气候变化研究进展 ›› 2024, Vol. 20 ›› Issue (3): 304-315.doi: 10.12006/j.issn.1673-1719.2023.248
马安静1(), 张明礼1,2(
), 周志雄1, 王永斌1, 王成福1
收稿日期:
2023-11-14
修回日期:
2024-01-10
出版日期:
2024-05-30
发布日期:
2024-05-08
通讯作者:
张明礼,男,副教授,作者简介:
马安静,女,硕士研究生,基金资助:
MA An-Jing1(), ZHANG Ming-Li1,2(
), ZHOU Zhi-Xiong1, WANG Yong-Bin1, WANG Cheng-Fu1
Received:
2023-11-14
Revised:
2024-01-10
Online:
2024-05-30
Published:
2024-05-08
摘要:
气候暖湿化背景下,青藏高原地区大气水汽含量的增大通过影响地表辐射进而影响多年冻土地表能量分配及其热稳定性。以青藏高原中部北麓河地区的气象数据与活动层水热数据为基础,分析了2 m处空气相对湿度和夏季典型降雨事件对地表反照率及辐射四分量的影响。结果表明:大气水汽通过削弱太阳短波辐射,吸收地面长波辐射,增加向下长波辐射,进而降低地表反照率。大气水汽对地表辐射的影响具有明显的季节性特征,夏季大气水汽对太阳短波辐射的削弱作用最明显,并且发射的向下长波辐射较多;冬季大气水汽对太阳短波辐射的削弱作用相对较弱,发射向下长波辐射较少。在研究时段内北麓河地区夏季和冬季空气相对湿度每增加10%,太阳短波辐射日均值分别减少54.9和9.8 W/m2,向下长波辐射日均值分别增加14.8和3.9 W/m2。秋季空气中水汽含量的变化对地表反照率的影响最大,秋季空气相对湿度每减小10%,地表反照率增加0.15;春季最小,春季空气相对湿度每增加10%,地表反照率仅降低0.01。夏季不同典型降雨事件导致近地表水汽密度和浅层土壤含水量增大,使地表反照率降低。夏季不同类型降雨事件对地表反照率的影响程度表现为:大雨>中雨>小雨。研究结果为暖湿化气候背景下青藏高原中部多年冻土区地表能量平衡分析提供参考。
马安静, 张明礼, 周志雄, 王永斌, 王成福. 近地表水汽密度对多年冻土区地表辐射的影响研究——以北麓河地区为例[J]. 气候变化研究进展, 2024, 20(3): 304-315.
MA An-Jing, ZHANG Ming-Li, ZHOU Zhi-Xiong, WANG Yong-Bin, WANG Cheng-Fu. Effect of near-surface water vapor density on surface radiation in permafrost regions: a case study in Beiluhe area, Qinghai province, China[J]. Climate Change Research, 2024, 20(3): 304-315.
图1 北麓河冻土工程与环境综合观测研究站地理位置
Fig. 1 Geographical location of the national observation and research station for permafrost engineering and environment at Beiluhe, Qinghai province on the interior Qinghai-Tibet Plateau, Southwest China
图4 实测2012年12月1日至2013年11月30日北麓河站地表上2 m处空气相对湿度和地表辐射的变化
Fig. 4 The influence of relative humidity at the height of 2 m on land surface radiation flux at Beiluhe station during the period from 1st December 2012 to 30th November 2013
图5 2012年12月—2013年11月北麓河站地表上2 m处空气相对湿度、地表反照率月平均值变化
Fig. 5 Variations of relative humidity at the height of 2 m and land surface albedo at the Beiluhe station during the period of December 2012 to November 2013
图6 2013年6—8月0.5 h降雨量和不同深度活动层土壤含水量变化
Fig. 6 Variations in rainfall and soil moisture content at different depths in the active layer in the Beiluhe permafrost station in summer (June to August) 2013
图7 夏季降雨后2 m高度处空气相对湿度和地表反照率变化
Fig. 7 Variations in atmospheric relative humidity at the height of 2 m and land surface albedo in the Beiluhe permafrost station after summer rainfall in 2013
[1] | Qiu J. China: the third pole[J]. Nature, 2008, 454 (7203): 393-397. DOI: 10.1038/454393 |
[2] | IPCC. Climate change 2021: the physical science basis[M]. Cambridge: Cambridge University Press, 2021: 3949. DOI: 10.1256/004316502320517344 |
[3] | Ombadi M, Risser M D, Rhosdes A M, et al. A warming-induced reduction in snow fraction amplifies rainfall extremes[J]. Nature, 2023, 619 (7969): 305-310. DOI: 10.1038/s41586-023-06092-7 |
[4] |
许建伟, 高艳红, 彭保发, 等. 1979—2016年青藏高原降水的变化特征及成因分析[J]. 高原气象, 2020, 39 (2): 234-244.
doi: 10.7522/j.issn.1000-0534.2019.00029 |
Xu J W, Gao Y H, Peng B F, et al. Change characteristics of precipitation and its cause during 1979-2016 over the Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2020, 39 (2): 234-244 (in Chinese) | |
[5] |
刘娜, 熊安元, 张强, 等. 青藏高原多源气象辐射数据整合与评估[J]. 高原气象, 2023, 42 (1): 35-48.
doi: 10.7522/j.issn.1000-0534.2022.00012 |
Liu N, Xiong A Y, Zhang Q, et al. Integration and evaluation of multi-source meteorological radiation data over Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2023, 42 (1): 35-48 (in Chinese)
doi: 10.7522/j.issn.1000-0534.2022.00012 |
|
[6] | Kang S, Xu Y, You Q, et al. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environment Research Letters, 2010, 5 (1): 015101. DOI: 10.1088/1748-9326/5/1/015101 |
[7] | 强耀辉, 王坤鑫, 马宁, 等. 羌塘高原申扎高寒湿地辐射平衡和地表反照率特征[J]. 干旱区研究, 2021, 38 (5): 1207-1215. |
Qiang Y H, Wang K X, Ma N, et al. Characteristics of the radiation balance and surface albedo of a typical alpine wetland in Qiangtang Plateau[J]. Arid Zone Research, 2021, 38 (5): 1207-1215 (in Chinese) | |
[8] |
杨成, 姚济敏, 赵林, 等. 藏北高原多年冻土区地表反照率时空变化特征[J]. 冰川冻土, 2016, 38 (6): 1518-1528.
doi: 10.7522/j.issn.1000-0240.2016.0177 |
Yang C, Yao J M, Zhao L, et al. Temporal and spatial variation characteristics of surface albedo in permafrost region of northern Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2016, 38 (6): 1518-1528 (in Chinese)
doi: 10.7522/j.issn.1000-0240.2016.0177 |
|
[9] | Pang G, Chen D, Wang X, et al. Spatiotemporal variations of land surface albedo and associated influencing factors on the Tibetan Plateau[J]. Science of the Total Environment, 2022, 804: 150100. DOI: 10.1016/j.scitotenv.2021.150100 |
[10] | 周万福, 周秉荣, 李晓东, 等. 青藏高原东部地区辐射平衡及各分量变化特征[J]. 高原气象, 2013, 32 (2): 2327-2333. |
Zhou W F, Zhou B R, Li X D, et al. Variation characteristics of radiation budget and its component in the eastern Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2013, 32 (2): 2327-2333 (in Chinese) | |
[11] | 赵之重, 赵凯, 徐剑波, 等. 三江源地表反照率时空变化及其与气候因子的关系[J]. 干旱区研究, 2014, 31 (6): 1031-1038. |
Zhao Z Z, Zhao K, Xu J B, et al. Spatial-temporal changes of surface albedo and its relationship with climate[J]. Factors in the Source of Three Rivers Region, 2014, 31 (6): 1031-1038 (in Chinese) | |
[12] |
张明礼, 王斌, 王得楷, 等. 降雨对青藏高原多年冻土区地表辐射的影响: 以北麓河地区为例[J]. 冰川冻土, 2021, 43 (4): 1092-1101.
doi: 10.7522/j.issn.1000-0240.2021.0073 |
Zhang M L, Wang B, Wang D K, et al. The effects of rainfall on the surface radiation of permafrost regions in Qinghai-Tibet Plateau: a case study in Beiluhe area[J]. Journal of Glaciology and Geocryology, 2021, 43 (4): 1092-1101 (in Chinese) | |
[13] | Puschel R F, Charles J G, Hansen R T. Solar radiation: effect of atmospheric water vapor and volcanic aerosols[J]. Journal of Applied Meteorology and Climatology, 1974, 13 (3): 397-401 |
[14] | Maghrabi A H, Almutayri M M, Aldosary A F, et al. The influence of atmospheric water content, temperature, and aerosol optical depth on downward longwave radiation in arid conditions[J]. Theoretical and Applied Climatology, 2019, 138: 1375-1394. DOI: 10.1007/s00704-019-02903-y |
[15] | 沈元芳, 黄丽萍, 徐国强, 等. 长波辐射对大气变化的敏感性和在WRF模式中的应用检验[J]. 气象学报, 2004 (2): 213-227. |
Shen Y F, Huang L P, Xu G Q, et al. The sensitivity of longwave radiation to atmospheric changes and the simulation in the weather research and forecast (WRF) model[J]. Acta Meteorologica Sinica, 2004 (2): 213-227 (in Chinese) | |
[16] | 李秀镇, 盛立芳, 刘骞, 等. 基于SBDART辐射传输模式的晴天地面总辐射模拟误差分析[J]. 中国海洋大学学报 (自然科学版), 2016, 46 (8): 13-18. |
Li X Z, Sheng L F, Liu Q, et al. Error in calculation of surface radiation based on SBDART radiative transfer model[J]. Periodical of Ocean University of China, 2016, 46 (8): 13-18 (in Chinese) | |
[17] | 徐可飘. 青藏高原大气水汽含量及水汽输送特征研究[D]. 合肥: 中国科学技术大学, 2021: 25-35. |
Xu K P. A study on the characteristics of water vapor content and water vapor transport of the Tibetan Plateau[D]. Hefei: University of Science and Technology of China, 2021: 25-35 (in Chinese) | |
[18] | 梁宏. 青藏高原大气水汽变化和对辐射影响的模拟[D]. 北京: 中国气象科学研究院, 2012: 153-154. |
Liang H. Variation of the atmospheric water vapor and its radiative effect simulations over the Tibetan Plateau[D]. Beijing: University of Chinese Academy of Sciences, 2012: 153-154 (in Chinese) | |
[19] | Lu N, Qin J, Gao Y, et al. Trends and variability in atmospheric precipitable water over the Tibetan Plateau for 2009-2010[J]. International Journal of Climatology, 2015, 35 (7): 1394-1404. DOI: 10.1002/joc.4064 |
[20] | 张明礼, 温智, 薛珂, 等. 北麓河地区多年冻土地表能量收支分析[J]. 干旱区资源与环境, 2016, 30 (9): 134-138. |
Zhang M L, Wen Z, Xue K, et al. Surface energy budget analysis in permafrost region of Beiluhe area[J]. Journal of Arid Land Resources and Environment, 2016, 30 (9): 134-138 (in Chinese) | |
[21] | 张明礼, 温智, 薛珂, 等. 北麓河多年冻土活动层水热迁移规律分析[J]. 干旱区资源与环境, 2015, 29 (9): 176-181. |
Zhang M L, Wen Z, Xue K, et al. Soil moisture-heat migration characteristics within the permafrost active layer in Beiluhe[J]. Journal of Arid Land Resources and Environment, 2015, 29 (9): 176-181 (in Chinese) | |
[22] | 张明礼, 雷兵兵, 周志雄, 等. 考虑雨水感热的降雨对多年冻土水热变化影响模型研究[J]. 岩土力学, 2023, 44 (5): 1530-1544. |
Zhang M L, Lei B B, Zhou Z X, et al. Model study on rainfall effect on hydrothermal dynamics of permafrost considering rainwater sensible heat[J]. Rock and Soil Mechanics, 2023, 44 (5): 1530-1544 (in Chinese) | |
[23] | Tahooni A, Kakroodi A A, Kiavarz M. Monitoring of land surface albedo and its impact on land surface temperature (LST) using time series of remote sensing data[J]. Ecological Informatics, 2023, 75: 102118. DOI: 10.1016/j.ecoinf.2023.102118 |
[24] | 盛裴轩. 大气物理学[M]. 北京: 北京大学出版社, 2013: 94-95. |
Sheng P X. Atmospheric physics[M]. Beijing: Peking University Press, 2013: 94-95 (in Chinese) | |
[25] |
周志雄, 周凤玺, 张明礼, 等. 季节降雨特征对青藏高原中部冻土活动层的水热影响[J]. 高原气象, 2023, 42 (5): 1172-1181.
doi: 10.7522/j.issn.1000-0534.2023.00017 |
Zhou Z X, Zhou F X, Zhang M L, et al. Effects of seasonal rainfall characteristics on the hydrothermal state of permafrost active layer in the central Qinghai-Xizang (Tibet) Plateau[J]. Plateau Meteorology, 2023, 42 (5): 1172-1181 (in Chinese) | |
[26] | 张明礼, 温智, 薛珂, 等. 降水对北麓河地区多年冻土活动层水热影响分析[J]. 干旱区资源与环境, 2016, 30 (4): 159-164. |
Zhang M L, Wen Z, Xue K, et al. The effects of precipitation on thermal-moisture dynamics of the active layer at Beiluhe permafrost region[J]. Journal of Arid Land Resources and Environment, 2016, 30 (4): 159-164 (in Chinese) | |
[27] | Leckner B. The spectral distribution of solar radiation at the Earth’s surface elements of a model[J]. Solar Energy, 20 (2): 143-150. DOI: 10.1016/0038-092X(78)90187-1 |
[28] | Lobell D B, Asner G P. Moisture effects on soil reflectance[J]. Soil Science Society of America Journal, 2002, 66 (3): 722-727. DOI: 10.2136/sssaj2002.7220 |
[29] | Desyatkin A, Fedorov P, Filippov N, et al. Climate change and its influence on the active layer depth in Central Yakutia[J]. Land, 2021, 10: 3. DOI: 10.3390/land10010003 |
[30] | Smith S L, O’Neill H B, Isaksen K, et al. The changing thermal state of permafrost[J]. Nature Reviews Earth & Environment, 2022, 3 (1): 10-23. DOI: 10.1038/s43017-021-00240-1 |
[31] | 王闯, 戴长雷, 宋成杰. 青藏高原气候变化的时空分布特征分析[J]. 人民黄河, 2022, 44 (9): 76-82. |
Wang C, Dai C L, Song C J. Analysis of the temporal and spatial distribution characteristics of climate change in the Qinghai-Tibetan Plateau[J]. Yellow River, 2022, 44 (9): 76-82 (in Chinese) | |
[32] | 俞静雯, 李清泉, 丁一汇, 等. 气候变暖背景下青藏高原夏季水汽的长期变化趋势分析[J]. 中国科学: 地球科学, 2022, 52 (5): 942-954. |
Yu J W, Li Q Q, Ding Y H, et al. Long-term trend of water vapor over the Tibetan Plateau in boreal summer under global warming[J]. Science China Earth Sciences, 2022, 52 (5): 942-954 (in Chinese) | |
[33] |
罗栋梁, 金会军, 吴青柏, 等. 天然状态下多年冻土区活动层厚度研究进展与展望[J]. 冰川冻土, 2023, 45 (2): 558-574.
doi: 10.7522/j.issn.1000-0240.2023.0043 |
Luo D L, Jin H J, Wu Q B, et al. Active layer thickness (ALT) in permafrost regions under natural/undisturbed state: a review[J]. Journal of Glaciology and Geocryology, 2023, 45 (2): 558-574 (in Chinese) | |
[34] | S?dergren A H, McDonald A J, Bodeker G E. An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover, and water vapor on polar amplification[J]. Climate Dynamics, 2018, 51: 1639-1658. DOI: 10.1007/s00382-017-3974-5 |
[35] | Eltahir A B. A soil moisture-rainfall feedback mechanism: 1. Theory and observations[J]. Water Resources Research, 1998, 34 (4): 765-776. DOI: 10.1029/97WR03499 |
[36] | Chen C, Tian L, Zhu L, et al. The impact of climate change on the surface albedo over the Qinghai-Tibet Plateau[J]. Remote Sensing, 2021, 13 (12): 2336. DOI: 10.3390/rs13122336 |
[37] | Feldl N, Merlis T M. A semi-analytical model for water vapor, temperature, and surface-albedo feedbacks in comprehensive climate models[J]. Geophysical Research Letters, 2023, 50 (21): e2023GL105796. DOI: 10.1029/2023GL105796 |
[38] | Xiong J, Yong Z, Wang Z, et al. Spatial and temporal patterns of the extreme precipitation across the Tibetan Plateau[J]. Water, 2019, 11: 1453. DOI: 10.3390/w11071453 |
[39] | Zhang M, Wen Z, Li D, et al. Impact process and mechanism of summertime rainfall on thermal-moisture regime of the active layer in permafrost regions of central Qinghai-Tibet Plateau[J]. Science of the Total Environment, 2021, 796: 148970. DOI: 10.1016/j.scitotenv.2021.148970 |
[40] | Zhou Z, Zhou F, Zhang M, et al. Effects of seasonal rainfall variations on the hydrothermal state and thermal stability of the permafrost active layer in the central Qinghai-Tibet Plateau of China[J]. Cold Regions Science and Technology, 2023, 214: 103945. DOI: 10.1016/j.coldregions.2023.103945 |
[1] | 吴青柏, 徐晓明, 贺建桥, 姚晓军, 张中琼. 青藏高原冰冻圈变化对工程的影响[J]. 气候变化研究进展, 2025, 21(1): 22-31. |
[2] | 仕仁睿, 蒋兴文, 王遵娅. 青藏高原雨季建立进程及其环流因子分析[J]. 气候变化研究进展, 2025, 21(1): 91-101. |
[3] | 欧阳志云, 张观石, 应凌霄. 气候变化对青藏高原生态系统分布范围和生态功能的影响研究进展[J]. 气候变化研究进展, 2024, 20(6): 699-710. |
[4] | 车彦军, 陈丽花, 吴佳康, 谷来磊, 武荣, 张东启, 丁明虎. 青藏高原冰前湖与冰川相互作用研究进展[J]. 气候变化研究进展, 2024, 20(5): 519-533. |
[5] | 牛振国, 景雨航, 张东启, 张波. 气候变化背景下青藏高原湿地生态系统响应特征:回顾与展望[J]. 气候变化研究进展, 2024, 20(5): 509-518. |
[6] | 王娇娇, 张虎, 金晓颖, 黄帅, 王宏伟, 王文辉, 詹涛, 周刚义, 车富强, 李艳, 李新宇, 何瑞霞, 张泽, 张圣嵘, 李国玉, 童长江, 王逊, 金会军. 变暖背景下砾石换填对多年冻土区机场跑道下地温场的影响[J]. 气候变化研究进展, 2024, 20(3): 291-303. |
[7] | 包文, 段安民, 游庆龙, 胡蝶. 青藏高原气候变化及其对水资源影响的研究进展[J]. 气候变化研究进展, 2024, 20(2): 158-169. |
[8] | 吴星怡, 曹龙. CO2辐射效应与生理效应对气候系统影响异同的模拟研究[J]. 气候变化研究进展, 2024, 20(2): 170-181. |
[9] | 胡佳怡, 赵林, 王翀, 胡国杰, 邹德富, 幸赞品, 焦梦迪, 乔永平, 刘广岳, 杜二计. CLDAS地表温度产品在青藏高原多年冻土区的适用性评估与校正[J]. 气候变化研究进展, 2024, 20(1): 10-25. |
[10] | 栾澜, 翟盘茂. 基于多源数据的青藏高原雨季降水特征变化分析[J]. 气候变化研究进展, 2023, 19(2): 173-190. |
[11] | 万梓文, 王伟, 吕恒, 仇培宇, 李雨竹, 卢阳. CMIP6与CMIP5对历史大气层顶和地表辐射收支模拟的时空对比[J]. 气候变化研究进展, 2022, 18(4): 468-481. |
[12] | 张歆然, 陈昊明. CMIP6模式对青藏高原东坡暖季降水的模拟评估[J]. 气候变化研究进展, 2022, 18(2): 129-141. |
[13] | 曹龙. IPCC AR6报告解读:气候系统对太阳辐射干预响应[J]. 气候变化研究进展, 2021, 17(6): 671-684. |
[14] | 张华, 王菲, 赵树云, 谢冰. IPCC AR6报告解读:地球能量收支、气候反馈和气候敏感度[J]. 气候变化研究进展, 2021, 17(6): 691-698. |
[15] | 祁莉, 杨睿婷. 全球变暖下青藏高原东南侧常年南风强度的多模式结果比较分析[J]. 气候变化研究进展, 2021, 17(4): 430-443. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|