|
Climate Change Research ›› 2022, Vol. 18 ›› Issue (6): 683-694.doi: 10.12006/j.issn.1673-1719.2021.281
• Changes in Climate System • Previous Articles Next Articles
ZHANG Shi-Yan(), HU Yong-Yun(), LI Zhi-Bo
Received:
2021-12-27
Revised:
2022-02-18
Online:
2022-11-30
Published:
2022-06-06
Contact:
HU Yong-Yun
E-mail:zhangsy2020@pku.edu.cn;yyhu@pku.edu.cn
ZHANG Shi-Yan, HU Yong-Yun, LI Zhi-Bo. Recent changes and future projection of precipitation in Northwest China[J]. Climate Change Research, 2022, 18(6): 683-694.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2021.281
Fig. 1 Climatological annual mean precipitation (a, b) and precipitation trends (c, d) over 1979-2019. (Regions with dots in plot (c) and solid circles in plot (d) indicate that precipitation changes are statistically significant at the 95% confidence level, with the Student t-test, the same below)
Fig. 2 Trends in monthly mean precipitation in Northwest China over 1979-2019. (Asterisks indicate that the trends are statistically significant at the 95% confidence level)
Fig. 3 Climatological annual mean precipitation (a) and precipitation trends (c) over 1979-2014 in CMIP6 historical simulations, as well as their differences (b, d) from GPCC
Fig. 4 Time series of seasonal mean precipitation anomalies in Northwest China over 1979-2100. (Precipitation anomalies are calculated by subtracting the mean precipitation of the first 5 years (1979-1983) of the time series. Gray, yellow and red shadings indicate the inter-model spreads of precipitation in the historical, SSP2-4.5 and SSP5-8.5 simulations, respectively)
Fig. 5 CMIP6 projected percentage of annual mean precipitation (a, b), evaporation (c, d) and net precipitation (e, f) changes in China over 2015-2100
Fig. 6 CMIP6 projected percentage of annual mean precipitation, evaporation and net precipitation changes in Northwest China over 2015-2100. (× denotes the ensemble mean. Circles denote results of individual models)
Fig. 8 Trends of annual mean 700 hPa geopotential heights over 2015-2100 regressed against the precipitation in Northwest China for SSP2-4.5 (a) and SSP5-8.5 (b). (Contours indicate climatological zonal anomalies of geopotential heights, and contour intervals are 10 m. Color shading indicates trends in geopotential heights)
Fig. 9 Trends of annual mean 700 hPa vertical velocity over 2015-2100 regressed against the precipitation in Northwest China for SSP2-4.5 (a) and SSP5-8.5 (b). (Contours indicate climatological vertical velocity, and contour intervals are 10-3 Pa/s. Color shading indicates trends in vertical velocity)
[1] | 施雅风, 沈永平, 胡汝骥. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨[J]. 冰川冻土, 2002, 24 (3): 219-226. |
Shi Y F, Shen Y P, Hu R J. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in Northwest China[J]. Journal of Glaciology and Geocryology, 2002, 24 (3): 219-226 (in Chinese) | |
[2] | Chen Y N, Xu Z X. Plausible impact of global climate change on water resources in the Tarim River basin[J]. Science in China (Series D: Earth Sciences), 2005, 48 (1): 65-73 |
[3] | 杨晓丹, 翟盘茂. 我国西北地区降水强度、频率和总量变化[J]. 科技导报, 2005, 23 (6): 24-26. |
Yang X D, Zhai P M. Changes in precipitation intensity, frequency and total in Northwest China[J]. Science & Technology Review, 2005, 23 (6): 24-26 (in Chinese) | |
[4] | 李栋梁, 魏丽, 蔡英, 等. 中国西北现代气候变化事实与未来趋势展望[J]. 冰川冻土, 2003, 25 (2): 135-142. |
Li D L, Wei L, Cai Y, et al. The present facts and the future tendency of the climate change in Northwest China[J]. Journal of Glaciology and Geocryology, 2003, 25 (2): 135-142 (in Chinese) | |
[5] | Li B F, Chen Y N, Xun S, et al. Temperature and precipitation changes in different environments in the arid region of Northwest China[J]. Theoretical & Applied Climatology, 2013, 112 (3-4): 589-596 |
[6] | 陈冬冬, 戴永久. 近五十年我国西北地区降水强度变化特征[J]. 大气科学, 2009, 33 (5): 923-935. |
Chen D D, Dai Y J. Characteristics of Northwest China rainfall intensity in recent 50 years[J]. Chinese Journal of Atmospheric Sciences, 2009, 33 (5): 923-935 (in Chinese) | |
[7] |
Wang H J, Chen Y N, Chen Z S. Spatial distribution and temporal trends of mean precipitation and extremes in the arid region, northwest of China, during 1960-2010[J]. Hydrological Processes, 2013, 27 (12): 1807-1818
doi: 10.1002/hyp.9339 URL |
[8] | Deng H J, Chen Y N, Xun S, et al. Dynamics of temperature and precipitation extremes and their spatial variation in the arid region of Northwest China[J]. Atmospheric Research, 2014 (138): 346-355 |
[9] | 王鹏翔, 何金海, 郑有飞, 等. 近44年来我国西北地区干湿特征分析[J]. 应用气象学报, 2007, 18 (6): 769-775. |
Wang P X, He J H, Zheng Y F, et al. Aridity-wetness characteristics over Northwest China in recent 44 years[J]. Journal of Applied Meteorological Science, 2007, 18 (6): 769-775 (in Chinese) | |
[10] | 中国气象局. 中国气候公报[M]. 北京: 气象出版社, 2017. |
China Meteorological Administration. China climate bulletin[M]. Beijing: China Meteorological Press, 2017 (in Chinese) | |
[11] | 中国气象局. 中国气候公报[M]. 北京: 气象出版社, 2018. |
China Meteorological Administration. China climate bulletin[M]. Beijing: China Meteorological Press, 2018 (in Chinese) | |
[12] | 中国气象局. 中国气候公报[M]. 北京: 气象出版社, 2019. |
China Meteorological Administration. China climate bulletin[M]. Beijing: China Meteorological Press, 2019 (in Chinese) | |
[13] | 中国气象局. 中国气候公报[M]. 北京: 气象出版社, 2020. |
China Meteorological Administration. China climate bulletin[M]. Beijing: China Meteorological Press, 2020 (in Chinese) | |
[14] | 张强, 张存杰, 白虎志, 等. 西北地区气候变化新动态及对干旱环境的影响[J]. 干旱气象, 2010, 28 (1): 1-7. |
Zhang Q, Zhang C J, Bai H Z, et al. New development of climate change in Northwest China and its impact on arid environment[J]. Journal of Arid Meteorology, 2010, 28 (1): 1-7 (in Chinese) | |
[15] | 杨金虎, 江志红, 刘晓芸, 等. 近半个世纪中国西北干湿演变及持续性特征分析[J]. 干旱区地理, 2012, 35 (1): 10-22. |
Yang J H, Jiang Z H, Liu X Y, et al. Influence research on spring vegetation of Eurasia to summer drought-wetness over the Northwest China[J]. Arid Land Geography, 2012, 35 (1): 10-22 (in Chinese) | |
[16] |
Chen H P, Sun J Q. How the “best” models project the future precipitation change in China[J]. Advances in Atmospheric Sciences, 2009, 26 (4): 773-782
doi: 10.1007/s00376-009-8211-7 URL |
[17] |
Feng L, Zhou T J, Wu B, et al. Projection of future precipitation change over China with a high-resolution global atmospheric model[J]. Advances in Atmospheric Sciences, 2011, 28 (2): 464-476
doi: 10.1007/s00376-010-0016-1 URL |
[18] |
Guo J H, Huang G H, Wang X Q, et al. Investigating future precipitation changes over China through a high-resolution regional climate model ensemble: future precipitation changes over China[J]. Earth’s Future, 2017, 5 (4): 285-303
doi: 10.1002/2016EF000433 URL |
[19] | 陈活泼. CMIP5模式对21世纪末中国极端降水事件变化的预估[J]. 科学通报, 2013, 58 (8): 743-752. |
Chen H P. Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models[J]. Chinese Science Bulletin, 2013, 58 (8): 743-752 (in Chinese) | |
[20] |
Wang Y J, Zhou B T, Qin D H, et al. Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: observation and projection[J]. Advances in Atmospheric Sciences, 2017, 34 (3): 289-305
doi: 10.1007/s00376-016-6160-5 URL |
[21] | IPCC. Climate change 2014: synthesis report[M]. Cambridge: Cambridge University Press, 2014: 151 |
[22] | Zhang R H, Tian W S, He X, et al. Enhanced influence of ENSO on winter precipitation over southern China in recent decades[J]. Journal of Climate, 2021, 34 (19): 7983-7994 |
[23] |
Zhang R H, Zhang S Y, Luo J L, et al. Analysis of near-surface wind speed change in China during 1958-2015[J]. Theoretical and Applied Climatology, 2019, 137 (3): 2785-2801
doi: 10.1007/s00704-019-02769-0 URL |
[24] | Eischeid J K, Pasteris P A, Diaz H F, et al. Creating a serially complete, national daily time series of temperature and precipitation for the western United States[J]. Journal of Applied Meteorology and Climatology, 2000, 39 (9): 1580-1591 |
[25] | Alexandersson H. A homogeneity test applied to precipitation data[J]. International Journal of Climatology, 1986 (6): 661-675 |
[26] | 何冬燕, 田红, 邓伟涛. 多种方法在年平均风速均一性检验中的效果对比分析[J]. 大气科学学报, 2012, 3: 342-349. |
He D Y, Tian H, Deng W T. Comparative analysis of the effects of different methods in homogeneity test on annual mean wind speed[J]. Transactions of Atmospheric Science, 2012, 3: 342-349 (in Chinese) | |
[27] |
Wang X L, Wen Q Z, Wu Y H. Penalized maximal t test for detecting undocumented mean change in climate data series[J]. Journal of Applied Meteorology and Climatology, 2007, 46 (6): 916-931
doi: 10.1175/JAM2504.1 URL |
[28] |
Buishand T A. Some methods for testing the homogeneity of rainfall records[J]. Journal of Hydrology, 1982, 58 (1): 11-27
doi: 10.1016/0022-1694(82)90066-X URL |
[29] |
Wijngaard J B, Klein Tank A M G, Konnen G P. Homogeneity of 20th century European daily temperature and precipitation series[J]. International Journal of Climatology, 2003, 23 (6): 679-692
doi: 10.1002/joc.906 URL |
[30] | Schneider U, Andreas B, Pete F, et al. GPCC full data reanalysis version 6.0 at 1.0°: monthly land-surface precipitation from Rain-Gauges built on GTS-based and historic data[EB/OL]. 2011 [2021-12-27]. https://psl.noaa.gov/data/gridded/data.gpcc.html |
[31] | Eyring V, Bony S, Meehl G A, et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization[J]. Geoscientific Model Development Discussions, 2015, 8 (12): 10539-10583 |
[32] | IPCC. Climate change 2021: the physical science basis[M]. Cambridge: Cambridge University Press, 2021 |
[33] |
Zhou L T, Wu R G. Interdecadal variability of winter precipitation in Northwest China and its association with the North Atlantic SST change[J]. International Journal of Climatology, 2015, 35: 1172-1179
doi: 10.1002/joc.4047 URL |
[34] |
Chen G S, Huang R H. Excitation mechanisms of the teleconnection patterns affecting the July precipitation in Northwest China[J]. Journal of Climate, 2012, 25 (22): 7834-7851
doi: 10.1175/JCLI-D-11-00684.1 URL |
[35] | 冯蕾, 周天军. 高分辨率MRI模式对青藏高原夏季降水及水汽输送通量的模拟[J]. 大气科学, 2015, 39 (2): 386-398. |
Feng L, Zhou T J. Simulation of summer precipitation and associated water vapor transport over the Tibetan Plateau by meteorological research institute model[J]. Chinese Journal of Atmospheric Sciences, 2015, 39 (2): 386-398 (in Chinese) | |
[36] | 徐蓉蓉, 梁信忠, 段明铿. CWRF对青藏高原气温和降水模拟效果的综合评估[J]. 大气科学学报, 2021, 44 (1): 104-117. |
Xu R R, Liang X Z, Duan M J. Evaluation of CWRF simulation of temperature and precipitation on the Qinghai-Tibet Plateau[J]. Transactions of Atmospheric Science, 2021, 44 (1): 104-117 (in Chinese) | |
[37] |
Li M X, Wu P L, Ma Z G. A comprehensive evaluation of soil moisture and soil temperature from third-generation atmospheric and land reanalysis data sets[J]. International Journal of Climatology, 2020, 40 (13): 5744-5766
doi: 10.1002/joc.6549 URL |
[38] |
Li M X, Ma Z G, Gu H P, et al. Production of a combined land surface data set and its use to assess land-atmosphere coupling in China[J]. Journal of Geophysical Research: Atmospheres, 2017, 122 (2): 948-965
doi: 10.1002/2016JD025511 URL |
[39] |
Li B F, Chen Y N, Chen Z S, et al. Why does precipitation in Northwest China show a significant increasing trend from 1960 to 2010?[J]. Atmospheric Research, 2016, 167: 275-284
doi: 10.1016/j.atmosres.2015.08.017 URL |
[40] |
Jiang J, Zhou T J, Chen X L, et al. Central Asian precipitation shaped by the tropical Pacific decadal variability and the Atlantic multidecadal variability[J]. Journal of Climate, 2021, 34 (18): 7541-7553
doi: 10.1175/JCLI-D-20-0905.1 URL |
[41] |
Chen F H, Yu Z C, Yang M L, et al. Holocene moisture in arid central Asia and its out-of-phase relationship with Asian monsoon variability[J]. Quaternary Science Reviews, 2008, 27 (3): 351-364
doi: 10.1016/j.quascirev.2007.10.017 URL |
[42] |
Huang J P, Li Y, Fu C B, et al. Dryland climate change: recent progress and challenges[J]. Reviews of Geophysics, 2017, 55 (3): 719-778
doi: 10.1002/2016RG000550 URL |
[43] |
Peng D D, Zhou T J. Why was the arid and semiarid northwest China getting wetter in the recent decades?[J]. Journal of Geophysical Research: Atmospheres, 2017, 122 (17): 9060-9075
doi: 10.1002/2016JD026424 URL |
[44] | Jiang J, Zhou T J. Human-induced rainfall reduction in drought-prone northern Central Asia[J]. Geophysical Research Letters, 2021, 48 (7): 1-9 |
[45] | 任国玉, 袁玉江, 柳艳菊, 等. 我国西北干燥区降水变化规律[J]. 干旱区研究, 2016, 33 (1): 1-19. |
Ren G Y, Yuan Y J, Liu Y J, et al. Changes in precipitation over Northwest China[J]. Arid Zone Research, 2016, 33 (1): 1-19 (in Chinese) | |
[46] |
Xu D Z, Lin Y L. Impacts of irrigation and vegetation growth on summer rainfall in the Taklimakan desert[J]. Advances in Atmospheric Sciences, 2021, 38 (11): 1863-1872
doi: 10.1007/s00376-021-1042-x URL |
[47] | 许靖华. 太阳、气候、饥荒与民族大迁移[J]. 中国科学: D辑, 1998, 28 (4): 366-384. |
Xu J H. Sun, climate, famine and national migration[J]. Sciences in China: Series D, 1998, 28 (4): 366-384 (in Chinese) | |
[48] |
Zhou T J, Li B, Man W M, et al. A comparison of the Medieval Warm Period, Little Ice Age and 20th century warming simulated by the FGOALS climate system model[J]. Chinese Science Bulletin, 2011, 56 (28): 3028-3041
doi: 10.1007/s11434-011-4641-6 URL |
[49] |
Wang S W, Zhou T J, Cai J N, et al. Abrupt climate change around 4 ka BP: role of the thermohaline circulation as indicated by a GCM experiment[J]. Advances in Atmospheric Sciences, 2004, 21 (2): 291-295
doi: 10.1007/BF02915716 URL |
[50] | 张洁, 周天军, 满文敏, 等. 气候系统模式FGOALS_gl模拟的小冰期气候[J]. 第四纪研究, 2009, 29 (6): 1125-1134. |
Zhang J, Zhou T J, Man W M, et al. The transient simulation of little ice age by LASG/IAP climate system model FGOALS_gl[J]. Quaternary Sciences, 2009, 29 (6): 1125-1134 (in Chinese) | |
[51] |
Zhai L X, Qi F. Spatial and temporal pattern of precipitation and drought in Gansu province, Northwest China[J]. Natural Hazards, 2009, 49 (1): 1-24
doi: 10.1007/s11069-008-9274-y URL |
[52] | Han L Y, Zhang Q, Zhang Z C, et al. Drought area, intensity and frequency changes in China under climate warming, 1961-2014[J]. Journal of Arid Environments, 2021, 193: 1-9 |
[53] |
Dai A G. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2013, 3: 52-58
doi: 10.1038/nclimate1633 URL |
[54] |
Wang Q, Zhai P M, Qin D H. New perspective on ‘warming-wetting’ trend in Xinjiang, China[J]. Advances in Climate Change Research, 2020, 11 (3): 252-260
doi: 10.1016/j.accre.2020.09.004 URL |
[1] | WANG An-Qian, TAO Hui, FANG Ze-Hua. Cropland exposure to drought in Central Asia under the 1.5℃ and 2.0℃ global warming scenarios [J]. Climate Change Research, 2022, 18(6): 695-706. |
[2] | ZHAN Yun-Jian, CHEN Dong-Hui, LIAO Jie, JU Xiao-Hui, ZHAO Yu-Fei, REN Guo-Yu. Construction of a daily precipitation dataset of 60 city stations in China for the period 1901-2019 [J]. Climate Change Research, 2022, 18(6): 670-682. |
[3] | MIAO Wen-Fei, LIU Shi-Yin, ZHU Yu, DUAN Shi-Mei, HAN Feng-Ze. Spatio-temporal differentiation and altitude dependence of temperature and precipitation in Meili Snow Mountains [J]. Climate Change Research, 2022, 18(3): 328-342. |
[4] | YE Tian, YU Jin-Hua, SHI Xin-Chi. Comparison in developing process between extreme regional flash drought and traditional drought events [J]. Climate Change Research, 2022, 18(3): 319-327. |
[5] | WANG Xia, WANG Ying, LIN Qi-Gen, LI Ning, ZHANG Xin-Ren, ZHOU Xiao-Ying. Projection of China landslide disasters population risk under climate change [J]. Climate Change Research, 2022, 18(2): 166-176. |
[6] | ZHANG Xin-Ran, CHEN Hao-Ming. Assessment of warm season precipitation in the eastern slope of the Tibetan Plateau by CMIP6 models [J]. Climate Change Research, 2022, 18(2): 129-141. |
[7] | LI Ying, ZHAO Shan-Shan. Floods losses and hazards in China from 2001 to 2020 [J]. Climate Change Research, 2022, 18(2): 154-165. |
[8] | WANG Qian-Zhi, LIU Kai, WANG Ming. Evaluation of extreme precipitation indices performance based on NEX-GDDP downscaling data over China [J]. Climate Change Research, 2022, 18(1): 31-43. |
[9] | SUN Chen, WANG Fang, ZHOU Yue-Hua, LI Lan. An assessment on extreme precipitation events in Yangtze River basin as simulated by CWRF regional climate model [J]. Climate Change Research, 2022, 18(1): 44-57. |
[10] | YU Fei, CUI Hui-Juan, GE Quan-Sheng. Evaluation of water-related adaptation measures in Nationally Determined Contributions of Belt and Road countries [J]. Climate Change Research, 2022, 18(1): 70-80. |
[11] | ZHOU Tian-Jun, CHEN Zi-Ming, CHEN Xiao-Long, ZUO Meng, JIANG Jie, HU Shuai. Interpreting IPCC AR6: future global climate based on projection under scenarios and on near-term information [J]. Climate Change Research, 2021, 17(6): 652-663. |
[12] | HU Yi-Yang, XU Ying, LI Jin-Jian, HAN Zhen-Yu. Evaluation on the performance of CMIP6 global climate models with different horizontal resolution in simulating the precipitation over China [J]. Climate Change Research, 2021, 17(6): 730-743. |
[13] | CHEN Yan, HUI Pin-Hong, ZHOU Xue-Dong, YANG Jie. Influence of climate change on the volume capture ratio of annual rainfall’s partition [J]. Climate Change Research, 2021, 17(5): 525-536. |
[14] | QI Li, YANG Rui-Ting. Variation of southerly wind on the southeast side of Tibetan Plateau under global warming: comparison among CMIP5 simulations [J]. Climate Change Research, 2021, 17(4): 430-443. |
[15] | FANG Jia-Yi, YIN Jie, SHI Xian-Wu, FANG Jian, DU Shi-Qiang, LIU Min. A review of compound flood hazard research in coastal areas [J]. Climate Change Research, 2021, 17(3): 317-328. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|