|
Climate Change Research ›› 2022, Vol. 18 ›› Issue (4): 482-491.doi: 10.12006/j.issn.1673-1719.2022.016
• Changes in Climate System • Previous Articles Next Articles
ZHOU Jian-Qin1(), HUANG Wei1(), LI Meng1, ZHENG Jian-Meng1, LUO Meng1, FU Rui2
Received:
2022-01-24
Revised:
2022-04-03
Online:
2022-07-30
Published:
2022-06-20
Contact:
HUANG Wei
E-mail:24095528@qq.com;hweimao12@163.com
ZHOU Jian-Qin, HUANG Wei, LI Meng, ZHENG Jian-Meng, LUO Meng, FU Rui. Dry-wet climate evolution feature and projection of future changes based on CMIP6 models in early summer over Yunnan province, China[J]. Climate Change Research, 2022, 18(4): 482-491.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2022.016
Fig. 1 Spatial distributions of AI (aridity index) average (a) and linear variation trend (b) in early summer of Yunnan province during 1961-2020. (The black dots represent the 95% confidence level)
Fig. 3 Distribution of 11-year moving average of AI, precipitation anomaly percentage and PET anomaly in early summer in Yunnan from 1961 to 2020 (relative to 1981-2010)
Fig. 4 Contribution of precipitation (a) and PET (b) to AI changes, the difference between absolute value of precipitation contribution and PET contribution (c) and percentage of AI anomaly during 1961-2020 (d) (relative to 1981-2010)
Fig. 5 Regional mean to every 10-year change of AI index, contribution of precipitation and potential evapotranspiration to AI changes over Yunnan during 1961-2020
Fig. 6 The AI anomaly percentage of Yunnan in early summer from 2021 to 2080 relative to 1995-2014, as derived from 20 CMIP6 models under SSP1-2.6 (a), SSP2-4.5 (b), and SSP5-8.5 (c), respectively
Fig. 8 AI anomaly percentage, contribution of regional precipitation and PET to the AI changes during 2021-2080 (a) SSP1-2.6, (b) SSP2-4.5, and (c) SSP5-8.5
[1] | 段旭, 尤卫红, 郑建萌. 云南旱涝特征[J]. 高原气象, 2000, 19 (1): 84-90. |
Duan X, You W H, Zheng J M. The drought and flood feature in Yunnan[J]. Plateau Meteorology, 2000, 19 (1): 84-90 (in Chinese) | |
[2] | 秦剑, 琚建华, 解明恩, 等. 低纬高原天气气候[M]. 北京: 气象出版社, 1997. |
Qin J, Ju J H, Xie M N, et al. Weather and climate in low latitude plateau[M]. Beijing: China Meteorological Press, 1997 (in Chinese) | |
[3] | 曹杰, 陶云, 杨若文, 等. 印太海气相互作用对中国低纬高原降水及地质灾害的影响[M]. 北京: 科学出版社, 2014. |
Cao J, Tao Y, Yang R W, et al. Effects of Indo-Pacific air interaction on precipitation and geological hazards in low latitude plateau of China[M]. Beijing: China Science Publishing & Media Ltd, 2014 (in Chinese) | |
[4] | 王裁云. 影响云南5月雨季开始的天气原因分析[C]// 全国热带夏季风会议文集编辑组. 全国热带夏季风会议文集. 昆明: 云南人民出版社, 1983. |
Wang C Y. Analysis of weather causes of the beginning of rainy season in Yunnan in May[C]// Editors of The Proceedings of The National Conference on Tropical Summer Monsoon. Kunming proceedings of the national conference on tropical summer monsoon. Kunming: Yunnan People’s Publishing Press, 1983 (in Chinese) | |
[5] | Wang B, Lin H. Rainy season of the Asian-Pacific summer monsoon[J]. Journal of Climate, 2002, 15: 1259-1272 |
[6] | 云南省气象局. 云南省气候公报[EB/OL]. 2020 [2021-12-01]. http://yn.cma.gov.cn/zfxxgk/zwgk/qxbg/202112/t20211217_4313089.html. |
Yunnan Meteorological Bureau. Yunnan climatic communiqué[EB/OL]. 2020 [2021-12-01]. http://yn.cma.gov.cn/zfxxgk/zwgk/qxbg/202112/t20211217_4313089.html (in Chinese) | |
[7] | 晏红明, 李清泉, 王东阡. 云南雨季的时空特征及与大气环流变化的关系[J]. 热带气象学报, 2018, 34 (1): 12-22. |
Yan H M, Li Q Q, Wang D Q. Studies on spatial-temporal characteristics of Yunnan rainy season and its relationship with atmospheric circulation[J]. Journal of Tropical Meteorology, 2018, 34 (1): 12-22 (in Chinese) | |
[8] |
梁红丽, 许美玲, 吕爱民, 等. 孟加拉湾风暴引发云南初夏强降水初探[J]. 高原气象, 2014, 33 (5): 1240-1250.
doi: 10.7522/j.issn.1000-0534.2013.00076 |
Liang H L, Xu M L, Lv A M, et al. Preliminary study on heavy rainfall in Yunnan in early summer initiated by Bengal Bay storm[J]. Plateau Meteorology, 2014, 33 (5): 1240-1250 (in Chinese) | |
[9] | 杨亚力, 杜岩, 陈海山, 等. ENSO事件对云南及临近地区春末初夏降水的影响[J]. 大气科学, 2011, 35 (4): 729-738. |
Yang Y L, Du Y, Chen H S, et al. Influence of ENSO event on rainfall anomaly over Yunnan province and its neighboring regions during late spring: early summer[J]. Chinese Journal of Atmospheric Science, 2011, 35 (4): 729-738 (in Chinese) | |
[10] | 汤阳, 杨若文, 胡金明, 等. 海表温度异常与中国低纬高原5月降水的ESVD研究[J]. 热带气象学报, 2013, 29 (3): 99-107. |
Tang Y, Yang R W, Hu J M, et al. ESVD analyses of the anomaly of sea surface temperature and the precipitation in may over low-latitude plateau of China[J]. Journal of Tropical Meteorology, 2013, 29 (3): 99-107 (in Chinese) | |
[11] | 张伟康. 孟加拉湾-青藏高原区域热力配置与云南五月雨量异常[D]. 云南: 云南大学, 2018. |
Zhang W K. Thermal configuration of the bay of Bengal-Tibetan Plateau region and the May precipitation anomaly in Yunnan[D]. Yunnan: Yunnan University, 2018 (in Chinese) | |
[12] | 马柱国, 符淙斌. 1951—2004年中国北方干旱化的基本事实[J]. 科学通报, 2006, 51 (20): 2429-2439. |
Ma Z G, Fu C B. Some evidence of drying trend over northern China from 1951 to 2004 [J]. Chinese Science Bulletin, 2006, 51 (20): 2429-2439 (in Chinese) | |
[13] |
李明, 孙洪泉, 苏志诚. 中国西北气候干湿变化研究进展[J]. 地理研究, 2021, 40 (4): 1180-1194.
doi: 10.11821/dlyj020200328 |
Li M, Sun H Q, Su Z C. Research progress in dry/wet climate variation in Northwest China[J]. Geographical Research, 2021, 40 (4): 1180-1194 (in Chinese) | |
[14] | 马柱国, 邵丽娟. 中国北方近百年干湿变化与太平洋年代际振荡的关系[J]. 大气科学, 2006, 30 (3): 464-474. |
Ma Z G, Shao L J. Relationship between dry/wet variation and the Pacific Decade Oscillation (PDO) in northern China during the last 100 years[J]. Chinese Journal of Atmospheric Sciences, 2006, 30 (3): 464-474 (in Chinese) | |
[15] | 王恺曦, 姜大膀, 华维. 中国干湿变化的高分辨率区域气候模式预估[J]. 大气科学, 2020, 44 (6): 1203-1212. |
Wang K X, Jiang D B, Hua W. Dry/wet climate projections over China using a high resolution regional climate model[J]. Chinese Journal of Atmospheric Sciences, 2020, 44 (6): 1203-1212 (in Chinese) | |
[16] |
Rong X Y, Li J, Chen H M, et al. 2021. The CMIP6 historical simulation datasets produced by the 264 climate system model CAMS-CSM[J]. Advances in Atmospheric Sciences, 38 (2): 285-295
doi: 10.1007/s00376-020-0171-y URL |
[17] |
Zhu H H, Jiang Z H, Li J, et al. 2020. Does CMIP6 inspire more confidence in simulating climate 360 extremes over China?[J]. Advances in Atmospheric Sciences, 37 (10): 1119-1132
doi: 10.1007/s00376-020-9289-1 URL |
[18] | 周天军, 陈梓明, 陈晓龙, 等. IPCC AR6报告解读: 未来的全球气候: 基于情景的预估和近期信息[J]. 气候变化研究进展, 2021, 17 (6): 652-663. |
Zhou T J, Chen Z M, Chen X L, et al. Interpreting IPCC AR6: future global climate based on projection under scenarios and on near-term information[J]. Climate Change Research, 2021, 17 (6): 652-663 (in Chinese) | |
[19] | Middleton N, Thomas D. World atlas of desertification[M]. UK: The Royal Geographical Society, 1999 |
[20] |
Thornthwaite C W. An approach toward a rational classification of climate[J]. Geographical Review, 1948, 38 (1): 55-94
doi: 10.2307/210739 URL |
[21] | Feng S, Fu Q. Expansion of global drylands under a warming climate[J]. Atmospheric Chemistry and Physics, 2013, 13 (19): 10081-10094 |
[22] | 许美玲, 段旭, 孙绩华. 云南初夏罕见暴雨的螺旋度分析[J]. 热带气象学报, 2003, 19 (2): 184-190. |
Xu M L, Duan X, Sun J H. Helicity ananlysis for high-wind and uncommon rainstorm processes over Yunnan in early summer[J]. Journal of Tropical Meteorology, 2003, 19 (2): 184-190 (in Chinese) | |
[23] | 姜江, 姜大膀, 林一骅. 中国干湿区变化与预估[J]. 大气科学, 2017, 41 (1): 43-56. |
Jiang J, Jiang D B, Lin Y H. Changes and projection of dry/wet areas over China[J]. Chinese Journal of Atmospheric Sciences, 2017, 41 (1): 43-56 (in Chinese) | |
[24] | 祁俊青. 基于多指数的西南云贵地区多年干湿变化时空特征及其对植被影响研究[D]. 南京: 南京信息工程大学, 2019, 28-35. |
Qi J Q. Spatial and temporal characteristics of dry and wet change and its influence on vegetation in the Yunnan-Guizhou region of the Southwest China based on multiple drought index[D]. Nanjing: Nanjing University of Information Science & Technology, 2019, 28-35 (in Chinese) | |
[25] | 黄中艳. 1961—2017年云南干季干湿气候变化研究[J]. 气候变化研究进展, 2010, 6 (2): 113-118. |
Huang Z Y. Dry-wet climate change of the dry season in Yunnan during 1961-2007 [J]. Climate Change Research, 2010, 6 (2): 113-118 (in Chinese) | |
[26] | Yang X, Zhou B T, Ying X U, et al. CMIP6 evaluation and projection of temperature and precipitation over China[J]. Advance in Atmospheric Sciences, 2021, 38 (5): 817-830 |
[27] |
Giorgi F, Coppola E, Solmon F, et al. RegCM4: model description and preliminary tests over multiple CORDEX domains[J]. Climate Research, 2012, 52: 7-29. DOI: 10.3354/cr01018
doi: 10.3354/cr01018 URL |
[1] | HAN Zhen-Yu, XU Ying, WU Jia, SHI Ying. Evaluation on the simulated runoff in China and future change projection based on multiple regional climate models [J]. Climate Change Research, 2022, 18(3): 305-318. |
[2] | ZHOU Bo-Tao, QIAN Jin. Changes of weather and climate extremes in the IPCC AR6 [J]. Climate Change Research, 2021, 17(6): 713-718. |
[3] | ZHAI Pan-Mao, ZHOU Bai-Quan, CHEN Yang, YU Rong. Several new understandings in the climate change science [J]. Climate Change Research, 2021, 17(6): 629-635. |
[4] | ZHOU Tian-Jun, CHEN Zi-Ming, CHEN Xiao-Long, ZUO Meng, JIANG Jie, HU Shuai. Interpreting IPCC AR6: future global climate based on projection under scenarios and on near-term information [J]. Climate Change Research, 2021, 17(6): 652-663. |
[5] | QI Ya-Jie, YAN Zhong-Wei, QIAN Cheng. Evaluation and projections of monthly temperature extremes over the Belt and Road region based on PDF-adjusted method [J]. Climate Change Research, 2021, 17(2): 151-161. |
[6] | REN Yong-Jian, XIAO Ying, ZHOU Bing. Simulation and projection of Arctic sea ice and climate by BCC-CSM2-MR [J]. Climate Change Research, 2021, 17(1): 58-69. |
[7] | ZHU Guang-Xi, XIAO Cun-De, CHEN Bo, ZHAO Ying-Dong. Spring snowmelt flood estimate in the upper Heihe River under climate change [J]. Climate Change Research, 2020, 16(6): 667-678. |
[8] | ZHAO Meng-Xia, SU Bu-Da, WANG Yan-Jun, WANG An-Qian, JIANG Tong. Impacts of climate change on river runoff at the Ganjiang and Guanting River basins in the eastern monsoon region [J]. Climate Change Research, 2020, 16(6): 679-689. |
[9] | CHEN Xi, LI Ning, ZHANG Zheng-Tao, LIU Jia-Wei, WANG Fang. Estimation of future global population exposure to heatwaves—based on the heat stress index [J]. Climate Change Research, 2020, 16(4): 424-432. |
[10] | Qi-Mou ZHANG,Run WANG,Tong JIANG,Song-Sheng CHEN. Projection of extreme precipitation in the Hanjiang River basin under different RCP scenarios [J]. Climate Change Research, 2020, 16(3): 276-286. |
[11] | Li-Xia ZHANG,Xiao-Long CHEN,Xiao-Ge XIN. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP) [J]. Climate Change Research, 2019, 15(5): 519-525. |
[12] | Cheng QIAN,Wen-Xia ZHANG. Short commentary on CMIP6 Detection and Attribution Model Intercomparison Project (DAMIP) [J]. Climate Change Research, 2019, 15(5): 469-475. |
[13] | Xiao-Jiang DING,Fang-Lei ZHONG,Jin-Huang MAO,Xiao-Yu SONG,Chun-Lin HUANG. Provincial urbanization projected to 2050 under the shared socioeconomic pathways in China [J]. Climate Change Research, 2018, 14(4): 392-401. |
[14] | Ying HAO,Jing-Jin MA,Jing-Jing AN,Yuan WANG,Hong-Mei XU. Projected changes in climate and river discharge in the Chaobai River Basin under 1.5℃ and 2.0℃ global warming [J]. Climate Change Research, 2018, 14(3): 237-246. |
[15] | Xiao-Fei JIANG,Wei LI,Qing-Long YOU. Probability projection and uncertainties of the temperature extreme indices change over China [J]. Climate Change Research, 2018, 14(3): 228-236. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|