气候变化研究进展 ›› 2023, Vol. 19 ›› Issue (2): 173-190.doi: 10.12006/j.issn.1673-1719.2022.046
收稿日期:
2022-03-14
修回日期:
2022-04-27
出版日期:
2023-03-30
发布日期:
2022-12-09
通讯作者:
翟盘茂,男,研究员,作者简介:
栾澜,女,硕士研究生
基金资助:
Received:
2022-03-14
Revised:
2022-04-27
Online:
2023-03-30
Published:
2022-12-09
摘要:
高原地区地形复杂,气象测站的长期实地观测数据有限,且主要集中在东部区域。虽然近年来各种降水分析数据集得到了发展,但这些数据集的代表性及数据之间的一致性等问题制约了对高原地区的降水特征变化的认识。基于国家气象信息中心提供的青藏高原地区89个地面气象站降水数据及西部9个加密自动站数据,综合分析了多套逐日格点分析数据集(APHRO、CN05.1、CMFD、TRMM及GPCP)反映的雨季降水量、降水日数、极端降水量及极端降水日数与实际观测之间的一致性与差异,并深入研究了其区域变化特征。结果表明:(1)CN05.1及CMFD数据与高原实地观测的数据在区域平均降水量变化,降水量和极端降水量的空间分布格局及其变化趋势分布等方面均具有较好的一致性,但在降水日数与极端降水日数方面均存在一定差异;APHRO降水数据集揭示的高原雨季降水量和降水日数变化趋势偏小,极端降水量与日数的变化趋势与实地观测的趋势相反;GPCP与TRMM降水分析数据序列较短,反映的高原地区极端降水变化趋势与观测较一致,但高原总体降水量变化与观测结果反向,降水日数变化则被明显高估。(2)以实地降水观测为基准,考虑其他多套分析数据集的一致性特点,综合评估得到:对于高原整体,1961—2019年雨季降水量、极端降水量、极端降水日数总体上呈现增加的趋势;但对降水日数,由于实地观测得到的变化与其他分析数据结果之间差异较大,对其变化的认识仍存在不确定性。从不同气候分区上看,高原干旱区与半干旱区的降水量、降水日数、极端降水量、极端降水日数总体增加;对于半湿润区,极端降水日数微弱增加,降水量与极端降水量明显增加,但在其东部和中部地区微弱减少,而降水日数由于在其东部和南部显著减少引起半湿润区总体上呈现出减少趋势。
栾澜, 翟盘茂. 基于多源数据的青藏高原雨季降水特征变化分析[J]. 气候变化研究进展, 2023, 19(2): 173-190.
LUAN Lan, ZHAI Pan-Mao. Changes in rainy season precipitation properties over the Qinghai-Tibet Plateau based on multi-source datasets[J]. Climate Change Research, 2023, 19(2): 173-190.
图1 青藏高原站点分布、降水量空间分布及区域划分 注:蓝色虚线为降水量等值线,单位为mm;I、II、III区分别为干旱区、半干旱区和半湿润区,以蓝色实线划分;数字1~9分别对应表1中西部各个自动站。
Fig. 1 Station distribution, mean annual precipitation total and climate division for the Qinghai-Tibet Plateau. (Sub-regions I, II, and III stand for arid, semi-arid, and semi-humid climate regions)
图2 多源降水数据雨季区域平均降水量距平(a)及降水日数距平(b)的时间序列 注:分析数据集给出的均为插值到地面测站位置后的平均值,STN为站点观测数据。
Fig. 2 Time series of regional precipitation (a) and rain days (b) anomalies in rainy season.(APHRO, CN05.1, CMFD, TRMM and GPCP data are all interpolated to the station locations)
![]() |
表4 各数据集降水量、降水日数距平的变化趋势及格点数据与其对应时间段的站点数据变化趋势的比值
Table 4 The trends of precipitation and rain days anomalies, and the ratio of the grid data to the in-situ observations in the corresponding time period
![]() |
图3 基于站点观测数据的多源格点数据降水量及降水日数的泰勒图
Fig. 3 Taylor diagrams comparing the APHRO, CN05.1, CMFD, TRMM and GPCP datasets with the in-situ observations of precipitation and rain days
图4 多源格点数据与站点数据平均降水量及降水日数的变化趋势的比值分布
Fig. 4 The ratio of the trends of precipitation (left column) and rain days (right column) between the APHRO, CN05.1, CMFD, TRMM and GPCP datasets and the in-situ observations
![]() |
表5 各数据集极端降水量、极端降水日数的变化趋势及格点数据与其对应时间段的站点数据变化趋势的比值
Table 5 The trends in R95ptot and R95pday, and the ratio of the grid data to the in-situ observations in the corresponding time period
![]() |
图5 多源降水数据雨季区域极端降水量距平(a)及极端降水日数距平(b)的时间序列 注:分析数据集给出的均为插值到地面测站位置后的平均值。
Fig. 5 Time series of regional R95ptot (a) and R95pday (b) anomalies in rainy season. (APHRO, CN05.1, CMFD, TRMM and GPCP data are all interpolated to the station locations)
图6 基于站点观测数据的多源格点数据极端降水量及极端降水日数的泰勒图
Fig. 6 Taylor diagrams comparing the APHRO, CN05.1, CMFD, TRMM and GPCP datasets with the in-situ observations of R95ptot and R95pday
图7 多源格点数据与站点数据平均极端降水量及极端降水日数的变化趋势的比值分布
Fig. 7 The ratio of the trend of R95ptot (left column) and R95pday (right column) between the APHRO, CN05.1, CMFD, TRMM and GPCP datasets and the in-situ observations
图8 雨季降水量(a)、降水日数(b)多源格点数据分别与站点观测数据的相关系数与变化趋势之比的散点图 注:图中黑色矩形是相关系数在0.52~1.00(显著性水平达到0.1)且变化趋势之比在0.5~1.5的区域,紫色矩形是相关系数与变化趋势之比均为正的区域。
Fig. 8 Scatter plots of correlation coefficients and the ratios of the trend of precipitation (a) and raindays (b) between APHRO, CN05.1, CMFD datasets and the in-situ observations in the rainy season
![]() |
表6 4套数据高原整体及不同子区域的降水量、降水日数、极端降水量及极端降水日数距平的变化趋势
Table 6 The trends of precipitation, rain days, R95ptot and R95pday anomalies in the whole plateau and different sub-regions of the four datasets
![]() |
图10 不同子区域平均降水量、降水日数距平的时间序列 注:分析数据集给出的均为高原3个子区域全部覆盖范围内格点数据平均值。
Fig. 10 Time series of precipitation and rain days anomalies in different sub-regions.(APHRO, CN05.1, CMFD datasets are all covered the entire sub-regions)
图11 不同区域平均极端降水量、极端降水日数距平的时间序列 注:分析数据集给出的均为高原3个子区域全部覆盖范围内格点数据平均值。
Fig. 11 Time series of R95ptot and R95pday anomalies in different sub-regions. (APHRO, CN05.1, CMFD data all cover the entire sub-region)
图12 APHRO、CN05.1、CMFD及站点观测数据高原雨季降水量、降水日数、极端降水量、极端降水日数的变化趋势 注:黑色线为不同气候区分界线,圆圈里颜色为对应时间段站点观测数据的变化趋势,叉号表示趋势通过0.1的显著性检验。
Fig. 12 Trends in (a1, b1, c1, d1) precipitation, (a2, b2, c2, d2) rain days, (a3, b3, c3, d3) R95ptot, (a4, b4, c4, d4) R95pday in rainy season for four datasets. (The black lines are the boundaries of different climate zones; The base maps are the trends of grid datasets, and the dots are the trends of the in-situ observations in the corresponding time period, cross indicates trends significant at 90% confidence level)
[1] | Joshi M K, Pandey A C. Trend and spectral analysis of rainfall over India during 1901-2000[J]. Journal of Geophysical Research: Atmospheres, 2011, 116: D06104 |
[2] | 崔鹏, 苏凤环, 邹强, 等. 青藏高原山地灾害和气象灾害风险评估与减灾对策[J]. 科学通报, 2015, 60 (32): 3067-3077. |
Cui P, Su F H, Zou Q, et al. Risk assessment and disaster reduction strategies for mountainous and meteorological hazards in Tibetan Plateau[J]. Science Bulletin, 2015, 60 (32): 3067-3077 (in Chinese) | |
[3] | 徐祥德, 董李丽, 赵阳, 等. 青藏高原“亚洲水塔”效应和大气水分循环特征[J]. 科学通报, 2019, 64 (27): 2830-2841. |
Xu X D, Dong L L, Zhao Y, et al. Effect of the Asian Water Tower over the Qinghai-Tibet Plateau and the characteristics of atmospheric water circulation[J]. Science Bulletin, 2019, 64 (27): 2830-2841 (in Chinese) | |
[4] |
Trenberth K E. Changes in precipitation with climate change[J]. Climate Research, 2010, 47 (1-2): 123-138
doi: 10.3354/cr00953 URL |
[5] | You Q, Kang S, Aguilar E, et al. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961-2005[J]. Journal of Geophysical Research: Atmospheres, 2008, 113: D07101 |
[6] | 周顺武, 王传辉, 杜军, 等. 青藏高原汛期降水的时空分布特征[J]. 气候与环境研究, 2011, 16 (6): 723-732. |
Zhou S W, Wang C H, Du J, et al. Characteristics of spatial and temporal distribution of precipitation in flood season over the Tibetan Plateau[J]. Climatic and Environment Research, 2011, 16 (6): 723-732 (in Chinese) | |
[7] |
齐文文, 张百平, 庞宇, 等. 基于TRMM数据的青藏高原降水的空间和季节分布特征[J]. 地理科学, 2013, 33 (8): 999-1005.
doi: 10.13249/j.cnki.sgs.2013.08.999 |
Qi W W, Zhang B P, Pang Y, et al. TRMM-data-based spatial and seasonal patterns of precipitation in the Qinghai-Tibet Plateau[J]. Scientia Geographica Sinica, 2013, 33 (8): 999-1005 (in Chinese) | |
[8] | Wang C P, Huang M T, Zhai P M. Change in drought conditions and its impacts on vegetation growth over the Tibetan Plateau[J]. Advances in Climate Change Research, 2021, 12 (3): 9 |
[9] | 吴国雄, 段安民, 张雪芹, 等. 青藏高原极端天气气候变化及其环境效应[J]. 自然杂志, 2013 (3): 167-171. |
Wu G X, Duan A M, Zhang X Q, et al. Extreme weather and climate changes and its environmental effects over the Tibetan Plateau[J]. Chinese Journal of Nature, 2013 (3): 167-171 | |
[10] |
Ge G B T, Shi Z J, Yang X H, et al. Analysis of precipitation extremes in the Qinghai-Tibetan Plateau, China: spatio-temporal characteristics and topography effects[J]. Atmosphere, 2017, 8 (7): 127
doi: 10.3390/atmos8070127 URL |
[11] | You Q L, Kang S C, Aguilar E, et al. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961-2005[J]. Journal of Geophysical Research: Atmospheres, 2008, 113 (D7) |
[12] |
You Q L, Cai Z Y, Pepin N, et al. Warming amplification over the Arctic Pole and Third Pole: trends, mechanisms and consequences[J]. Earth-Science Reviews, 2021, 217: 103625
doi: 10.1016/j.earscirev.2021.103625 URL |
[13] |
Yang J X, Huang M T, Zhai P M. Performance of the CRA-40/Land, CMFD, and ERA-Interim datasets in reflecting changes in surface air temperature over the Tibetan Plateau[J]. Journal of Meteorological Research, 2021, 35 (4): 663
doi: 10.1007/s13351-021-0196-x |
[14] |
Ding X, Lai X, Fan G Z, et al. Analysis on the applicability of reanalysis soil temperature and moisture datasets over Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37 (3): 626-641
doi: 10.7522/j.issn.1000-0534.2017.00060 |
[15] |
Zhao Y, Zhou T J. Asian water tower evinced in total column water vapor: a comparison among multiple satellite and reanalysis datasets[J]. Climate Dynamics, 2020, 54 (1): 231-245
doi: 10.1007/s00382-019-04999-4 |
[16] | Wang A, Zeng X. Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau[J]. Journal of Geophysics, 2012, 117 |
[17] |
You Q, Min J, Zhang W, et al. Comparison of multiple datasets with gridded precipitation observations over the Tibetan Plateau[J]. Climate Dynamics, 2015, 45 (3-4): 791-806
doi: 10.1007/s00382-014-2310-6 URL |
[18] | 吴佳, 高学杰. 一套格点化的中国区域逐日观测数据及与其它数据的对比[J]. 地球物理学报, 2013, 56 (4): 1102-1111. |
Wu J, Gao X J. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013, 56 (4): 1102-1111 (in Chinese) | |
[19] |
Xu Y, Gao X J, Shen Y, et al. A daily temperature dataset over China and its application in validating a RCM simulation[J]. Advances in Atmospheric Science, 2009, 26 (4): 763-772
doi: 10.1007/s00376-009-9029-z URL |
[20] | Yang K, He J. China meteorological forcing dataset (1979-2018)[R]. National Tibetan Plateau Data Center, 2019 |
[21] | 任福民, 翟盘茂. 1951—1990年中国极端气温变化分析[J]. 大气科学, 1998, 22 (2): 217-227. |
Ren F M, Zhai P M. Study on changes of China’s extreme temperatures during 1951-1990[J]. Atmospheric Sciences, 1998, 22 (2): 217-227 (in Chinese) | |
[22] | 罗布坚参, 翟盘茂, 假拉, 等. 西藏高原测站降水与TRMM估测降水一致性评估[J]. 气象, 2015, 41 (9): 1119-1125. |
Luo B J C, Zhai P M, Jia L, et al. Consistency evaluation for observation and TRMM precipitation estimation in Tibetan Plateau[J]. Meteorological Monthly, 2015, 41 (9): 1119-1125 | |
[23] | 任芝花, 赵平, 张强, 等. 适用于全国自动站小时降水资料的质量控制方法[J]. 气象, 2010, 36 (7): 123-132. |
Ren Z H, Zhao P, Zhang Q, et al. Quality control procedures for hourly precipitation data from automatic weather stations in China[J]. Meteorological Monthly, 2010, 36 (7): 123-132 | |
[24] |
Yatagai A, Kamiguchi K, Arakawa O, et al. APHRODITE: constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges[J]. Bulletin of The American Meteorological Society, 2012, 93 (9): 1401-1415
doi: 10.1175/BAMS-D-11-00122.1 URL |
[25] |
Huffman G J. Estimates of Root-Mean-Square random error for finite samples of estimated precipitation[J]. Journal of Applied Meteorology, 1997, 36 (9): 1191-1201
doi: 10.1175/1520-0450(1997)036<1191:EORMSR>2.0.CO;2 URL |
[26] | Huffman G J, Adler R F, Morrissey M, et al. Global precipitation at one-degree daily resolution from multisatellite observations[J]. Journal of Hydrometeorology, 2001 (2): 36-50 |
[27] | 杨昭明, 张调风. 1961—2017年青藏高原东北部雨季降水量变化及其贡献度分析[J]. 干旱区研究, 2021, 38 (1): 22-28. |
Yang Z M, Zhang T F. Analysis of precipitation change and its contribution in the rainy season in the northeast Qinghai-Tibet Plateau from 1961 to 2017[J]. Arid Zone Research, 2021, 38 (1): 22-28 (in Chinese) | |
[28] |
Zhai P, Zhang X, Wan H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China[J]. Journal of Climate, 2005, 18 (7): 1096-1108
doi: 10.1175/JCLI-3318.1 URL |
[29] |
Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research Atmospheres, 2001, 106 (D7): 7183-7192
doi: 10.1029/2000JD900719 URL |
[30] | Kendall M. Rank correlation methods (4th edition)[M]. London: Charles Griffin, 1975: 202 |
[31] | Mann H B. Nonparametric tests against trend[J]. Econometrica: Journal of The Econometric Society, 1945: 245-259 |
[32] | 中国科学院《中国自然地理》编辑委员会. 中国自然地理: 总论[M]. 北京: 科学出版社, 1985. |
ECCPG (Editorial Committee of China Physical Geography, CAS). Physical geography of China: climatology[M]. Beijing: Science Press, 1985 (in Chinese) | |
[33] |
许建伟, 高艳红, 彭保发, 等. 1979—2016年青藏高原降水的变化特征及成因分析[J]. 高原气象, 2020, 39 (2): 234-244.
doi: 10.7522/j.issn.1000-0534.2019.00029 |
Xu J W, Gao Y H, Peng B F, et al. Change characteristics of precipitation and its cause during 1979-2016 over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2020, 39 (2): 234-244 (in Chinese) | |
[34] | 李林, 陈晓光, 王振宇, 等. 青藏高原区域气候变化及其差异性研究[J]. 气候变化研究进展, 2010, 6 (3): 181-186. |
Li L, Chen X G, Wang Z Y, et al. Climate change and its regional differences over the Tibetan Plateau[J]. Climate Change Research, 2010, 6 (3): 181-186 (in Chinese) | |
[35] |
杜军, 路红亚, 建军. 1961—2012年西藏极端降水事件的变化[J]. 自然资源学报, 2014, 29 (6): 990-1002.
doi: 10.11849/zrzyxb.2014.06.008 |
Du J, Lu H Y, Jian J. Change in extreme precipitation events over Tibet from 1961 to 2012[J]. Journal of Natural Resources, 2014, 29 (6): 990-1002 (in Chinese)
doi: 10.11849/zrzyxb.2014.06.008 |
|
[36] |
林厚博, 游庆龙, 焦洋, 等. 基于高分辨率格点观测数据的青藏高原降水时空变化特征[J]. 自然资源学报, 2015, 30 (2): 271-281.
doi: 10.11849/zrzyxb.2015.02.010 |
Lin H B, You Q L, Jiao Y, et al. Spatial and temporal characteristics of the precipitation over the Tibetan Plateau from 1961 to 2010 based on high resolution grid-observation dataset[J]. Journal of Natural Resources, 2015, 30 (2): 271-281 (in Chinese) | |
[37] | 冀钦, 杨建平, 陈虹举. 1961—2015年青藏高原降水量变化综合分析[J]. 冰川冻土, 2018, 40 (6): 1090-1099. |
Ji Q, Yang J P, Chen H J. Comprehensive analysis of the precipitation changes over the Tibetan Plateau during 1961-2015[J]. Journal of Glaciology and Geocryology, 2018, 40 (6): 1090-1099 (in Chinese) | |
[38] |
Sun J, Yao X P, Deng G W, et al. Characteristics and synoptic patterns of regional extreme rainfall over the Central and Eastern Tibetan Plateau in boreal summer[J]. Atmosphere, 2021, 12: 379
doi: 10.3390/atmos12030379 URL |
[39] |
Huffman G J, Bolvin D T, Nelkin E J, et al. The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales[J]. Journal of Hydrometeorology, 2007, 8 (1): 38-55
doi: 10.1175/JHM560.1 URL |
[1] | 吴青柏, 徐晓明, 贺建桥, 姚晓军, 张中琼. 青藏高原冰冻圈变化对工程的影响[J]. 气候变化研究进展, 2025, 21(1): 22-31. |
[2] | 仕仁睿, 蒋兴文, 王遵娅. 青藏高原雨季建立进程及其环流因子分析[J]. 气候变化研究进展, 2025, 21(1): 91-101. |
[3] | 欧阳志云, 张观石, 应凌霄. 气候变化对青藏高原生态系统分布范围和生态功能的影响研究进展[J]. 气候变化研究进展, 2024, 20(6): 699-710. |
[4] | 车彦军, 陈丽花, 吴佳康, 谷来磊, 武荣, 张东启, 丁明虎. 青藏高原冰前湖与冰川相互作用研究进展[J]. 气候变化研究进展, 2024, 20(5): 519-533. |
[5] | 牛振国, 景雨航, 张东启, 张波. 气候变化背景下青藏高原湿地生态系统响应特征:回顾与展望[J]. 气候变化研究进展, 2024, 20(5): 509-518. |
[6] | 陈婷婷, 余文君, 李艳忠, 白鹏, 星寅聪, 黄曼捷, 邵伟. 中国1960—2019年体感温度的时空变化及其风险分析[J]. 气候变化研究进展, 2024, 20(3): 265-277. |
[7] | 马安静, 张明礼, 周志雄, 王永斌, 王成福. 近地表水汽密度对多年冻土区地表辐射的影响研究——以北麓河地区为例[J]. 气候变化研究进展, 2024, 20(3): 304-315. |
[8] | 包文, 段安民, 游庆龙, 胡蝶. 青藏高原气候变化及其对水资源影响的研究进展[J]. 气候变化研究进展, 2024, 20(2): 158-169. |
[9] | 胡佳怡, 赵林, 王翀, 胡国杰, 邹德富, 幸赞品, 焦梦迪, 乔永平, 刘广岳, 杜二计. CLDAS地表温度产品在青藏高原多年冻土区的适用性评估与校正[J]. 气候变化研究进展, 2024, 20(1): 10-25. |
[10] | 武志霞, 郑霞忠, 陈一君, 黄山, 胡文莉, 段晨斐. 气候变化背景下融合社交媒体情感与多源数据的洪涝损失估算[J]. 气候变化研究进展, 2024, 20(1): 26-36. |
[11] | 战云健, 陈东辉, 廖捷, 鞠晓慧, 赵煜飞, 任国玉. 中国60城市站1901—2019年日降水数据集的构建[J]. 气候变化研究进展, 2022, 18(6): 670-682. |
[12] | 王霞, 王瑛, 林齐根, 李宁, 张馨仁, 周笑影. 气候变化背景下中国滑坡灾害人口风险评估[J]. 气候变化研究进展, 2022, 18(2): 166-176. |
[13] | 张歆然, 陈昊明. CMIP6模式对青藏高原东坡暖季降水的模拟评估[J]. 气候变化研究进展, 2022, 18(2): 129-141. |
[14] | 孙晨, 汪方, 周月华, 李兰. CWRF模式对长江流域极端降水气候事件的模拟能力评估[J]. 气候变化研究进展, 2022, 18(1): 44-57. |
[15] | 王倩之, 刘凯, 汪明. NEX-GDDP降尺度数据对中国极端降水指数模拟能力的评估[J]. 气候变化研究进展, 2022, 18(1): 31-43. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|