|
Climate Change Research ›› 2023, Vol. 19 ›› Issue (1): 23-37.doi: 10.12006/j.issn.1673-1719.2022.064
• Changes in Climate System • Previous Articles Next Articles
NIE Xin-Yu1(), TAN Hong-Jian1, CAI Rong-Shuo1(), GAO Xue-Jie2
Received:
2022-03-31
Revised:
2022-05-16
Online:
2023-01-30
Published:
2022-09-14
Contact:
NIE Xin-Yu,CAI Rong-Shuo
E-mail:niexinyu@tio.org.cn;cairongshuo@tio.org.cn
NIE Xin-Yu, TAN Hong-Jian, CAI Rong-Shuo, GAO Xue-Jie. Projection of the tropical cyclones landing in China in the future based on regional climate model[J]. Climate Change Research, 2023, 19(1): 23-37.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2022.064
Fig. 2 Observation (a), simulation (b), bias between simulation and observation (c) of 2 m air temperature (shaded) and wind field at 925 hPa (arrows) in summer during 1986-2005
Fig. 3 Observation (a), simulation (b), bias between simulation and observation (c) of 200-850 hPa vertical wind shear in summer during 1986-2005. (The black thick dotted line and black thick solid line are the contour lines of 12 m/s vertical wind shear observed and simulated, respectively)
Fig. 4 Observed (a) and simulated (b) landfall TC tracks with different intensity during 1986-2005, and observed track density (c), simulated track density (d), bias between simulated track density and observed track density (e) at 2°×2°grid point. (TS, STS, TY, STY, SSTY in the picture mean tropical storm, strong tropical storm, typhoon, strong typhoon, super typhoon, respectively)
Fig. 6 Difference distribution of track density of TCs landing in China at 2°×2° grid point in the future relative to the simulated value from 1986 to 2005 under three RCPs. (The black dots indicate the bias passing the significance test at the 90% confidence level)
Fig. 7 Annual average number of TCs with different intensity landing in China in the future under historical and three RCPs. (The vertical lines in the figure indicate one standard deviation of the study period and indicate the uncertainty range of TC number)
Fig. 9 Linear trends of sea surface temperature (a), 200-850 hPa vertical wind shear (b) in summer during 1986-2098 under the RCP8.5 scenario. (The thick black lines are the contours of 12 m/s vertical wind shear and the black dots indicate passing the significance test at the 99% confidence level)
[1] | Emanuel K. Increasing destructiveness of tropical cyclones over the past 30 years[J]. Nature, 2005, 436 (7051): 686-688 |
[2] | Xiao F J, Xiao Z N. Characteristics of tropical cyclones in China and their impacts analysis[J]. Natural Hazards, 2010, 54 (3): 827-837 |
[3] | Chan J C L. Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific[J]. Meteorology and Atmospheric Physics, 2005, 89 (1-4): 143-152 |
[4] | 黄荣辉, 王磊. 台风在我国登陆地点的年际变化及其与夏季东亚/太平洋型遥相关的关系[J]. 大气科学, 2010, 34 (5): 853-864. |
Huang R H, Wang L. Interannual variation of the landfalling locations of typhoons in China and its association with the summer East Asia/Pacific pattern teleconnection[J]. Chinese Journal of Atmospheric Sciences, 2010, 34 (5): 853-864 (in Chinese) | |
[5] | 许炜宏, 蔡榕硕. 海平面上升、强台风和风暴潮对厦门海域极值水位的影响及危险性预估[J]. 海洋学报, 2021, 43 (5): 14-26. |
Xu W H, Cai R S. Impacts of sea level rise, strong typhoon and storm surge on extreme sea level in coastal waters of Xiamen and hazards estimation[J]. Haiyang Xuebao, 2021, 43 (5): 14-26 (in Chinese) | |
[6] | Zhang Q, Wu L G, Liu Q F. Tropical cyclone damages in China 1983-2006[J]. Bulletin of The American Meteorological Society, 2009, 90 (4): 489-496 |
[7] |
许炜宏, 蔡榕硕. 不同气候情景下中国滨海城市海岸极值水位重现期预估[J]. 海洋通报, 2022. DOI: 10.11840/j.issn.1001-6392.2022.04.003.
doi: 10.11840/j.issn.1001-6392.2022.04.003 |
Xu W H, Cai R S. Estimating the return period of extreme water level in coastal cities of China under different climate scenarios[J]. Marine Science Bulletin, 2022. DOI: 10.11840/j.issn.1001-6392.2022.04.003 (in Chinese)
doi: 10.11840/j.issn.1001-6392.2022.04.003 URL |
|
[8] | Murakami H, Delworth T L, Cooke W F, et al. Detected climatic change in global distribution of tropical cyclones[J]. Proceedings of The National Academy of Sciences, 2020, 117 (20): 10706-10714 |
[9] | Wu L, Wen Z P, Huang R H. Tropical cyclones in a warming climate[J]. Science China: Earth Sciences, 2020, 63 (3): 456-458 |
[10] | 许向春, 于玉斌, 赵大军. 登陆中国不同强度热带气旋的变化特征[J]. 热带气象学报, 2009, 25 (6): 667-674. |
Xu X C, Yu Y B, Zhao D J. Variational characteristics of tropical cyclones making landfall in China with different intensity[J]. Journal of Tropical Meteorology, 2009, 25 (6): 667-674 (in Chinese) | |
[11] | 蔡榕硕, 刘克修, 谭红建. 气候变化对中国海洋和海岸带的影响、风险与适应对策[J]. 中国人口·资源与环境, 2020, 30 (9): 1-8. |
Cai R S, Liu K X, Tan H J. Impacts and risks of climate change on China’s coastal zones and seas and related adaptation[J]. China Population, Resources and Environment, 2020, 30 (9): 1-8 (in Chinese) | |
[12] | Kossin J P, Emanuel K A, Vecchi G A. The poleward migration of the location of tropical cyclone maximum intensity[J]. Nature, 2014, 509 (7500): 349-352 |
[13] | Chen T, Chen S M, Zhou M S, et al. Northward shift in landfall locations of tropical cyclones over the western North Pacific during the last four decades[J]. Advances in Atmospheric Sciences, 2022, 39 (2): 304-319 |
[14] | Li R C Y, Zhou W, Shun C M, et al. Change in destructiveness of landfalling tropical cyclones over China in recent decades[J]. Journal of Climate, 2017, 30 (9): 3367-3379 |
[15] | 王磊, 陈光华, 黄荣辉. 影响登陆我国不同区域热带气旋活动的大尺度环流定量分析[J]. 大气科学, 2009, 33 (5): 916-922. |
Wang L, Chen G H, Huang R H. Quantitative analysis on large scale circulation system modulating landfalling tropical cyclone activities in the diverse Chinese regions[J]. Chinese Journal of Atmospheric Sciences, 2009, 33 (5): 916-922 (in Chinese) | |
[16] | 冉令坤, 李舒文, 周玉淑, 等. 2021年河南“7.20”极端暴雨动、热力和水汽特征观测分析[J]. 大气科学, 2021, 45 (6): 1366-1383. |
Ran L K, Li S W, Zhou Y S, et al. Observational analysis of the dynamic, thermal, and water vapor characteristics of the “7.20” extreme rainstorm event in He’nan province, 2021[J]. Chinese Journal of Atmospheric Sciences, 2021, 45 (6): 1366-1383 (in Chinese) | |
[17] | 邱粲, 陈艳春, 刘焕彬, 等. 山东省区域性暴雨事件时空变化特征及个例分析: 以台风“利奇马”暴雨过程为例[J]. 气象科学, 2021, 41 (2): 183-190. |
Qiu C, Chen Y C, Liu H B, et al. Temporal and spatial variation characteristics and case analysis of regional rainstorm events in Shandong province: taking typhoon “Lekima” rain process as an example[J]. Journal of the Meteorological Sciences, 2021, 41 (2): 183-190 (in Chinese) | |
[18] | Knutson T, Camargo S J, Chan J C L, et al. Tropical cyclones and climate change assessment: part II. Projected response to anthropogenic warming[J]. Bulletin of The American Meteorological Society, 2020, 101 (3): 303-322 |
[19] | Murakami H, Hsu P C, Arakawa O, et al. Influence of model biases on projected future changes in tropical cyclone frequency of occurrence[J]. Journal of Climate, 2014, 27 (5): 2159-2181 |
[20] | 姚隽琛, 周天军, 邹立维. 基于气候系统模式FGOALS-g2的热带气旋活动及其影响的动力降尺度模拟[J]. 大气科学, 2018, 42 (1): 150-163. |
Yao J C, Zhou T J, Zou L W. Dynamical downscaling of tropical cyclone and associated rainfall simulations of FGOALS-g2[J]. Chinese Journal of Atmospheric Sciences, 2018, 42 (1): 150-163 (in Chinese) | |
[21] | Wu J, Gao X J, Zhu Y M, et al. Projection of the future changes in tropical cyclone activity affecting East Asia over the western North Pacific based on multi-RegCM4 simulations[J]. Advances in Atmospheric Sciences, 2022, 39 (2): 284-303 |
[22] | Wang C G, Liang J, Hodges K I. Projections of tropical cyclones affecting Vietnam under climate change: downscaled HadGEM2-ES using PRECIS 2.1[J]. Quarterly Journal of The Royal Meteorological Society, 2017, 143 (705): 1844-1859 |
[23] | Lok C C F, Chan J C L. Changes of tropical cyclone landfalls in South China throughout the twenty-first century[J]. Climate Dynamics, 2018, 51 (7-8): 2467-2483 |
[24] | Ying M, Zhang W, Yu H, et al. An overview of the China Meteorological Administration tropical cyclone database[J]. Journal of Atmospheric and Oceanic Technology, 2014, 31 (2): 287-301 |
[25] |
Hersbach H, Bell B, Berrisford P, et al. ERA5 monthly averaged data on pressure levels from 1979 to present[J]. Copernicus Climate Change Service (C3S)Climate Data Store (CDS), 2019. DOI: 10.24381/cds.6860a573
doi: 10.24381/cds.6860a573 URL |
[26] | Giorgi F, Coppola E, Solmon F, et al. RegCM4: model description and preliminary tests over multiple CORDEX domains[J]. Climate Research, 2012, 52 (1): 7-29 |
[27] | Gao X J, Shi Y, Han Z Y, et al. Performance of RegCM4 over major river basins in China[J]. Advances in Atmospheric Sciences, 2017, 34 (4): 441-455 |
[28] | 石英, 高学杰, Giorgi F, 等. 全球变暖背景下中国区域不同强度降水事件变化的高分辨率数值模拟[J]. 气候变化研究进展, 2010, 6 (3): 164-169. |
Shi Y, Gao X J, Giorgi F, et al. High resolution simulation of changes in different-intensity precipitation events over China under global warming[J]. Climate Change Research, 2010, 6 (3): 164-169 (in Chinese) | |
[29] | Giorgi F, Jones C, Asrar G R. Addressing climate information needs at the regional level: the CORDEX framework[J]. World Meteorological Organization (WMO) Bulletin, 2009, 58 (3): 175-183 |
[30] | Jiang D B, Tian Z P, Lang X M. Reliability of climate models for China through the IPCC Third to Fifth Assessment Reports[J]. International Journal of Climatology, 2016, 36 (3): 1114-1133 |
[31] | 栗晗, 凌铁军, 祖子清, 等. CMIP5模式对登陆中国热带气旋活动的模拟和预估[J]. 海洋预报, 2016, 33 (6): 10-21. |
Li H, Ling T J, Zu Z Q, et al. Climate change projection of the landfalling tropical cyclone in China: results of CMIP5 models[J]. Marine Forecasts, 2016, 33 (6): 10-21 (in Chinese) | |
[32] | Tong Y, Gao X J, Han Z Y, et al. Bias correction of temperature and precipitation over China for RCM simulations using the QM and QDM methods[J]. Climate Dynamics, 2021, 57 (5): 1425-1443 |
[33] | Bian J P, Fang J, Chen G H, et al. Circulation features associated with the record-breaking typhoon silence in August 2014[J]. Advances in Atmospheric Sciences, 2018, 35 (10): 1321-1336 |
[34] | Gray W M. Global view of the origin of tropical disturbances and storms[J]. Monthly Weather Review, 1968, 96 (10): 669-700 |
[35] | 白莉娜, 何敏, 王元, 等. 西北太平洋风速垂直切变异常对热带气旋活动年际变化的影响[J]. 气象学报, 2010, 68 (6): 877-884. |
Bai L N, He M, Wang Y, et al. The influence of the vertical wind shear variation on interannual changes in the tropical cyclone activity in the western North Pacific[J]. Acta Meteorologica Sinica, 2010, 68 (6): 877-884 (in Chinese) | |
[36] | 王一格, 姜大膀, 华维. 西北太平洋地区台风环境场的预估研究[J]. 大气科学, 2020, 44 (3): 552-564. |
Wang Y G, Jiang D B, Hua W. Projection of typhoon-related environmental fields in the western North Pacific[J]. Chinese Journal of Atmospheric Sciences, 2020, 44 (3): 552-564 (in Chinese) | |
[37] | 冯涛, 沈新勇, 黄荣辉, 等. 热带西太平洋越赤道气流的年际变化对西北太平洋热带气旋生成的影响[J]. 热带气象学报, 2014, 30 (1): 11-22. |
Feng T, Shen X Y, Huang R H, et al. Influence of the interannual variation of cross-equatorial flow on tropical cyclogenesis over the western North Pacific[J]. Journal of Tropical Meteorology, 2014, 30 (1): 11-22 (in Chinese) | |
[38] | Evans J L. Sensitivity of tropical cyclone intensity to sea surface temperature[J]. Journal of Climate, 1993, 6 (6): 1133-1140 |
[39] | Wang R F, Wu L G, Wang C. Typhoon track changes associated with global warming[J]. Journal of Climate, 2011, 24 (14): 3748-3752 |
[40] | Lee H, Jin C S, Cha D H, et al. Future change in tropical cyclone activity over the western North Pacific in CORDEX-East Asia multi-RCMs forced by HadGEM2-AO[J]. Journal of Climate, 2019, 32 (16): 5053-5067 |
[41] | Kanada S, Wada A, Sugi M. Future changes in structures of extremely intense tropical cyclones using a 2-km mesh nonhydrostatic model[J]. Journal of Climate, 2013, 26 (24): 9986-10005 |
[1] | SUN Xiao-Ling, XIE Wen-Xin, ZHOU Bo-Tao. CMIP6 evaluation and projection of terrestrial ecosystem over Asia [J]. Climate Change Research, 2023, 19(1): 49-62. |
[2] | ZHAN Yun-Jian, CHEN Dong-Hui, LIAO Jie, JU Xiao-Hui, ZHAO Yu-Fei, REN Guo-Yu. Construction of a daily precipitation dataset of 60 city stations in China for the period 1901-2019 [J]. Climate Change Research, 2022, 18(6): 670-682. |
[3] | ZHANG Shi-Yan, HU Yong-Yun, LI Zhi-Bo. Recent changes and future projection of precipitation in Northwest China [J]. Climate Change Research, 2022, 18(6): 683-694. |
[4] | ZHOU Jian-Qin, HUANG Wei, LI Meng, ZHENG Jian-Meng, LUO Meng, FU Rui. Dry-wet climate evolution feature and projection of future changes based on CMIP6 models in early summer over Yunnan province, China [J]. Climate Change Research, 2022, 18(4): 482-491. |
[5] | HAN Zhen-Yu, XU Ying, WU Jia, SHI Ying. Evaluation on the simulated runoff in China and future change projection based on multiple regional climate models [J]. Climate Change Research, 2022, 18(3): 305-318. |
[6] | LI Tao, TAO Hui, CHEN Jin-Yu. Risk assessment of extreme low temperature events over the China-Pakistan Economic Corridor [J]. Climate Change Research, 2022, 18(3): 343-354. |
[7] | WANG Xia, WANG Ying, LIN Qi-Gen, LI Ning, ZHANG Xin-Ren, ZHOU Xiao-Ying. Projection of China landslide disasters population risk under climate change [J]. Climate Change Research, 2022, 18(2): 166-176. |
[8] | WANG Qian-Zhi, LIU Kai, WANG Ming. Evaluation of extreme precipitation indices performance based on NEX-GDDP downscaling data over China [J]. Climate Change Research, 2022, 18(1): 31-43. |
[9] | ZHOU Bo-Tao, QIAN Jin. Changes of weather and climate extremes in the IPCC AR6 [J]. Climate Change Research, 2021, 17(6): 713-718. |
[10] | ZHAI Pan-Mao, ZHOU Bai-Quan, CHEN Yang, YU Rong. Several new understandings in the climate change science [J]. Climate Change Research, 2021, 17(6): 629-635. |
[11] | ZHOU Tian-Jun, CHEN Zi-Ming, CHEN Xiao-Long, ZUO Meng, JIANG Jie, HU Shuai. Interpreting IPCC AR6: future global climate based on projection under scenarios and on near-term information [J]. Climate Change Research, 2021, 17(6): 652-663. |
[12] | QI Ya-Jie, YAN Zhong-Wei, QIAN Cheng. Evaluation and projections of monthly temperature extremes over the Belt and Road region based on PDF-adjusted method [J]. Climate Change Research, 2021, 17(2): 151-161. |
[13] | TANG Zi-Chen, LI Qing-Quan, WANG Li-Juan, WU Li-Quan. Preliminary assessment on CMIP6 decadal prediction ability of air temperature over China [J]. Climate Change Research, 2021, 17(2): 162-174. |
[14] | YUAN Zhi-Yi, LI Zhen-Yu, KANG Li-Ping, TAN Xiao-Yu, ZHOU Xin-Jun, LI Xiao-Jin, LI Chao, PENG Tian-Duo, OU Xun-Min. A review of low-carbon measurements and transition pathway of transport sector in China [J]. Climate Change Research, 2021, 17(1): 27-35. |
[15] | REN Yong-Jian, XIAO Ying, ZHOU Bing. Simulation and projection of Arctic sea ice and climate by BCC-CSM2-MR [J]. Climate Change Research, 2021, 17(1): 58-69. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|