[1] |
Stanley T, Kirschbaum D, Zhou Y. Spatial and temporal analysis of a global landslide catalog[J]. Geomorphology, 2015, 249(15):4-15
doi: 10.1016/j.geomorph.2015.03.016
URL
|
[2] |
Froude M J, Petley D N. Global fatal landslide occurrence from 2004 to 2016[J]. Natural Hazards and Earth System Sciences, 2018, 18:2161-2181
|
[3] |
Diffenbaugh N S, Field C. Changes in ecologically critical terrestrial climate conditions[J]. Science, 2013, 341(6145):486-492
doi: 10.1126/science.1237123
pmid: 23908225
|
[4] |
IPCC. Climate change 2014: synthesis report [M]. Cambridge: Cambridge University Press, 2014: 151
|
[5] |
Kharin V V, Zwiers F W, Zhang X, et al. Changes in temperature and precipitation extremes in the CMIP5 ensemble[J]. Climatic Change, 2013, 119:345-357
doi: 10.1007/s10584-013-0705-8
URL
|
[6] |
Westra S, Fowler H J, Evans J P, et al. Future changes to the intensity and frequency of short-duration extreme rainfall[J]. Reviews of Geophysics, 2014, 52:52-555
|
[7] |
Gariano S L, Guzzetti F. Landslides in a changing climate[J]. Earth-Science Reviews, 2016, 162:227-252
doi: 10.1016/j.earscirev.2016.08.011
URL
|
[8] |
Lin Q, Wang Y, Glade T,, et al. Assessing the spatiotemporal impact of climate change on event rainfall characteristics influencing landslide occurrences based on multiple GCM projections in China[J]. Climatic Change, 2020 (11):162, 761-779
|
[9] |
Kirschbaum D, Kapnick S B, Stanley T, et al. Changes in extreme precipitation and landslides over high mountain Asia[J]. Geophysical Research Letters, 2020, 47(4):1-9
|
[10] |
Gariano S L, Rianna G, Petrucci O, et al. Assessing future changes in the occurrence of rainfall-induced landslides at a regional scale[J]. The Science of The Total Environment, 2017 (596-597):417-426
|
[11] |
Lin Q, Ying W. Spatial and temporal analysis of a fatal landslide inventory in China from 1950 to 2016[J]. Landslides, 2018: 1-16
|
[12] |
Hungr O, Leroueil S, Picarelli L. The Varnes classification of landslide types, an update[J]. Landslides, 2014, 11(2):167-194
doi: 10.1007/s10346-013-0436-y
URL
|
[13] |
支泽民, 陈琼, 张强, 等. 地理探测器在判别滑坡稳定性影响因素中的应用: 以西藏江达县为例[J]. 中国地质灾害与防治学报, 2021, 32(2):19-26.
|
|
Zhi Z M, Chen Q, Zhang Q, et al. Application of geographic detector in identifying influencing factors of landslide stability: a case study of the Jiangda county, Tibet[J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2):19-26 (in Chinese)
|
[14] |
熊俊楠, 朱吉龙, 苏鹏程, 等. 基于GIS与信息量模型的溪洛渡库区滑坡危险性评价[J]. 长江流域资源与环境, 2019, 28(3):700-711.
|
|
Xiong J N, Zhu J L, Su P C, et al. Risk assessment of landslide in the Xiluodu reservoir area based on GIS and information value method[J]. Resources and Environment in The Yangtze Basin, 2019, 28(3):700-711 (in Chinese)
|
[15] |
王瑛, 林齐根, 史培军. 中国地质灾害伤亡事件的空间格局及影响因素[J]. 地理学报, 2017, 72(5):906-917.
doi: 10.11821/dlxb201705011
|
|
Wang Y, Lin Q G, Shi P J. Spatial pattern and influencing factors of casualty events caused by landslides[J]. Acta Geographica Sinica, 2017, 72(5):906-917 (in Chinese)
|
[16] |
陈晓晨, 徐影, 许崇海. CMIP5全球气候模式对中国地区降水模拟能力的评估[J]. 气候变化研究进展, 2014, 10(3):217-225.
|
|
Chen X C, Xu Y, Xu C H. Assessment of precipitation simulations in China by CMIP5 multi-models[J]. Climate Change Research, 2014, 10(3):217-225 (in Chinese)
|
[17] |
刘星才, 汤秋鸿, 尹圆圆. 气候变化下中国未来综合环境风险区划研究[J]. 地理科学, 2018, 38(4):636-644.
doi: 10.13249/j.cnki.sgs.2018.04.018
|
|
Liu X C, Tang Q H, Yin Y Y. Regionalization of integrated environmental risk of China under future climate change[J]. Scientia Geographica Sinica, 2018, 38(4):636-644 (in Chinese)
|
[18] |
张奇谋, 王润, 姜彤, 等. RCPs情景下汉江流域未来极端降水的模拟与预估[J]. 气候变化研究进展, 2020, 16(3):276-286.
|
|
Zhang Q M, Wang R, Jiang T, et al. Projection of extreme precipitation in the Hanjiang River basin under different RCP scenarios[J]. Climate Change Research, 2020, 16(3):276-286 (in Chinese)
|
[19] |
Yue Z, Ying W, Yu C, et al. Projection of changes in flash flood occurrence under climate change at tourist attractions[J]. Journal of Hydrology, 2021, 595:1-11
|
[20] |
Willmott C J, Feddema J J. A more rational climatic moisture index[J]. The Professional Geographer, 1992, 44(1):84-88
doi: 10.1111/j.0033-0124.1992.00084.x
URL
|
[21] |
翁宇威, 蔡闻佳, 王灿. 共享社会经济路径(SSPs)的应用与展望[J]. 气候变化研究进展, 2020, 16(2):215-222.
|
|
Weng Y W, Cai W J, Wang C. The application and future directions of the shared socioeconomic pathways (SSPs)[J]. Climate Change Research, 2020, 16(2):215-222 (in Chinese)
|
[22] |
Murakami D, Yamagata Y. Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling[J]. Sustainability, 2019, 11:2106
doi: 10.3390/su11072106
URL
|
[23] |
Yu J L, Jie C, Tao P, Global socioeconomic risk of precipitation extremes under climate change[J]. Earth's Future, 2020, 8(9):1-15
|
[24] |
Nadim F, Kjekstad O, Peduzzi P, et al. Global landslide and avalanche hotspots[J]. Landslides, 2006, 3(2):159-173
doi: 10.1007/s10346-006-0036-1
URL
|
[25] |
Jaedicke C, Eeckhaut M, Nadim F, et al. Identification of landslide hazard and risk ‘hotspots' in Europe[J]. Bulletin of Engineering Geology & The Environment, 2014, 73(2):325-339
|
[26] |
Lin L, Lin Q, Wang Y. Landslide susceptibility mapping on a global scale using the method of logistic regression[J]. Natural Hazards and Earth System Sciences, 2017, 17(8):1411-1424
|
[27] |
吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013, 56(4):1102-1111.
|
|
Wu J, Gao X J. A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013, 56(4):1102-1111 (in Chinese)
|
[28] |
潘旸, 谷军霞, 宇婧婧, 等. 中国区域高分辨率多源降水观测产品的融合方法试验[J]. 气象学报, 2018, 76(5):755-766.
|
|
Pan Y, Gu J X, Yu J J, et al. Test of merging methods for multi-source observed precipitation products at high resolution over China[J]. Acta Meteorologica Sinica, 2018, 76(5):755-766 (in Chinese)
|
[29] |
沈艳, 潘旸, 宇婧婧, 等. 中国区域小时降水量融合产品的质量评估[J]. 大气科学学报, 2013, 36(1):37-46.
|
|
Shen Y, Pan Y, Yu J J, et al. Quality assessment of hourly merged precipitation product over China[J]. Transactions of Atmospheric Sciences, 2013, 36(1):37-46 (in Chinese)
|
[30] |
Liu X L, Miao C. Large-scale assessment of landslide hazard, vulnerability and risk in China[J]. Geomatics Natural Hazards and Risk, 2018, 9(1):1037-1052
doi: 10.1080/19475705.2018.1502690
URL
|
[31] |
San Diego C A, O'Neill B C, Kriegler E, et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways[J]. Climatic Change, 2014, 122:401-414
doi: 10.1007/s10584-013-0971-5
URL
|
[32] |
Villani V, Rianna G, Mercogliano P, et al. Statistical approaches versus weather generator to downscale RCM outputs to slope scale for stability assessment: a comparison of performances[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 20:1495-1515
|
[33] |
Melchiorre C, Frattini P. Modelling probability of rainfall-induced shallow landslides in a changing climate, Otta, Central Norway[J]. Climatic Change, 2012, 113:413-436
doi: 10.1007/s10584-011-0325-0
URL
|
[34] |
陶云, 唐川. 人类活动和降水变化对滑坡泥石流中长期演变的影响[J]. 高原气象, 2012, 31(5):1454-1460.
|
|
Tao Y, Tang C. Influence of human activity and precipitation change on middle-long term evolution of landslide and debris flow disasters[J]. Plateau Meteorology, 2012, 31(5):1454-1460 (in Chinese)
|
[35] |
Depicker A, Jacobs L, Mboga N, et al. Historical dynamics of landslide risk from population and forest-cover changes in the Kivu Rift[J]. Nature Sustainability, 2021, 9:445
|