气候变化研究进展 ›› 2020, Vol. 16 ›› Issue (5): 591-599.doi: 10.12006/j.issn.1673-1719.2019.012
收稿日期:
2019-01-11
出版日期:
2020-09-30
发布日期:
2020-09-30
通讯作者:
张华
作者简介:
赵敏,女,硕士研究生
基金资助:
ZHAO Min1,2, ZHANG Hua1(), WANG Hai-Bo2, ZHU Li2
Received:
2019-01-11
Online:
2020-09-30
Published:
2020-09-30
Contact:
ZHANG Hua
摘要:
为了了解区域云顶高度对过去气候变化的响应,基于卫星搭载的MODIS传感器提供的2000年3月至2018年2月MOD03_08_v6.0数据,分析了东亚地区云顶高度2000—2018年的时空变化特征,并探讨其长期变化的原因。研究发现,东亚地区云顶高度呈西南高东北低的特征。云顶高度在东亚地区以0.020 km/a的变率增长,其中大陆东部云顶高度的年际变率为0.035 km/a,东部海域年际变率为0.034 km/a。在东部海域地区云顶高度的变化同海表温度的变化相关性较高,相关系数为0.68,这表明云顶高度的变化受下垫面的影响。在东亚地区30°~40°N区域内,年平均云顶高度的增加较为明显。此外,夏季云顶高度在长江中下游盆地、塔里木盆地、吐鲁番盆地以及四川盆地东北部呈-0.03 km/a的减少趋势,这是由于更多低云的形成降低了云顶高度;冬季云顶高度在东亚地区40°N以北呈下降趋势,而在40°N以南呈增加趋势。
赵敏, 张华, 王海波, 朱丽. 2000—2018年东亚地区云顶高度的时空变化特征[J]. 气候变化研究进展, 2020, 16(5): 591-599.
ZHAO Min, ZHANG Hua, WANG Hai-Bo, ZHU Li. The change of cloud top height over East Asia during 2000-2018[J]. Climate Change Research, 2020, 16(5): 591-599.
图1 东亚地区2000年3月至2018年2月云顶高度空间分布 注:黑框左边为东亚大陆东部,右边为东部海域地区。
Fig. 1 Spatial distributions of cloud top height (CTH) from March 2000 to February 2018 over East Asia in annual (a),summer (b) and winter (c)
图2 2000—2018年东亚地区及其子区域的云顶高度(CTH)及其影响因素时间序列
Fig. 2 Time series of (a) monthly CTH, and (b) its anomaly over East Asia and the sub-regions, (c) anomaly of CTH over the east Pacific Ocean center and El Ni?o 3.4 index, (d) CTH and SST over eastern sea, (e) the anomaly of CTH and SST over eastern sea, and (f) the anomaly of CTH and near surface temperature over eastern land during 2000-2018
图4 东亚地区云顶高度、总云量和水汽柱总量在全年、夏季和冬季变化率的空间分布 注:黑点表示通过0.05的显著性检验。
Fig. 4 The spatial distribution of variation of CTH (a-c), total cloud fraction (d-f) and water vapor column (g-i)
[1] | Liou K N, Davies R. Radiation and cloud processes in the atmosphere[J]. Physics Today, 1993,46(9):66-67 |
[2] | 张华, 谢冰, 刘煜, 等. 东亚地区云对地球辐射收支和降水变化的影响研究[J]. 中国基础科学, 2017,5:18-28. |
Zhang H, Xie B, Liu Y, et al. The interaction between natural and anthropogenic factors with their regional performance driven by global change[J]. China Basic Science, 2017,5:18-28 (in Chinese) | |
[3] |
Zhao C F, Garrett T J. Effect of arctic haze on surface cloud radiative forcing[J]. Geophysical Research Letters, 2015,42(2):557-564
doi: 10.1002/2014GL062015 URL |
[4] | IPCC. Climate change 2014: mitigation of climate change [M]. Cambridge and New York: Cambridge University Press, 2014 |
[5] | 张华, 彭杰, 荆现文, 等. 东亚地区云的垂直重叠特性及其对云辐射强迫的影响[J]. 中国科学: 地球科学, 2013 (4):523-535. |
Zhang H, Peng J, Jing X W, et al. Vertical overlapping characteristics of clouds in East Asia and their effects on cloud radiative forcing[J]. China Science: Earth Science, 2013 (4):523-535 (in Chinese) | |
[6] |
彭杰, 张华, 沈新勇. 东亚地区云垂直结构的CloudSat卫星观测研究[J]. 大气科学, 2013,37(1):91-100.
doi: 10.3878/j.issn.1006-9895.2012.11188 URL |
Peng J, Zhang H, Shen X Y. Analysis of vertical structure of clouds in East Asian with CloudSat data[J]. Chinese Journal of Atmospheric Sciences, 2013,37(1):91-100 (in Chinese) | |
[7] |
Yang Y K, Zhao C F. Spatiotemporal distributions of cloud properties over China based on Himawari: 8 advanced Himawari imager data[J]. Atmospheric Research, 2020,240:104927
doi: 10.1016/j.atmosres.2020.104927 URL |
[8] |
Zhao C F, Chen Y Y, Li J M, et al. Fifteen-year statistical analysis of cloud characteristics over China using Terra and Aqua Moderate Resolution Imaging Spectroradiometer observations[J]. International Journal of Climatology, 2019,39(5):2612-2629
doi: 10.1002/joc.2019.39.issue-5 URL |
[9] |
Wang W C, Rossow W B, Yao M S, et al. Climate sensitivity of a one-dimensional radiative-convective model with cloud feedback[J]. Journal of the Atmospheric Sciences, 1981,38(6):1167-1178
doi: 10.1175/1520-0469(1981)038<1167:CSOAOD>2.0.CO;2 URL |
[10] |
Ramanathan V, Cess R D, Harrison E F, et al. Cloud-radiative forcing and climate: results from the Earth radiation budget experiment[J]. Science, 1989,243(4887):57-63
doi: 10.1126/science.243.4887.57 URL pmid: 17780422 |
[11] | Dong X, Baike X, Crosby K, et al. A 10 year climatology of Arctic cloud fraction and radiative forcing at Barrow, Alaska[J]. Journal of Geophysical Research Atmospheres, 2010,115(D17212):1-14 |
[12] | Butt N, New M, Lizcano G, et al. Spatial patterns and recent trends in cloud fraction and cloud-related diffuse radiation in Amazonia[J]. Journal of Geophysical Research Atmospheres, 2009,114(D21104):1-9 |
[13] |
Yang Y, Russell L M, Xu L, et al. Impacts of ENSO events on cloud radiative effects in preindustrial conditions: changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations[J]. Journal of Geophysical Research: Atmospheres, 2016,121(11):6321-6335
doi: 10.1002/jgrd.v121.11 URL |
[14] | Bao S H, Husi L T, Zhao J, et al. Spatiotemporal distributions of cloud parameters and the temperature response over the Mongolian plateau during 2006-2015 based on MODIS data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018: 1-10 |
[15] | 曾昭美, 严中伟. 近40年中国云量变化的分析[J]. 大气科学, 1993,2012(6):688-696. |
Zeng Z M, Yan Z W. An analysis of cloudiness in China during 1950-1988[J]. Chinese Journal of Atmospheric Sciences, 1993,2012(6):688-696 (in Chinese) | |
[16] | 丁守国, 赵春生, 石广玉, 等. 近20年全球总云量变化趋势分析[J]. 应用气象学报, 2005,16(5):670-677. |
Ding S G, Zhao C S, Shi G Y, et al. Analysis of global total cloud amount variation over the past 20 years[J]. Journal of Applied Meteorological Science, 2005,16(5):670-677 (in Chinese) | |
[17] | 吴伟, 王式功. 中国北方云量变化趋势及其与区域气候的关系[J]. 高原气象, 2011,30(3):651-658. |
Wu W, Wang S G. Tendency change of cloud over northern China and its relation with regional climate[J]. Plateau Meteorology, 2011,30(3):651-658 (in Chinese) | |
[18] | 刘柏鑫, 李栋梁. 我国云量时空变化特征及其与副热带夏季风北边缘带关系研究[J]. 气象, 2018,44(3):382-395. |
Spatio-temporal variation features of cloud cover in China and its correlation to north boundary belt of subtropical summer monsoon[J]. Meteorological Monthly, 2018,44(3):382-395 (in Chinese) | |
[19] |
Simpson J J, Mcintire T, Jin Z, et al. Improved cloud top height retrieval under arbitrary viewing and illumination conditions using AVHRR data[J]. Remote Sensing of Environment, 2000,72(1):95-110
doi: 10.1016/S0034-4257(99)00095-4 URL |
[20] |
Fischer J, Grassl H. Detection of cloud-top height from backscattered radiances within the oxygen A band. Part 1: theoretical study[J]. Journal of Applied Meteorology, 1991,30(1991):1245-1259
doi: 10.1175/1520-0450(1991)030<1245:DOCTHF>2.0.CO;2 URL |
[21] |
Baum B A, Wielicki B A. Cirrus cloud retrieval using infrared sounding data: multilevel cloud errors[J]. Journal of Applied Meteorology, 2010,33(1):107-117
doi: 10.1175/1520-0450(1994)033<0107:CCRUIS>2.0.CO;2 URL |
[22] |
Naud C M, Baum B A, Pavolonis M, et al. Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap[J]. Remote Sensing of Environment, 2007,107(1):200-210
doi: 10.1016/j.rse.2006.09.030 URL |
[23] | Holz R E, Ackerman S A, Nagle F W, et al. Global Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection and height evaluation using CALIOP[J]. Journal of Geophysical Research: Atmospheres, 2008,113(D00A19):1-17 |
[24] | 宇路, 傅云飞. 基于星载微波雷达和激光雷达探测的夏季云顶高度及云量差异分析[J]. 气象学报, 2017,75(6):955-965. |
Yu L, Fu Y F. Analysis of cloud-top height and cloud amount difference between spaceborne microwave radar and laser radar detection in boreal summer[J]. Acta Meteorologica Sinica, 2017,75(6):955-965 (in Chinese) | |
[25] | 薛小宁, 邓小波, 刘贵华. 基于卫星资料的青藏高原卷云特性研究[J]. 高原气象, 2018,37(2):204-212. |
Xue X N, Deng X B, Liu G H. Study on characteristics of Qinghai-Tibetan Plateau cirrus based on satellite data[J]. Plateau Meteorology, 2018,37(2):204-212 (in Chinese) | |
[26] |
Loyola R D G, Thomas W, Spurr R, et al. Global patterns in daytime cloud properties derived from GOME backscatter UV-VIS measurements[J]. International Journal of Remote Sensing, 2010,31(16):4295-4318
doi: 10.1080/01431160903246741 URL |
[27] | Davies R, Molloy M. Global cloud height fluctuations measured by MISR on Terra from 2000 to 2010[J]. Geophysical Research Letters, 2012,39(L03701):1-6 |
[28] | Evan A T, Norris J R. On global changes in effective cloud height[J]. Geophysical Research Letters, 2012,39(19710):1-4 |
[29] | Barnes W, Pagano T S, Salomonson V V. Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1[J]. IEEE Trans on Geoscience & Remote Sensing, 1998,36(4):1088-1100 |
[30] | King M D, Menzel W P, Kaufman Y J, et al. Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity from MODIS[J]. IEEE Transactions on Geoscience & Remote Sensing, 2003,41(2):442-458 |
[31] |
汪会, 罗亚丽, 张人禾. 用CloudSat/CALIPSO资料分析亚洲季风区和青藏高原地区云的季节变化特征[J]. 大气科学, 2011,35(6):1117-1131.
doi: 10.3878/j.issn.1006-9895.2011.06.11 URL |
Wang H, Luo Y L, Zhang R H. Analyzing seasonal variation of clouds over the Asian monsoon regions and the Tibetan Plateau region using CloudSat/CALIPSO data[J]. Chinese Journal of Atmospheric Sciences, 2011,35(6):1117-1131 (in Chinese) | |
[32] |
Lelli L, Kokhanovsky A A, Rozanov V V, et al. Trends in cloud top height from passive observations in the oxygen A-band[J]. Atmospheric Chemistry and Physics, 2014,14(11):5679-5692
doi: 10.5194/acp-14-5679-2014 URL |
[33] |
Wagner T, Beirle S, Deutschmann T, et al. Dependence of cloud properties derived from spectrally resolved visible satellite observations on surface temperature[J]. Atmospheric Chemistry and Physics, 2008,8:2299-2312
doi: 10.5194/acp-8-2299-2008 URL |
[34] |
Long D, Shen Y, Sun A, et al. Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data[J]. Remote Sensing of Environment, 2014,155:145-160
doi: 10.1016/j.rse.2014.08.006 URL |
[35] | Mieruch S, Noël S, Reuter M, et al. Global water vapor trends from satellite data compared with radiosonde measurements[J]. AGU Fall Meeting Abstracts, 2008,8:491-504 |
[36] |
Lu H, Zhang Y W, Cai J. Consistency and differences between remotely sensed and surface observed total cloud cover over China[J]. International Journal of Remote Sensing, 2015,36:4160-4176
doi: 10.1080/01431161.2015.1072651 URL |
[37] | Ma J J, Wu C, Wang X, et al. Multiyear satellite and surface observations of cloud fraction over China[J]. Journal of Geophysical Research, 2014,119:7655-7666 |
[38] |
Wang Y, Zhao C F. Can MODIS cloud fraction fully represent the diurnal and seasonal variations at DOE ARM SGP and Manus sites?[J]. Journal of Geophysical Research: Atmospheres, 2017,122:329-343
doi: 10.1002/2016JD025954 URL |
[39] | 刘玉洁, 杨忠东. MODIS遥感信息信息处理原理与算法[M]. 北京: 科学出版社, 2001: 74-109. |
Liu Y J, Yang Z D. The principle and algotithm for processing the remote sensing information from MODIS [M]. Bejing: Science Press, 2001: 74-109(in Chinese) |
[1] | 运晓博, 汤秋鸿, 徐锡蒙, 周园园, 刘星才, 王杰, 孙思奥. 气候变化对澜湄流域上下游水资源合作潜力的影响[J]. 气候变化研究进展, 2020, 16(5): 555-563. |
[2] | 苏勃, 效存德. 冰冻圈影响区恢复力研究和实践:进展与展望[J]. 气候变化研究进展, 2020, 16(5): 579-590. |
[3] | 李林, 申红艳, 刘彩红, 校瑞香. 青海湖水位波动对气候暖湿化情景的响应及其机理研究[J]. 气候变化研究进展, 2020, 16(5): 600-608. |
[4] | 孙丽丽, 崔惠娟, 葛全胜. “一带一路”沿线主要国家碳捕集、利用和封存潜力与前景研究[J]. 气候变化研究进展, 2020, 16(5): 609-616. |
[5] | 付琳, 周泽宇, 杨秀. 适应气候变化政策机制的国际经验与启示[J]. 气候变化研究进展, 2020, 16(5): 641-651. |
[6] | 史培军, 杨文涛. 山区孕灾环境下地震和极端天气气候对地质灾害的影响[J]. 气候变化研究进展, 2020, 16(4): 405-414. |
[7] | 徐粒, 李倩, 王瑛, 黄靖玲, 许映军. 气候变化情景下泥石流危险性响应分析[J]. 气候变化研究进展, 2020, 16(4): 415-423. |
[8] | 王天鹏, 滕飞. 可计算一般均衡框架下的气候变化经济影响综合评估[J]. 气候变化研究进展, 2020, 16(4): 480-490. |
[9] | 李柔珂, 韩振宇, 徐影, 石英, 吴佳. 高分辨率区域气候变化降尺度数据对京津冀地区高温GDP和人口暴露度的集合预估[J]. 气候变化研究进展, 2020, 16(4): 491-504. |
[10] | 袁媛, 李国庆. 日本多主体适应气候变化框架机制及对中国的启示——基于法律政策的视角[J]. 气候变化研究进展, 2020, 16(4): 505-515. |
[11] | 田丹宇, 郑文茹. 国外应对气候变化的立法进展与启示[J]. 气候变化研究进展, 2020, 16(4): 526-534. |
[12] | 张奇谋,王润,姜彤,陈松生. RCPs情景下汉江流域未来极端降水的模拟与预估[J]. 气候变化研究进展, 2020, 16(3): 276-286. |
[13] | 黄鹤楼,邹旭恺,丁烨毅,陈鲜艳,石英,肖风劲. 气候变化对宁波四明山人体舒适度的影响[J]. 气候变化研究进展, 2020, 16(3): 316-324. |
[14] | 张小全, 谢茜, 曾楠. 基于自然的气候变化解决方案[J]. 气候变化研究进展, 2020, 16(3): 336-344. |
[15] | 樊星,王际杰,王田,高翔. 马德里气候大会盘点及全球气候治理展望[J]. 气候变化研究进展, 2020, 16(3): 367-372. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|