气候变化研究进展 ›› 2025, Vol. 21 ›› Issue (1): 91-101.doi: 10.12006/j.issn.1673-1719.2024.179
所属专题: 西风-季风协同作用下青藏高原典型水环境变化特征及其对气候变化的响应专栏
收稿日期:
2024-07-18
修回日期:
2024-09-25
出版日期:
2025-01-30
发布日期:
2024-12-31
通讯作者:
蒋兴文,男,研究员,作者简介:
仕仁睿,女,助理研究员
基金资助:
SHI Ren-Rui1, JIANG Xing-Wen2,3(), WANG Zun-Ya4
Received:
2024-07-18
Revised:
2024-09-25
Online:
2025-01-30
Published:
2024-12-31
摘要:
利用1979—2019年青藏高原107站逐日降水资料、ERA5再分析资料等,揭示了青藏高原雨季建立的区域性特征,并讨论了各分区雨季建立进程中大气环流的不同演变特征。结果表明:(1)青藏高原中东部、南部和北部的降水进程、降水集中期和降水量等均不同,因而在此3个分区内的雨季建立表现出了不同特征。(2)青藏高原中东部降水于第27候左右开始明显增多,呈两峰型。其雨季的建立伴随着中纬度西风的减弱,印度西海岸和孟加拉湾的西南季风在高原南缘汇合,以及西南风水汽输送的大幅增加。高原南部降水在第32候左右开始活跃,呈单峰型,其雨季建立对应于西风环流进一步北撤、印度半岛上空对流系统的发展,以及对流层中层西南水汽通量的大量输入。高原北部降水在第29候以后明显增强,呈单峰型,雨季的建立对应于东亚西风急流的北移西伸和高原东、西部风切变的增强。(3)高原各分区雨季建立所对应的水汽来源不尽相同,高原中东部和南部水汽主要来源于南边界和西边界,高原北部则以北边界和西边界为主。近41年,高原中东部和南部雨季建立时间的提前趋势与其区域水汽总收支的显著增加趋势密切相关。
仕仁睿, 蒋兴文, 王遵娅. 青藏高原雨季建立进程及其环流因子分析[J]. 气候变化研究进展, 2025, 21(1): 91-101.
SHI Ren-Rui, JIANG Xing-Wen, WANG Zun-Ya. The onset of Tibetan Plateau rainy season and its impact factors[J]. Climate Change Research, 2025, 21(1): 91-101.
图2 青藏高原雨季总降水量(a图阴影)及其占年总降水量的百分比(a图数值,%)、雨季建立时间(b)的空间分布
Fig. 2 Climatology of precipitation during rainy season (a, shadings) and its proportion to annual precipitation (a, numbers, %); the onset of rainy season in the Tibetan Plateau (b)
图3 青藏高原1—12月逐候降水量REOF前3个模态空间分布(a~c)及其对应的时间系数(d~f) 注:红色方框分别为根据3个模态空间分布得到的高原3个次区域:高原中东部为A(30.75°~35°N,92.5°~103°E),高原南部为B(27.5°~31.5°N,86°~101°E),高原北部为C(36°~39°N,92°~98.4°E)。(d)~(f)虚线为对应的3点滑动平均序列。
Fig. 3 The first to third rotated empirical orthogonal function (REOF) modes (a-c) and the corresponding time coefficient (d-f) of the pentad precipitation in Tibetan Plateau from 1979 to 2019
图4 1979—2019年平均的青藏高原各分区逐候降水量标准化序列(a)和累计降水量(b)演变
Fig. 4 Climatological annual cycle of the normalized pentad precipitation (a) and the accumulative rainfall (b) over the subregions of Tibetan Plateau averaged from 1979 to 2019
图5 1979—2019年青藏高原各分区雨季建立时间的逐年变化 注:点线代表线性趋势。
Fig. 5 Time series of the onset (Julian day) of rainy season over the subregions of Tibetan Plateau from 1979 to 2019. (Doted lines denote the linear trendlines)
图6 青藏高原中东部雨季建立前、后环流场分布 注:红色方框代表高原中东部。
Fig. 6 Mean circulation fields for the two pentads before and after the onset of the rainy season over the central-eastern Tibetan Plateau
图9 1979—2019年平均的青藏高原各分区边界水汽收支及区域水汽总收支气候平均值的逐候演变
Fig. 9 Annual variation of pentad water vapor transport across the four boundaries and their total budgets over the subregions of pentad Tibetan Plateau from 1979 to 2019
图10 1979—2019年5月青藏高原各分区边界水汽收支及区域水汽总收支的年际变化 注:点线代表线性趋势。
Fig. 10 Interannual series of water vapor transport across the four edges and their total budgets over the subregions of Tibetan Plateau from 1979 to 2019. (Doted lines denote the linear trendlines)
![]() |
表1 1979—2019年青藏高原各分区各边界水汽收支及区域水汽总收支的变化趋势
Table 1 Linear trend of water vapor transport across the four edges and their total budgets over the subregions of Tibetan Plateau from 1979 to 2019 106 kg/(s?(10 a))
![]() |
[1] | Xu X D, Lu C G, Shi X H, et al. World water tower: an atmospheric perspective[J]. Geophysical Research Letters, 2008, 35 (20): 525-530 |
[2] | 叶笃正, 高由禧. 青藏高原气象学[M]. 北京: 科学出版社, 1979: 1-278. |
Ye D Z, Gao Y X. Qinghai-Xizang Plateau meteorology[M]. Beijing: Science Press, 1979: 1-278 (in Chinese) | |
[3] |
Immerzeel W W, Beek L P H V, Bierkens M F P. Climate change will affect the Asian Water Towers[J]. Science, 2010, 328: 1382-1385
doi: 10.1126/science.1183188 pmid: 20538947 |
[4] | 徐祥德, 董李丽, 赵阳, 等. 青藏高原“亚洲水塔”效应和大气水分循环特征[J]. 科学通报, 2019, 64 (27): 2830-2841. |
Xu X D, Dong L L, Zhao Y, et al. Effect of the Asian Water Tower over the Qinghai-Tibet Plateau and the characteristics of atmospheric water circulation[J]. Chinese Science Bulletin, 2019, 64 (27): 2830-2841 (in Chinese) | |
[5] | Wang X J, Pang G J, Yang M X. Precipitation over the Tibetan Plateau during recent decades: a review based on observations and simulations[J]. International Journal of Climatology, 2017, 38 (3): 1116-1131 |
[6] | Wu G X, Liu Y M, Wang T M, et al. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate[J]. Journal of Hydrometeorology, 2007, 8 (4): 770-789 |
[7] | Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2 (9): 663-667 |
[8] | Zhou X J, Zhao P, Chen J M, et al. Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate[J]. Science in China Series D: Earth Sciences, 2009, 52 (11): 1679-1693 |
[9] | 赵平, 李跃清, 郭学良, 等. 青藏高原地气耦合系统及其天气气候效应: 第三次青藏高原大气科学试验[J]. 气象学报, 2018, 76 (6): 833-860. |
Zhao P, Li Y Q, Guo X L, et al. The Tibetan Plateau surface-atmosphere coupling system and its weather and climate effects: the third Tibetan Plateau atmospheric scientific experiment[J]. Acta Meteorologica Sinica, 2018, 76 (6): 833-860 (in Chinese) | |
[10] | Pang G J, Wang X J, Yang M X. Using the NDVI to identify variations in, and responses of, vegetation to climate change on the Tibetan Plateau from 1982 to 2012[J]. Quaternary International, 2017, 444: 87-96 |
[11] | 戴加洗. 青藏高原气候学[M]. 北京: 气象出版社, 1990: 1-365. |
Dai J X. Climate in the Qinghai-Tibet Plateau[M]. Beijing: China Meteorological Press, 1990: 1-365 (in Chinese) | |
[12] | 章凝丹, 姚辉. 青藏高原雨季起讫的研究[J]. 高原气象, 1984, 3 (1): 50-59. |
Zhang N D, Yao H. A study of the beginning and ending of rainy season over Qingzang Plateau[J]. Plateau Meteorology, 1984, 3 (1): 50-59 (in Chinese) | |
[13] | 周顺武, 假拉. 西藏高原雨季开始和中断的气候特征及其环流分析[J]. 气象, 1999, 25 (12): 38-42. |
Zhou S W, Jia L. The beginning and interruption of rainy season over Tibetan Plateau[J]. Meteorological Monthly, 1999, 25 (12): 38-42 (in Chinese) | |
[14] | 杨玮, 何金海, 王盘兴, 等. 近 42 年来青藏高原年内降水时空不均匀性特征分析[J]. 地理学报, 2011, 66 (3): 376-384. |
Yang W, He J H, Wang P X, et al. Inhomogeneity characteristics of intra-annual precipitation over the Tibetan Plateau in recent 42 years[J]. Acta Geographica Sinica, 2011, 66 (3): 376-384 (in Chinese)
doi: 10.11821/xb201103010 |
|
[15] | 徐国昌, 李梅芳. 青藏高原的雨季[J]. 甘肃气象, 1982: 9-13. |
Xu G C, Li M F. The rainy season in the Tibetan Plateau[J]. Gansu Meteorology, 1982: 9-13 (in Chinese) | |
[16] | 余迪, 段丽君, 温婷婷, 等. 青藏高原雨季特征及其对气候增暖的响应[J]. 气象与环境学报, 2021, 37 (2): 12-18. |
Yu D, Duan L J, Wen T T, et al. Characteristics of wet season over the Tibetan Plateau and its response to climate warming[J]. Journal of Meteorology and Environment, 2021, 37 (2): 12-18 (in Chinese) | |
[17] | 王遵娅, 蒋兴文, 柯宗建. 青藏高原雨季的客观监测方法及其近60年的变化趋势[J]. 地球物理学报, 2023, 66 (2): 505-517. |
Wang Z Y, Jiang X W, Ke Z J. The objective monitoring method of the Tibetan Plateau rainy season and its changing trend over the past 6 decades[J]. Chinese Journal of Geophysics, 2023, 66 (2): 505-517 (in Chinese) | |
[18] | 徐祥德, 陈联寿. 青藏高原大气科学试验研究进展[J]. 应用气象学报, 2006, 17 (6): 756-772. |
Xu X D, Chen L S. Advances of the study on Tibetan Plateau experiment of atmospheric sciences[J]. Journal of Applied Meteorological Science, 2006, 17 (6): 756-772 (in Chinese) | |
[19] | Yao T D, Masson-Delmotte V, Gao J, et al. A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations[J]. Reviews of Geophysics, 2013, 51 (4): 525-548 |
[20] | Song C Y, Wang J, Liu Y J, et al. Toward role of westerly-monsoon interplay in linking interannual variations of late spring precipitation over the southeastern Tibetan Plateau[J]. Atmospheric Science Letters, 2022, 23 (3): e1074 |
[21] | Lai H W, Chen D, Chen H W. Precipitation variability related to atmospheric circulation patterns over the Tibetan Plateau[J]. International Journal of Climatology, 2024, 44 (1): 91-107 |
[22] | Jiang X W, Cai F Y, Li Z N, et al. The westerly winds control the zonal migration of rainy season over the Tibetan Plateau[J]. Communications Earth & Environment, 2023, 4 (1): 363 |
[23] | 巩远发, 纪立人, 段廷扬. 青藏高原雨季的降水特征与东亚夏季风爆发[J]. 高原气象, 2004, 23 (3): 313-322. |
Gong Y F, Ji L R, Duan T Y. Precipitation character of rainy season of Qinghai-Xizang Plateau and onset over East Asia monsoon[J]. Plateau Meteorology, 2004, 23 (3): 313-322 (in Chinese) | |
[24] | Feng L, Zhou T J. Water vapor transport for summer precipitation over the Tibetan Plateau: multidata set analysis[J]. Journal of Geophysical Research: Atmospheres, 2012, 117: D20 |
[25] | Liu W B, Wang L, Chen D L, et al. Large-scale circulation classification and its links to observed precipitation in the eastern and central Tibetan Plateau[J]. Climate Dynamics, 2016, 46: 3481-3497 |
[26] | 周天军, 高晶, 赵寅, 等. 影响“亚洲水塔”的水汽输送过程[J]. 中国科学院院刊, 2019, 34 (11): 1210-1219. |
Zhou T J, Gao J, Zhao Y, et al. Water vapor transport processes on Asian Water Tower[J]. Bulletin of Chinese Academy of Sciences, 2019, 34 (11): 1210-1219 (in Chinese) | |
[27] | Zhang W X, Zhou T J, Zhang L X. Wetting and greening Tibetan Plateau in early summer in recent decades[J]. Journal of Geophysical Research: Atmospheres, 2017, 122 (11): 5808-5822 |
[28] | Gao Y H, Cuo L, Zhang Y X. Changes in moisture flux over the Tibetan Plateau during 1979-2011 and possible mechanism[J]. Journal of Climate, 2014, 27 (5): 1876-1893 |
[29] | 汤秋鸿, 刘宇博, 张弛, 等. 青藏高原及其周边地区降水的水汽来源变化研究进展[J]. 大气科学学报, 2020, 43 (6): 1002-1009. |
Tang Q H, Liu Y B, Zhang C, et al. Research progress on moisture source change of precipitation over the Tibetan Plateau and its surrounding areas[J]. Transactions of Atmospheric Sciences, 2020, 43 (6): 1002-1009 (in Chinese) | |
[30] | 段丽君, 申红艳, 余迪, 等. 青藏高原雨季降水的水汽条件研究[J]. 冰川冻土, 2021, 43 (4): 1-9. |
Duan L J, Shen H Y, Yu D, et al. Study on water vapor conditions of precipitation on the Tibetan Plateau during rainy season[J]. Journal of Glaciology and Geocryology, 2021, 43 (4): 1-9 (in Chinese) | |
[31] | 包文, 段安民, 游庆龙, 等. 青藏高原气候变化及其对水资源影响的研究进展[J]. 气候变化研究进展, 2024, 20 (2): 158-169. |
Bao W, Duan A M, You Q L, et al. Research progress on climate change and its impact on water resources over the Tibetan Plateau[J]. Climate Change Research, 2024, 20 (2): 158-169 (in Chinese) | |
[32] | Dee D P, Uppala S M, Simmons A J, et al. The ERA Uppala reanalysis: configuration and performance of the data assimilation system[J]. Quarterly Journal of the Royal Meteorological Society, 2011, 137 (656): 553-597 |
[33] | Hersbach H, Bell B, Berrisford P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146 (730): 1999-2049 |
[34] | 苗长明, 郭品文, 丁一汇, 等. 江南南部初夏雨季的降水和环流气候特征[J]. 大气科学, 2014, 38 (2): 285-296. |
Miao C M, Guo P W, Ding Y H, et al. Climatic characteristics of rainfall and atmospheric circulation during the early summer rainy season in the south part of Jiangnan[J]. Chinese Journal of Atmospheric Sciences, 2014, 38 (2): 285-296 (in Chinese) | |
[35] | 詹丰兴, 章开美, 何金海, 等. 江南雨季降水季节内演变及其年际、年代际变化特征[J]. 大气科学学报, 2017, 40 (6): 759-768. |
Zhan F X, Zhang K M, He J H, et al. Intraseasonal evolution of precipitation in the Jiangnan rainy season and its interannual and interdecadal variations[J]. Transactions of Atmospheric Sciences, 2017, 40 (6): 759-768 (in Chinese) | |
[36] | 王瑞英, 肖天贵. 西南地区雨季降水的时空分布及预报试验[J]. 气象科学, 2020, 40 (3): 354-362. |
Wang R Y, Xiao T G. Temporal and spatial distribution and prediction experiment of precipitation in Southwest China during the rainy season[J]. Journal of the Meteorological Sciences, 2020, 40 (3): 354-362 (in Chinese) |
[1] | 吴青柏, 徐晓明, 贺建桥, 姚晓军, 张中琼. 青藏高原冰冻圈变化对工程的影响[J]. 气候变化研究进展, 2025, 21(1): 22-31. |
[2] | 欧阳志云, 张观石, 应凌霄. 气候变化对青藏高原生态系统分布范围和生态功能的影响研究进展[J]. 气候变化研究进展, 2024, 20(6): 699-710. |
[3] | 车彦军, 陈丽花, 吴佳康, 谷来磊, 武荣, 张东启, 丁明虎. 青藏高原冰前湖与冰川相互作用研究进展[J]. 气候变化研究进展, 2024, 20(5): 519-533. |
[4] | 牛振国, 景雨航, 张东启, 张波. 气候变化背景下青藏高原湿地生态系统响应特征:回顾与展望[J]. 气候变化研究进展, 2024, 20(5): 509-518. |
[5] | 马安静, 张明礼, 周志雄, 王永斌, 王成福. 近地表水汽密度对多年冻土区地表辐射的影响研究——以北麓河地区为例[J]. 气候变化研究进展, 2024, 20(3): 304-315. |
[6] | 包文, 段安民, 游庆龙, 胡蝶. 青藏高原气候变化及其对水资源影响的研究进展[J]. 气候变化研究进展, 2024, 20(2): 158-169. |
[7] | 胡佳怡, 赵林, 王翀, 胡国杰, 邹德富, 幸赞品, 焦梦迪, 乔永平, 刘广岳, 杜二计. CLDAS地表温度产品在青藏高原多年冻土区的适用性评估与校正[J]. 气候变化研究进展, 2024, 20(1): 10-25. |
[8] | 栾澜, 翟盘茂. 基于多源数据的青藏高原雨季降水特征变化分析[J]. 气候变化研究进展, 2023, 19(2): 173-190. |
[9] | 张歆然, 陈昊明. CMIP6模式对青藏高原东坡暖季降水的模拟评估[J]. 气候变化研究进展, 2022, 18(2): 129-141. |
[10] | 祁莉, 杨睿婷. 全球变暖下青藏高原东南侧常年南风强度的多模式结果比较分析[J]. 气候变化研究进展, 2021, 17(4): 430-443. |
[11] | 刘洁,王宁练,花婷. 1960—2016年中国北方半干旱区盛夏降水时空变化及其水汽输送特征分析[J]. 气候变化研究进展, 2019, 15(3): 257-269. |
[12] | 吴芳营,游庆龙,谢文欣,张玲. 全球变暖1.5℃和2℃阈值时青藏高原气温的变化特征[J]. 气候变化研究进展, 2019, 15(2): 130-139. |
[13] | 方一平,朱付彪,宜树华,邱孝枰,丁永建. 多年冻土对青藏高原草地生态承载力的贡献研究[J]. 气候变化研究进展, 2019, 15(2): 150-157. |
[14] | 罗小青,徐建军. 青藏高原大气热源及其估算的不确定性因素[J]. 气候变化研究进展, 2019, 15(1): 33-40. |
[15] | 冯琬, 范广洲, 龙妍妍. 夏季南亚高压及西太平洋副热带高压强度变化与前期海温异常的关系[J]. 气候变化研究进展, 2018, 14(2): 111-119. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|