气候变化研究进展 ›› 2022, Vol. 18 ›› Issue (2): 166-176.doi: 10.12006/j.issn.1673-1719.2021.154
王霞1,2(
), 王瑛1,2(
), 林齐根3, 李宁1,2, 张馨仁1,2, 周笑影1,2
收稿日期:2021-08-04
修回日期:2021-10-03
出版日期:2022-03-30
发布日期:2021-12-28
通讯作者:
王瑛
作者简介:王霞,女,博士研究生, 基金资助:
WANG Xia1,2(
), WANG Ying1,2(
), LIN Qi-Gen3, LI Ning1,2, ZHANG Xin-Ren1,2, ZHOU Xiao-Ying1,2
Received:2021-08-04
Revised:2021-10-03
Online:2022-03-30
Published:2021-12-28
Contact:
WANG Ying
摘要:
中国是世界上滑坡灾害造成人口伤亡较严重的国家。受气候变化影响,极端降水频率与强度的增加会提高滑坡灾害的人口风险。文中将不同RCPs情景多个模式的未来降水数据和SSPs情景下的未来人口数据相结合,构建滑坡灾害人口风险评估模型,评估气候变化背景下的中国滑坡灾害人口风险。研究发现,气候变化下中国滑坡灾害的危险性呈上升趋势,预估21世纪中期(2031—2060年)RCP4.5和RCP8.5情景下中国滑坡灾害高危险区面积相较于基准时期(1970—2000年)将分别增长5.5%和7.9%。其中,青藏高原地区增长最为显著。中国未来滑坡灾害的人口风险呈现先增长后下降的趋势,RCP8.5/SSP3情景较RCP4.5/SSP2情景上升更多,预计21世纪中期滑坡灾害年均伤亡人口将由基准时期的639人增加至956人;21世纪末期(2071—2100年),由于滑坡灾害暴露人口下降,年均伤亡人口将减至737人。未来浙江、广东、四川、云南和西藏省始终是滑坡灾害伤亡人口最高的省份,需加大防范措施,降低滑坡灾害人口风险。
王霞, 王瑛, 林齐根, 李宁, 张馨仁, 周笑影. 气候变化背景下中国滑坡灾害人口风险评估[J]. 气候变化研究进展, 2022, 18(2): 166-176.
WANG Xia, WANG Ying, LIN Qi-Gen, LI Ning, ZHANG Xin-Ren, ZHOU Xiao-Ying. Projection of China landslide disasters population risk under climate change[J]. Climate Change Research, 2022, 18(2): 166-176.
图2 气候变化情景下中国滑坡危险性空间分布(多模式集合平均)(a)基准时期(1970—2000年),(b) RCP8.5情景(2071—2100年)
Fig. 2 Spatial distribution of landslides hazards in China under climate change scenario. (a) Baseline period (1970-2000), (b) RCP8.5 (2071-2100)
图3 RCP8.5情景下21世纪末期相较于基准时期滑坡危险性变化空间分布(多模式集合平均)(a)中国;(b)广东省;(c)山西省;(d)西藏自治区
Fig. 3 Spatial distribution of changes in landslides hazard levels at the end of the 21st century compared to the baseline period under the RCP8.5 scenario (multi-model ensemble average). (a) China, (b) Guangdong province, (c) Shanxi province, (d) Tibet
图4 1950—2018年各省滑坡灾害年均伤亡人口(a)和滑坡灾害年均人口脆弱性指数(b)
Fig. 4 The average annual casualties (a) and the average annual population vulnerability index (b) of landslides disasters in various provinces during 1950-2018
图5 气候变化情景下中国滑坡灾害年均伤亡人口 注:图中实线为多模式模拟结果集合平均;阴影范围的上下限分别为多模式模拟的伤亡人口最高值和最低值。
Fig. 5 The average annual casualties of landslides disasters under climate change scenarios. (Solid line: ensemble average casualties of multi-models; upper and lower limits of shadow range: maximum and minimum casualties of multi-models)
图6 气候变化情景下中国滑坡灾害年均伤亡人口占全国90%的省份(多模式集合平均)(a) RCP4.5/SSP2情景;(b) RCP8.5/SSP3情景
Fig. 6 Provinces in China with 90% of annual average casualties of landslides under RCP4.5/SSP2 scenario (a) and RCP8.5/SSP3 scenario (b)
图7 21世纪末期各省滑坡灾害年均伤亡人口变化(RCP4.5/SSP2情景)
Fig. 7 Changes in the annual average casualties of landslides disasters in various provinces at the end of the 21st century (RCP4.5/SSP2 scenario)
| [1] |
Stanley T, Kirschbaum D, Zhou Y. Spatial and temporal analysis of a global landslide catalog[J]. Geomorphology, 2015, 249(15):4-15
doi: 10.1016/j.geomorph.2015.03.016 URL |
| [2] | Froude M J, Petley D N. Global fatal landslide occurrence from 2004 to 2016[J]. Natural Hazards and Earth System Sciences, 2018, 18:2161-2181 |
| [3] |
Diffenbaugh N S, Field C. Changes in ecologically critical terrestrial climate conditions[J]. Science, 2013, 341(6145):486-492
doi: 10.1126/science.1237123 pmid: 23908225 |
| [4] | IPCC. Climate change 2014: synthesis report [M]. Cambridge: Cambridge University Press, 2014: 151 |
| [5] |
Kharin V V, Zwiers F W, Zhang X, et al. Changes in temperature and precipitation extremes in the CMIP5 ensemble[J]. Climatic Change, 2013, 119:345-357
doi: 10.1007/s10584-013-0705-8 URL |
| [6] | Westra S, Fowler H J, Evans J P, et al. Future changes to the intensity and frequency of short-duration extreme rainfall[J]. Reviews of Geophysics, 2014, 52:52-555 |
| [7] |
Gariano S L, Guzzetti F. Landslides in a changing climate[J]. Earth-Science Reviews, 2016, 162:227-252
doi: 10.1016/j.earscirev.2016.08.011 URL |
| [8] | Lin Q, Wang Y, Glade T,, et al. Assessing the spatiotemporal impact of climate change on event rainfall characteristics influencing landslide occurrences based on multiple GCM projections in China[J]. Climatic Change, 2020 (11):162, 761-779 |
| [9] | Kirschbaum D, Kapnick S B, Stanley T, et al. Changes in extreme precipitation and landslides over high mountain Asia[J]. Geophysical Research Letters, 2020, 47(4):1-9 |
| [10] | Gariano S L, Rianna G, Petrucci O, et al. Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale[J]. The Science of The Total Environment, 2017 (596-597):417-426 |
| [11] | Lin Q, Ying W. Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016[J]. Landslides, 2018: 1-16 |
| [12] |
Hungr O, Leroueil S, Picarelli L. The Varnes classification of landslide types, an update[J]. Landslides, 2014, 11(2):167-194
doi: 10.1007/s10346-013-0436-y URL |
| [13] | 支泽民, 陈琼, 张强, 等. 地理探测器在判别滑坡稳定性影响因素中的应用: 以西藏江达县为例[J]. 中国地质灾害与防治学报, 2021, 32(2):19-26. |
| Zhi Z M, Chen Q, Zhang Q, et al. Application of geographic detector in identifying influencing factors of landslide stability: a case study of the Jiangda county, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2):19-26 (in Chinese) | |
| [14] | 熊俊楠, 朱吉龙, 苏鹏程, 等. 基于GIS与信息量模型的溪洛渡库区滑坡危险性评价[J]. 长江流域资源与环境, 2019, 28(3):700-711. |
| Xiong J N, Zhu J L, Su P C, et al. Risk assessment of landslide in the Xiluodu reservoir area based on GIS and information value method[J]. Resources and Environment in The Yangtze Basin, 2019, 28(3):700-711 (in Chinese) | |
| [15] |
王瑛, 林齐根, 史培军. 中国地质灾害伤亡事件的空间格局及影响因素[J]. 地理学报, 2017, 72(5):906-917.
doi: 10.11821/dlxb201705011 |
| Wang Y, Lin Q G, Shi P J. Spatial pattern and influencing factors of casualty events caused by landslides[J]. Acta Geographica Sinica, 2017, 72(5):906-917 (in Chinese) | |
| [16] | 陈晓晨, 徐影, 许崇海. CMIP5全球气候模式对中国地区降水模拟能力的评估[J]. 气候变化研究进展, 2014, 10(3):217-225. |
| Chen X C, Xu Y, Xu C H. Assessment of precipitation simulations in China by CMIP5 multi-models[J]. Climate Change Research, 2014, 10(3):217-225 (in Chinese) | |
| [17] |
刘星才, 汤秋鸿, 尹圆圆. 气候变化下中国未来综合环境风险区划研究[J]. 地理科学, 2018, 38(4):636-644.
doi: 10.13249/j.cnki.sgs.2018.04.018 |
| Liu X C, Tang Q H, Yin Y Y. Regionalization of integrated environmental risk of China under future climate change[J]. Scientia Geographica Sinica, 2018, 38(4):636-644 (in Chinese) | |
| [18] | 张奇谋, 王润, 姜彤, 等. RCPs情景下汉江流域未来极端降水的模拟与预估[J]. 气候变化研究进展, 2020, 16(3):276-286. |
| Zhang Q M, Wang R, Jiang T, et al. Projection of extreme precipitation in the Hanjiang River basin under different RCP scenarios[J]. Climate Change Research, 2020, 16(3):276-286 (in Chinese) | |
| [19] | Yue Z, Ying W, Yu C, et al. Projection of changes in flash flood occurrence under climate change at tourist attractions[J]. Journal of Hydrology, 2021, 595:1-11 |
| [20] |
Willmott C J, Feddema J J. A more rational climatic moisture index[J]. The Professional Geographer, 1992, 44(1):84-88
doi: 10.1111/j.0033-0124.1992.00084.x URL |
| [21] | 翁宇威, 蔡闻佳, 王灿. 共享社会经济路径(SSPs)的应用与展望[J]. 气候变化研究进展, 2020, 16(2):215-222. |
| Weng Y W, Cai W J, Wang C. The application and future directions of the shared socioeconomic pathways (SSPs)[J]. Climate Change Research, 2020, 16(2):215-222 (in Chinese) | |
| [22] |
Murakami D, Yamagata Y. Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling[J]. Sustainability, 2019, 11:2106
doi: 10.3390/su11072106 URL |
| [23] | Yu J L, Jie C, Tao P, Global socioeconomic risk of precipitation extremes under climate change[J]. Earth's Future, 2020, 8(9):1-15 |
| [24] |
Nadim F, Kjekstad O, Peduzzi P, et al. Global landslide and avalanche hotspots[J]. Landslides, 2006, 3(2):159-173
doi: 10.1007/s10346-006-0036-1 URL |
| [25] | Jaedicke C, Eeckhaut M, Nadim F, et al. Identification of landslide hazard and risk ‘hotspots' in Europe[J]. Bulletin of Engineering Geology & The Environment, 2014, 73(2):325-339 |
| [26] | Lin L, Lin Q, Wang Y. Landslide susceptibility mapping on a global scale using the method of logistic regression[J]. Natural Hazards and Earth System Sciences, 2017, 17(8):1411-1424 |
| [27] | 吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013, 56(4):1102-1111. |
| Wu J, Gao X J. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013, 56(4):1102-1111 (in Chinese) | |
| [28] | 潘旸, 谷军霞, 宇婧婧, 等. 中国区域高分辨率多源降水观测产品的融合方法试验[J]. 气象学报, 2018, 76(5):755-766. |
| Pan Y, Gu J X, Yu J J, et al. Test of merging methods for multi-source observed precipitation products at high resolution over China[J]. Acta Meteorologica Sinica, 2018, 76(5):755-766 (in Chinese) | |
| [29] | 沈艳, 潘旸, 宇婧婧, 等. 中国区域小时降水量融合产品的质量评估[J]. 大气科学学报, 2013, 36(1):37-46. |
| Shen Y, Pan Y, Yu J J, et al. Quality assessment of hourly merged precipitation product over China[J]. Transactions of Atmospheric Sciences, 2013, 36(1):37-46 (in Chinese) | |
| [30] |
Liu X L, Miao C. Large-scale assessment of landslide hazard, vulnerability and risk in China[J]. Geomatics Natural Hazards and Risk, 2018, 9(1):1037-1052
doi: 10.1080/19475705.2018.1502690 URL |
| [31] |
San Diego C A, O'Neill B C, Kriegler E, et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways[J]. Climatic Change, 2014, 122:401-414
doi: 10.1007/s10584-013-0971-5 URL |
| [32] | Villani V, Rianna G, Mercogliano P, et al. Statistical approaches versus weather generator to downscale RCM outputs to slope scale for stability assessment: a comparison of performances[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 20:1495-1515 |
| [33] |
Melchiorre C, Frattini P. Modelling probability of rainfall-induced shallow landslides in a changing climate, Otta, Central Norway[J]. Climatic Change, 2012, 113:413-436
doi: 10.1007/s10584-011-0325-0 URL |
| [34] | 陶云, 唐川. 人类活动和降水变化对滑坡泥石流中长期演变的影响[J]. 高原气象, 2012, 31(5):1454-1460. |
| Tao Y, Tang C. Influence of human activity and precipitation change on middle-long term evolution of landslide and debris flow disasters[J]. Plateau Meteorology, 2012, 31(5):1454-1460 (in Chinese) | |
| [35] | Depicker A, Jacobs L, Mboga N, et al. Historical dynamics of landslide risk from population and forest-cover changes in the Kivu Rift[J]. Nature Sustainability, 2021, 9:445 |
| [1] | 丁永建, 张世强, 陈仁升, 秦甲, 赵求东, 刘俊峰, 阳勇, 何晓波, 苌亚平, 上官冬辉, 韩添丁, 吴锦奎, 李向应. 气候变化对冰冻圈水文影响研究综述[J]. 气候变化研究进展, 2025, 21(1): 1-21. |
| [2] | 秦卓凡, 廖宏, 代慧斌. 气候变化影响我国大气重污染事件的研究进展[J]. 气候变化研究进展, 2025, 21(1): 56-68. |
| [3] | 吕学都, 陈佳琪, 葛慧, 朱乙丹. 气候金融实践与发展建议[J]. 气候变化研究进展, 2025, 21(1): 78-90. |
| [4] | 陈德亮, 谭显春, 彭喆, 闫洪硕, 程永龙. 人工智能在气候研究和服务中的机遇与挑战[J]. 气候变化研究进展, 2024, 20(6): 669-681. |
| [5] | 高翔. 国际条约下的气候资金问题辨析[J]. 气候变化研究进展, 2024, 20(6): 799-807. |
| [6] | 杨建平. “美丽冰冻圈”的缘起与发展[J]. 气候变化研究进展, 2024, 20(6): 711-720. |
| [7] | 朱磊, 张丽忠, 蒋莹, 徐剑锋, 黄艳, 孙淑欣. 工业部门的气候适应研究进展[J]. 气候变化研究进展, 2024, 20(6): 721-735. |
| [8] | 欧阳志云, 张观石, 应凌霄. 气候变化对青藏高原生态系统分布范围和生态功能的影响研究进展[J]. 气候变化研究进展, 2024, 20(6): 699-710. |
| [9] | 陆春晖, 袁佳双, 黄磊, 张永香. 从IPCC看全球盘点中的关键科学问题及其对中国的启示[J]. 气候变化研究进展, 2024, 20(6): 736-746. |
| [10] | 周泽宇, 王君华, 曹颖. 全球适应气候变化行动进展评估及相关工作建议[J]. 气候变化研究进展, 2024, 20(6): 764-772. |
| [11] | 牛振国, 景雨航, 张东启, 张波. 气候变化背景下青藏高原湿地生态系统响应特征:回顾与展望[J]. 气候变化研究进展, 2024, 20(5): 509-518. |
| [12] | 吴沛泽, 陈莎, 刘影影, 李晓桐, 杜展霞, 崔淑芬, 姜克隽. 低排放分析平台LEAP:应对气候变化下的应用与挑战[J]. 气候变化研究进展, 2024, 20(5): 611-623. |
| [13] | 德吉玉珍, 拉巴, 巴桑旺堆, 白玛玉措, 旦增益嘎, 平措旺丹, 德吉央宗. 近50年西藏那曲西南部湖泊变化特征及其对气候变化的响应[J]. 气候变化研究进展, 2024, 20(5): 534-543. |
| [14] | 田利军, 徐森雨. 基于系统动力学模型的中国民航脱碳路径研究[J]. 气候变化研究进展, 2024, 20(4): 454-464. |
| [15] | 张靖宇, 曹龙. 海洋和陆地碳循环对二氧化碳正负排放响应的模拟研究[J]. 气候变化研究进展, 2024, 20(4): 416-427. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|