 10-14. |
Yao Z J, Duan R, Dong X H, et al. The progress and trends of glacial lakes research on Qinghai-Tibet Plateau[J]. Progress in Geography, 2010, 29 (1): 10-14 (in Chinese)
doi: 10.11820/dlkxjz.2010.01.002 |
|
[53] |
郭万钦, 张震, 吴坤鹏, 等. 跃动冰川研究进展[J]. 冰川冻土, 2022, 44 (3): 954-970.
doi: 10.7522/j.issn.1000-0240.2022.0091 |
Guo W Q, Zhang Z, Wu K P, et al. A review on the advances in surge-type glacier study[J]. Jounal of Glaciology and Geocryology, 2022, 44 (3): 954-970 (in Chinese) | |
[54] |
刘时银, 姚晓军, 郭万钦, 等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报, 2015, 70 (1): 3-16.
doi: 10.11821/dlxb201501001 |
Liu S Y, Yao X J, Guo W Q, et al. The contemporary glaciers in China based on the second Chinese glacier inventory[J]. Acta Geographica Sinica, 2015, 70 (1): 3-16 (in Chinese)
doi: 10.11821/dlxb201501001 |
|
[55] | Zhang Y, Zhao J, Yao X J, et al. Inventory of glacial lake in the Southeastern Qinghai-Tibet Plateau derived from Sentinel-1 SAR image and Sentinel-2 MSI image[J]. Remote Sensing, 2023, 15 (21): 20 |
[56] | Dou X Y, Fan X M, Wang X, et al. Spatio-temporal evolution of glacial lakes in the Tibetan Plateau over the past 30 years[J]. Remote Sensing, 2023, 15 (2): 20 |
[57] | Zhang M M, Chen F, Guo H D, et al. Glacial lake area changes in High Mountain Asia during 1990-2020 using satellite remote sensing[J]. Research, 2022: 9821275 |
[58] | 王欣.中国西部冰湖编目数据(2015)[DB]. 国家青藏高原数据中心, 2018, DOI: 10.11922/sciencedb.615. |
Wang X.Inventory data of glacial lake in west China (2015)[DB]. National Tibetan Plateau / Third Pole Environment Data Center, 2018. DOI: 10.11922/sciencedb.615 (in Chinese) | |
[59] | Carrivick J L, Tweed F S. Proglacial lakes: character, behaviour and geological importance[J]. Quaternary Science Reviews, 2013, 78: 34-52 |
[60] | 张议芳, 刘阳, 苏鹏程, 等. 西藏地区冰崩灾害研究进展[J]. 中国地质灾害与防治学报, 2023, 34 (2): 132-145. |
Zhang Y F, Liu Y, Su P C, et al. Advances in the study of glacier avalanches in Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2023, 34 (2): 132-145 (in Chinese) | |
[61] | 柴波, 陶阳阳, 杜娟, 等. 西藏聂拉木县嘉龙湖冰湖溃决型泥石流危险性评价[J]. 地球科学, 2020, 45 (12): 4630-4639. |
Chai B, Tao Y Y, Du J, et al. Hazard assessment of debris flow triggered by outburst of Jialong Glacial Lake in Nyalam County, Tibet[J]. Earth Science, 2020, 45 (12): 4630-4639 (in Chinese) | |
[62] |
孙美平, 刘时银, 姚晓军, 等. 2013年西藏嘉黎县“7?5”冰湖溃决洪水成因及潜在危害[J]. 冰川冻土, 2014, 36 (1): 158-165.
doi: 10.7522/j.issn.1000-0240.2014.0020 |
Sun M P, Liu S Y, Yao X J, et al. The cause and potential hazard of glacial lake outburst flood occured on July 5, 2013 in Jiali County Tibet[J]. Jounal of Glaciology and Geocryology, 2014, 36 (1): 158-165 (in Chinese) | |
[63] | 黄茂桓. 藏东南米堆冰川发现凹陷现象[J]. 冰川冻土, 1993 (3): 511-512. |
Huang M H. Depression discovered in Midui Glacier, Southeast Tibet[J]. Jounal of Glaciology and Geocryology, 1993 (3): 511-512 (in Chinese) | |
[64] | Thompson S S, Kulessa B, Benn D I, et al. Anatomy of terminal moraine segments and implied lake stability on Ngozumpa Glacier, Nepal, from electrical resistivity tomography (ERT)[J]. Scientific Reports, 2017, 7: 12 |
[65] |
陈方, 王金晓, 张美美, 等. 基于历史边界的喜马拉雅山脉冰湖提取方法对比研究[J]. 冰川冻土, 2023, 45 (4): 1413-1427.
doi: 10.7522/j.issn.1000-0240.2023.0108 |
Chen F, Wang J X, Zhang M M, et al. Comparative study on the extraction methods of Himalavan glacial lakes based on historica boundaries[J]. Jounal of Glaciology and Geocryology, 2023, 45 (4): 1413-1427 (in Chinese) | |
[66] | 陈晓清, 崔鹏, 杨忠, 等. 近15 a喜玛拉雅山中段波曲流域冰川和冰湖变化[J]. 冰川冻土, 2005, 27 (6): 793-800. |
Chen X Q, Cui P, Yang Z, et al. Change in glaciers and glacier lakes in Boiqu River basin, Middle Hmalayas during last 15 years[J]. Jounal of Glaciology and Geocryology, 2005, 27 (6): 793-800 (in Chinese) | |
[67] |
高晓, 吴立宗, Mool P K. 基于遥感和GIS的喜马拉雅山科西河流域冰湖变化特征分析[J]. 冰川冻土, 2015, 37 (3): 557-569.
doi: 10.7522/j.issn.1000-0240.2015.0063 |
Gao X, Wu L Z, Mool P K. Analysis of the characteristics of glacial lake variation in the Koshi River basin, the Himalayas based on RS and GIS[J]. Journal of Glaciology and Geocryology, 2015, 37 (3) : 557-569 (in Chinese) | |
[68] |
曹学诚, 刘周周, 李维胜. 尼泊尔4?25地震震前冰湖制图与潜在危险性分析[J]. 冰川冻土, 2016, 38 (3): 573-583.
doi: 10.7522/j.issn.1000-0240.2016.0064 |
Cao X C, Liu Z Z, Li W S. Glacial lake mapping and analysis of the potentially dangerous glacial lakes before Nepal 4?25 Earth-quake in 2015[J]. Journal of Glaciology and Geocryology, 2016, 38 (3): 573-583 (in Chinese) | |
[69] | 程尊兰, 时亮, 刘建康, 等. 帕隆藏布江上游冰湖分布及其变化[J]. 水土保持通报, 2012, 32 (5): 8-12. |
Cheng Z L, Shi L, Liu J K, et al. Distribution and change of glacier lakes in the upper Palongzangbu River[J]. Bulletin of Soil and Water Conservation, 2012, 32 (5): 8-12 (in Chinese) | |
[70] | 王旭, 周爱国, 孙自永, 等. 1972—2009年念青唐古拉山西段冰湖分布及其变化特征[J]. 地质科技情报, 2012, 31 (4): 91-97. |
Wang X, Zhou A G, Sun Z Y, et al. Distribution and changes characteristics of glacial lakes in Western Nyaingentanglha range during 1972-2009[J]. Bulletin of Geological Science and Technology, 2012, 31 (4): 91-97 (in Chinese) | |
[71] | Wang X, Liu S Y, Guo W Q, et al. Using remote sensing data to quantify changes in glacial lakes in the Chinese Himalaya[J]. Mountain Research and Development, 2012, 32 (2): 203-212 |
[72] | Khadka N, Zhang G Q, Thakuri S. Glacial lakes in the Nepal Himalaya: inventory and decadal dynamics (1977-2017)[J]. Remote Sensing, 2018, 10 (12): 19 |
[73] | Duan H Y, Yao X J, Zhang Y, et al. Lake volume and potential hazards of moraine-dammed glacial lakes: a casestudy of Bienong Co, southeastern Tibetan Plateau[J]. Cryosphere, 2023, 17 (2): 591-616 |
[74] | Wang W C, Yao T D, Gao Y, et al. A first-order method to identify potentially dangerous glacial lakes in a region of the Southeastern Tibetan Plateau[J]. Mountain Research and Development, 2011, 31 (2): 122-130 |
[75] | Veh G, Korup O, Roessner S, et al. Detecting Himalayan glacial lake outburst floods from Landsat time series[J]. Remote Sensing of Environment, 2018, 207: 84-97 |
[76] | Zhang G, Carrivick J L, Emmer A, et al. Characteristics and changes of glacial lakes and outburst floods[J]. Nature Reviews Earth & Environment, 2024, 5 (6): 447-462 |
[77] | Carrivick J L, Tweed F S, Sutherland J L, et al. Toward numerical modeling of interactions between Ice-Marginal proglacial lakes and glaciers[J]. Frontiers in Earth Science, 2020, 8: 577068 |
[78] | Watson C S, Kargel J S, Shugar D H, et al. Mass loss from calving in Himalayan Proglacial Lakes[J]. Frontiers in Earth Science, 2020, 7: 342 |
[79] | Peng M E, Wang X, Zhang G Q, et al. Cascading hazards from two recent glacial lake outburst floods in the Nyainqentanglha range, Tibetan Plateau[J]. Journal of Hydrology, 2023, 626: 18 |
[80] | He Z, Yang W, Wang Y J, et al. Dynamic changes of a thick debris-covered glacier in the Southeastern Tibetan Plateau[J]. Remote Sensing, 2023, 15 (2): 18 |
[81] | Pandey P, Ali S N, Ray P K C. Glacier-glacial lake interactions and glacial lake development in the Central Himalaya, India (1994-2017)[J]. Journal of Earth Science, 2021, 32 (6): 1563-1574 |
[82] | 陈晓清, 崔鹏, 杨忠, 等. 喜马拉雅山中段波曲流域近期冰湖溃决危险性分析与评估[J]. 冰川冻土, 2007, 29 (4): 509-516. |
Chen X Q, Cui P, Yang Z, et al. Risk assessment of glacial ake outburst in the Poiqu River basin of Tibet Autonomous region[J]. Journal of Glaciology and Geocryology, 2007, 29 (4): 509-516 (in Chinese) | |
[83] | Nie Y, Sheng Y W, Liu Q, et al. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015[J]. Remote Sensing of Environment, 2017, 189: 1-13 |
[84] | Song C Q, Sheng Y W, Wang J D, et al. Heterogeneous glacial lake changes and links of lake expansions to the rapid thinning of adjacent glacier termini in the Himalayas[J]. Geomorphology, 2017, 280: 30-38 |
[85] | He G L, Wei J F, Wang X. Thickness estimation of the Longbasaba Glacier: methods and application[J]. Sciences in Cold and Arid Regions, 2020, 12 (6): 477-490 |
[86] | Zhang T G, Wang W C, An B S, et al. Ice thickness and morphological analysis reveal the future glacial lake distribution and formation probability in the Tibetan Plateau and its surroundings[J]. Global and Planetary Change, 2022, 216: 16 |
[87] | Majeed U, Rashid I, Najar N A, et al. Spatiotemporal dynamics and geodetic mass changes of glaciers with varying debris cover in the Pangong region of Trans-Himalayan Ladakh, India between 1990 and 2019[J]. Frontiers in Earth Science, 2021, 9: 16 |
[88] | Fujita K, Sakai A. Modelling runoff from a Himalayan debris-covered glacier[J]. Hydrology and Earth System Sciences, 2014, 18 (7): 2679-2694 |
[89] | Sakai A, Nishimura K, Kadota T, et al. Onset of calving at supraglacial lakes on debris-covered glaciers of the Nepal Himalaya[J]. Journal of Glaciology, 2009, 55 (193): 909-917 |
[90] | Ju J T, Zhu L P, Wang J B, et al. Estimating the contribution of glacial meltwater to Ranwu Lake, a proglacial lake in SE Tibet, using observation data and stable isotopic analyses[J]. Environmental Earth Sciences, 2017, 76 (5): 13 |
[91] | 李慧斌, 陈华勇, Neupane R, 等. 冰滑坡涌浪下冰碛坝溃决机理试验研究[J]. 水土保持通报, 2021, 41 (2): 25-34, 42. |
Li H B, Chen H Y, Neupane R, et al. Experimental study on mechanism of Moraine Dam failure due to surge wave of glacier avalanches[J]. Bulletin of Soil and Water Conservation, 2021, 41 (2): 25-34, 42 (in Chinese) | |
[92] | Liu Q, Mayer C, Wang X, et al. Interannual flow dynamics driven by frontal retreat of a lake-terminating glacier in the Chinese Central Himalaya[J]. Earth and Planetary Science Letters, 2020, 546: 116450 |
[93] | Wang W C, Xiang Y, Gao Y, et al. Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas[J]. Hydrological Processes, 2015, 29 (6): 859-874 |
[94] | Wang X, Chai K G, Liu S Y, et al. Changes of glaciers and glacial lakes implying corridor-barrier effects and climate change in the Hengduan Shan, southeastern Tibetan Plateau[J]. Journal of Glaciology, 2017, 63 (239): 535-542 |
[95] | Xiang Y, Yao T D, Gao Y, et al. Retreat rates of debris-covered and debris-free glaciers in the Koshi River basin, Central Himalayas, from 1975 to 2010[J]. Environmental Earth Sciences, 2018, 77 (7): 13 |
[96] | Rashid I, Majeed U. Retreat and geodetic mass changes of Zemu Glacier, Sikkim Himalaya, India, between 1931 and 2018[J]. Regional Environmental Change, 2020, 20 (4): 13 |
[97] | Zhong Y, Liu Q, Sapkota L, et al. Rapid glacier shrinkage and glacial lake expansion of a China-Nepal transboundary catchment in the Central Himalayas, between 1964 and 2020[J]. Remote Sensing, 2021, 13 (18): 3614 |
[98] | Che Y J, Wang S J, Wei Y Q, et al. Rapid changes to glaciers increased the outburst flood risk in Guangxieco proglacial lake in the Kangri Karpo Mountains, Southeast Qinghai-Tibetan Plateau[J]. Natural Hazards, 2021, DOI: 10.1007/s11069-021-05029-522 |
[99] | Truffer M, Motyka R J. Where glaciers meet water: subaqueous melt and its relevance to glaciers in various settings[J]. Reviews of Geophysics, 2016, 54 (1): 220-239 |
[100] | Kirkbride M P, Warren C R. Calving processes at a grounded ice cliff[J]. Annals of Glaciology, 1997, 24: 116-121 |
[101] | Benn D I, Wiseman S, Hands K A. Growth and drainage of supraglacial lakes on debris-mantled Ngozumpa Glacier, Khumbu Himal, Nepal[J]. Journal of Glaciology, 2001, 47 (159): 626-638 |
[102] | R?hl K. Characteristics and evolution of supraglacial ponds on debris-covered Tasman Glacier, New Zealand[J]. Journal of Glaciology, 2008, 54 (188): 867-880 |
[103] | Warren C R, Kirkbride M P. Temperature and bathymetry of ice-contact lakes in Mount Cook National Park, New Zealand[J]. New Zealand Journal of Geology and Geophysics, 1998, 41: 133-143 |
[104] | Eijpen K, R Warren C, Benn D I. Subaqueous melt rates at calving termini: a laboratory approach[J]. Annals of Glaciology, 2017, 36: 179-183 |
[105] | Huppert H E. The physical processes involved in the melting of icebergs (invited paper)[J]. Annals of Glaciology, 1980, 1: 97-101 |
[106] | Livingstone S J, Utting D J, Ruffell A, et al. Discovery of relict subglacial lakes and their geometry and mechanism of drainage[J]. Nature Communications, 2016, 7 (1): ncomms11767 |
[107] | Stokes C R, Clark C D, Storrar R. Major changes in ice stream dynamics during deglaciation of the north-western margin of the Laurentide Ice Sheet[J]. Quaternary Science Reviews, 2009, 28 (7): 721-738 |
[108] | Funk M, Nishimura D, Sugiyama S, et al. Acceleration and flotation of a glacier terminus during formation of a proglacial lake in Rhonegletscher, Switzerland[J]. Journal of Glaciology, 2017, 59 (215): 559-570 |
[109] | Austermann J, Wickert A D, Pico T, et al. Glacial isostatic adjustment shapes proglacial lakes over glacial cycles[J]. Geophysical Research Letters, 2022, 49 (24): e2022GL101191 |
[110] | Nick F M, Oerlemans J. Dynamics of tidewater glaciers: comparison of three models[J]. Journal of Glaciology, 2017, 52 (177): 183-190 |
[111] | Scoffield A C, Rowan A V, Quincey D J, et al. Sub-regional variability in the influence of ice-contact lakes on Himalayan glaciers[J]. Journal of Glaciology, 2024. DOI: 10.1017/jog.2024.91-11 |
[112] | Pronk J B, Bolch T, King O, et al. Contrasting surface velocities between lake- and land-terminating glaciers in the Himalayan region[J]. The Cryosphere, 2021, 15 (12): 5577-5599 |
[113] | Salerno F, Guyennon N, Yang K, et al. Local cooling and drying induced by Himalayan glaciers under global warming[J]. Nature Geoscience, 2023, 16 (12): 1120-1127 |
[114] | Richards J, Moore R D, Forrest A L. Late-summer thermal regime of a small proglacial lake[J]. Hydrological Processes, 2011, 26 (18): 2687-2695 |
[115] | Bird L A, Moyer A N, Moore R D, et al. Hydrology and thermal regime of an ice-contact proglacial lake: implications for stream temperature and lake evaporation[J]. Hydrological Processes, 2022, 36 (4): e14566 |
[116] | Lhakpa D, Qiu Y B, Lhak P, et al. Long-term records of glacier evolution and associated proglacial lakes on the Tibetan Plateau (1976-2020)[J]. Big Earth Data, 2022, 6 (4): 435-452 |
[117] | Utting D J, Atkinson N. Proglacial lakes and the retreat pattern of the southwest Laurentide Ice Sheet across Alberta, Canada[J]. Quaternary Science Reviews, 2019, 225: 106034 |
[118] | Sutherland J L, Carrivick J L, Gandy N, et al. Proglacial lakes control glacier geometry and behavior during recession[J]. Geophysical Research Letters, 2020, 47 (19): e2020GL088865 |
[119] | Wang X, Liu Q H, Liu S Y, et al. Heterogeneity of glacial lake expansion and its contrasting signals with climate change in Tarim Basin, Central Asia[J]. Environmental Earth Sciences, 2016, 75 (8): 11 |
[120] | King O, Bhattacharya A, Bhambri R, et al. Glacial lakes exacerbate Himalayan glacier mass loss[J]. Scientific Reports, 2019, 9 (1): 18145 |
[121] | Maurer J M, Schaefer J M, Rupper S, et al. Acceleration of ice loss across the Himalayas over the past 40 years[J]. Science Advances, 2019, 5 (6): eaav7266 |
[122] | Zhang G, Bolch T, Yao T, et al. Underestimated mass loss from lake-terminating glaciers in the greater Himalaya[J]. Nature Geoscience, 2023. DOI: 10.1038/s41561-023-01150-1 |
[123] | Wang S, Yang Y, Che Y. Global snow-and ice-related disaster risk: a review[J]. Natural Hazards Review, 2022, 23 (4): 03122002 |
[124] | Compagno L, Huss M, Zekollari H, et al. Future growth and decline of High Mountain Asia’s ice-dammed lakes and associated risk[J]. Communications Earth & Environment, 2022, 3 (1): 191 |
[125] | Li D, Shangguan D, Wang X, et al. Expansion and hazard risk assessment of glacial lake Jialong Co in the Central Himalayas by using an unmanned surface vessel and remote sensing[J]. Science of the Total Environment, 2021, 784: 147249 |
[126] | Wang W C, Yao T D, Yang W, et al. Methods for assessing regional glacial lake variation and hazard in the Southeastern Tibetan Plateau: a case study from the Boshula Mountain range, China[J]. Environmental Earth Sciences, 2012, 67 (5): 1441-1450 |
[127] | Wang S, Che Y, Xinggang M. Integrated risk assessment of glacier lake outburst flood (GLOF) disaster over the Qinghai-Tibetan Plateau (QTP)[J]. Landslides, 2020, 17 (12): 2849-2863 |
[128] |
任思宇, 姜亮, 翟胜强, 等. 基于动力过程的冰湖溃决洪水侵蚀演化特征研究[J]. 冰川冻土, 2023, 45 (4): 1300-1313.
doi: 10.7522/j.issn.1000-0240.2023.0100 |
Ren S Y, Jiang L, Zhai S Q, et al. Study on erosion evolution characteristics of glacial lake break flood based on dynamic process[J]. Journal of Glaciology and Geocryology, 2023, 45 (4): 1300-1313 (in Chinese)
doi: 10.7522/j.issn.1000-0240.2023.0100 |
|
[129] | Zheng G, Mergili M, Emmer A, et al. The 2020 glacial lake outburst flood at Jinwuco, Tibet: causes, impacts, and implications for hazard and risk assessment[J]. The Cryosphere, 2021, 15 (7): 3159-3180 |
[130] | Bazai N A, Cui P, Carling P A, et al. Increasing glacial lake outburst flood hazard in response to surge glaciers in the Karakoram[J]. Earth-Science Reviews, 2021, 212: 21 |
[131] | Li J, Gu Y Y, Wu L X, et al. Changes in glaciers and glacial lakes in the Bosula Mountain range, Southeast Tibet, over the past two decades[J]. Remote Sensing, 2022, 14 (15): 17 |
[132] | 陈兰, 范宣梅, 熊俊麟, 等. 藏东南多依弄巴流域冰湖溃决危险性评价[J]. 地质科技通报, 2023, 42 (2): 258-266. |
Chen L, Fan X M, Xiong J L, et al. Hazard assessment of glacial lake outbursts in the Doyinongba Basin, southeastern Tibetan Plateau[J]. Bulletin of Geological Science and Technology, 2023, 42 (2): 258-266 (in Chinese) | |
[133] | Cooper R J, Hodgkins R, L Wadham J, et al. Enhancement of glacial solute fluxes in the proglacial zone of a polythermal glacier[J]. Journal of Glaciology, 2017, 47 (158): 378-386 |
[134] | Zhu T T, Wang X P, Lin H, et al. Accumulation of pollutants in proglacial lake sediments: impacts of glacial meltwater and anthropogenic activities[J]. Environmental Science & Technology, 2020, 54 (13): 7901-7910 |
[135] | Schütt B, Berking J, Frechen M, et al. Late Pleistocene lake level fluctuations of the Nam Co, Tibetan Plateau, China[J]. Zeitschrift Fur Geomorphologie, 2008, 52: 57-75 |
[136] |
Phartiyal B, Singh R, Joshi P, et al. Late-Holocene climatic record from a glacial lake in Ladakh range, Trans-Himalaya, India[J]. Holocene, 2020, 30 (7): 1029-1042
doi: 10.1177/0959683620908660 |
[137] |
Shukla T, Mehta M, Dobhal D P, et al. Late-Holocene climate response and glacial fluctuations revealed by the sediment record of the monsoon-dominated Chorabari Lake, Central Himalaya[J]. Holocene, 2020, 30 (7): 953-965
doi: 10.1177/0959683620908654 |
[138] | Huang L, Zhu L P, Wang J B, et al. Glacial activity reflected in a continuous lacustrine record since the early Holocene from the proglacial Laigu Lake on the southeastern Tibetan Plateau[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2016, 456: 37-45 |
[139] | Zhu H F, Shao X M, Zhang H, et al. Trees record changes of the temperate glaciers on the Tibetan Plateau: potential and uncertainty[J]. Global and Planetary Change, 2019, 173: 15-23 |
[140] | Roe G H, Baker M B. The response of glaciers to climatic persistence[J]. Journal of Glaciology, 2016, 62 (233): 440-450 |
[141] | Sicart J E, Hock R, Six D. Glacier melt, air temperature, and energy balance in different climates: the Bolivian Tropics, the French Alps, and northern Sweden[J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D24113 |
[142] | Zhang G, Yao T, Xie H, et al. Response of Tibetan Plateau lakes to climate change: trends, patterns, and mechanisms[J]. Earth-Science Reviews, 2020, 208: 103269 |
[143] | Furian W, Maussion F, Schneider C. Projected 21st-century glacial lake evolution in High Mountain Asia[J]. Frontiers in Earth Science, 2022, 10: 21 |
[144] | Taylor C, Robinson T R, Dunning S, et al. Glacial lake outburst floods threaten millions globally[J]. Nature Communications, 2023, 14 (1): 487 |
[145] | Sattar A, Allen S, Mergili M, et al. Modeling potential glacial lake outburst flood process chains and effects from artificial lake-level lowering at Gepang Gath Lake, Indian Himalaya[J]. Journal of Geophysical Research: Earth Surface, 2023, 128 (3): e2022JF006826 |
[1] | 丁永建, 张世强, 陈仁升, 秦甲, 赵求东, 刘俊峰, 阳勇, 何晓波, 苌亚平, 上官冬辉, 韩添丁, 吴锦奎, 李向应. 气候变化对冰冻圈水文影响研究综述[J]. 气候变化研究进展, 2025, 21(1): 1-21. |
[2] | 吴青柏, 徐晓明, 贺建桥, 姚晓军, 张中琼. 青藏高原冰冻圈变化对工程的影响[J]. 气候变化研究进展, 2025, 21(1): 22-31. |
[3] | 仕仁睿, 蒋兴文, 王遵娅. 青藏高原雨季建立进程及其环流因子分析[J]. 气候变化研究进展, 2025, 21(1): 91-101. |
[4] | 欧阳志云, 张观石, 应凌霄. 气候变化对青藏高原生态系统分布范围和生态功能的影响研究进展[J]. 气候变化研究进展, 2024, 20(6): 699-710. |
[5] | 姚檀栋, 王伟财, 杨威, 张国庆, 施建成, 邬光剑, 高晶, 车涛, 刘时银, Walter Immerzeel, 赵华标, 李生海, 朱美林, 徐柏青, 王宁练. 亚洲水塔失衡与冰雪变化[J]. 气候变化研究进展, 2024, 20(6): 689-698. |
[6] | 牛振国, 景雨航, 张东启, 张波. 气候变化背景下青藏高原湿地生态系统响应特征:回顾与展望[J]. 气候变化研究进展, 2024, 20(5): 509-518. |
[7] | 马安静, 张明礼, 周志雄, 王永斌, 王成福. 近地表水汽密度对多年冻土区地表辐射的影响研究——以北麓河地区为例[J]. 气候变化研究进展, 2024, 20(3): 304-315. |
[8] | 包文, 段安民, 游庆龙, 胡蝶. 青藏高原气候变化及其对水资源影响的研究进展[J]. 气候变化研究进展, 2024, 20(2): 158-169. |
[9] | 胡佳怡, 赵林, 王翀, 胡国杰, 邹德富, 幸赞品, 焦梦迪, 乔永平, 刘广岳, 杜二计. CLDAS地表温度产品在青藏高原多年冻土区的适用性评估与校正[J]. 气候变化研究进展, 2024, 20(1): 10-25. |
[10] | 栾澜, 翟盘茂. 基于多源数据的青藏高原雨季降水特征变化分析[J]. 气候变化研究进展, 2023, 19(2): 173-190. |
[11] | 马丽娟, 效存德, 康世昌. 全球主要山地气候变化特征和异同——IPCC AR6 WGI报告和SROCC综合解读[J]. 气候变化研究进展, 2022, 18(5): 605-621. |
[12] | 张歆然, 陈昊明. CMIP6模式对青藏高原东坡暖季降水的模拟评估[J]. 气候变化研究进展, 2022, 18(2): 129-141. |
[13] | 祁莉, 杨睿婷. 全球变暖下青藏高原东南侧常年南风强度的多模式结果比较分析[J]. 气候变化研究进展, 2021, 17(4): 430-443. |
[14] | 李林, 申红艳, 刘彩红, 校瑞香. 青海湖水位波动对气候暖湿化情景的响应及其机理研究[J]. 气候变化研究进展, 2020, 16(5): 600-608. |
[15] | 吴芳营,游庆龙,谢文欣,张玲. 全球变暖1.5℃和2℃阈值时青藏高原气温的变化特征[J]. 气候变化研究进展, 2019, 15(2): 130-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|