气候变化研究进展 ›› 2020, Vol. 16 ›› Issue (5): 579-590.doi: 10.12006/j.issn.1673-1719.2020.015
收稿日期:
2020-01-16
修回日期:
2020-04-28
出版日期:
2020-09-30
发布日期:
2020-09-30
通讯作者:
效存德
作者简介:
苏勃,男,博士研究生, 基金资助:
Received:
2020-01-16
Revised:
2020-04-28
Online:
2020-09-30
Published:
2020-09-30
Contact:
XIAO Cun-De
摘要:
气候变化引起全球冰冻圈各要素普遍退缩,进而深刻影响着区域生态安全和社会经济发展。恢复力(resilience)以降低脆弱性为目标,维持和培育社会-生态系统应对外界胁迫和干扰的能力,为应对冰冻圈变化引起的负面影响、实现区域可持续发展提供了重要的理论和实践框架。文中辨识了全球变暖背景下冰冻圈过程和功能变化对主要社会-生态系统的影响,综述了当前冰冻圈影响区恢复力相关的主要研究和实践进展,探讨了加强冰冻圈影响区社会-生态系统恢复力的路径。我们认为未来要进一步加强区域和全球冰冻圈变化及其影响综合评估,深入研究冰冻圈影响区社会-生态系统变化的驱动机制、级联效应和稳态转换;在实践上将减缓、适应和转型有机结合,建立管控区域社会-生态系统演化的综合监测、评估、预警和决策系统,从而促进系统朝着更具恢复力和可持续的路径发展。
苏勃, 效存德. 冰冻圈影响区恢复力研究和实践:进展与展望[J]. 气候变化研究进展, 2020, 16(5): 579-590.
SU Bo, XIAO Cun-De. Research and practice on socio-ecological systems resilience over cryosphere affected areas: progress and prospects[J]. Climate Change Research, 2020, 16(5): 579-590.
图1 冰冻圈服务/灾害及其直接相关的主要社会-生态系统 注:冰冻圈服务分类体系依据文献[5],冰冻圈灾害分类体系依据文献[7],不同颜色线条代表冰冻圈服务/灾害与不同社会-生态系统的关联。
Fig. 1 Cryosphere services & disasters and associated socio-ecological systems
图2 社会-生态系统适应性循环(a)与扰沌(b)模型[41,42,43,44] 注:适应性循环理论认为社会-生态系统演化都将依次经过开发(r)、保护(K)、释放(Ω)和更新(α) 4个阶段,构成一个适应性循环[42,43,44],系统在不同阶段可供选择的发展空间(潜力)、内部连通性(connectedness)以及抵抗干扰能力(恢复力)存在显著差异。扰沌理论进一步提供了系统内跨尺度作用的联结模式,认为系统内不同等级/尺度的子系统演化通过“记忆”或“反抗”相互依赖,从而形成一种扰沌现象[41]。
Fig. 2 Adaptive Cycle and Panarchy models for socio-ecological systems[41,42,43,44]
[1] | IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013 |
[2] |
Qin D, Ding Y, Xiao C, et al. Cryospheric science: research framework and disciplinary system[J]. National Science Review, 2017,5(2):255-268
doi: 10.1093/nsr/nwx108 URL |
[3] | IPCC. Special report on the ocean and cryosphere in a changing climate [M/OL]. 2019 [2019-09-20]. https://archive.ipcc.ch/srocc/ |
[4] | Xiao C D, Wang S J, Qin D H. A preliminary study of cryosphere service function and value evaluation[J]. Advances in Climate Change Research, 2015 (6):181-187 |
[5] | Su B, Xiao C, Chen D, et al. Cryosphere services and human well-being[J]. Sustainability, 2019,11(16):4365 |
[6] | Mukherji A, Sinisalo A, Nüsser M, et al. Contributions of the cryosphere to mountain communities in the Hindu Kush Himalaya: a review[J]. Regional Environmental Change, 2019,19(5):1311-1326 |
[7] | Wang S, Xiao C. Global cryospheric disaster at high risk areas: impacts and trend[J]. Chinese Science Bulletin, 2019,64(9):891-901 |
[8] | Adler C, Huggel C, Orlove B, et al. Climate change in the mountain cryosphere: impacts and responses[J]. Regional Environmental Change, 2019 (19):1225-1228 |
[9] | 效存德, 苏勃, 王晓明, 等. 冰冻圈功能及其服务衰退的级联风险[J]. 科学通报, 2019. DOI: 10.1360/N972018-01314. |
Xiao C D, Su B, Wang X, et al. Cascading risks to the deterioration in cryospheric functions and services[J]. Chinese Science Bulletin, 2019. DOI: 10.1360/N972018-01314 (in Chinese) | |
[10] | Schellnhuber H J. Tipping elements in the Earth system[J]. Proceedings of the National Academy of Sciences, 2009,106(49):20561-20563 |
[11] | Lenton T M, Held H, Kriegler E, et al. Tipping elements in the Earth’s climate system[J]. Proceedings of the National Academy of Sciences, 2008,105(6):1786-1793 |
[12] | 苏勃, 高学杰, 效存德. IPCC《全球1.5℃增暖特别报告》冰冻圈变化及其影响解读[J]. 气候变化研究进展, 2019,15(4):395-404. |
Su B, Gao X J, Xiao C D. Interpretation of IPCC SR1.5 on cryosphere change and its impacts[J]. Climate Change Research, 2019,15(4):395-404 (in Chinese) | |
[13] | IPCC. Special report on global warming of 1.5℃ [M]. UK: Cambridge University Press, 2018 |
[14] | Schellnhuber H J, Rahmstorf S, Winkelmann R. Why the right climate target was agreed in Paris[J]. Nature Climate Change, 2016,6(7):649 |
[15] | Steffen W, Rockstræm J, Richardson K, et al. Trajectories of the Earth system in the Anthropocene[J]. Proceedings of the National Academy of Sciences, 2018,115(33):8252-8259 |
[16] |
Folke C. Resilience (republished)[J]. Ecology and Society, 2016,21(4). DOI: 10.5751/ES-09088-210444
URL pmid: 27774109 |
[17] | 陈德亮, 秦大河, 效存德, 等. 气候恢复力及其在极端天气气候灾害管理中的应用[J]. 气候变化研究进展, 2019,15(2):167-177. |
Chen D, Qin D H, Xiao C D,et al. Climate resilience and its implications for China[J]. Climate Change Research, 2019,15(2):167-177 (in Chinese) | |
[18] |
Folke C, Jansson ?, Rockstræm J, et al. Reconnecting to the biosphere[J]. Ambio, 2011,40(7):719
URL pmid: 22338712 |
[19] | Folke C, Carpenter S, Walker B, et al. Resilience thinking: integrating resilience, adaptability and transformability[J]. Ecology and Society, 2010,15(4). DOI: 10.5751/ES-03610-150420 |
[20] | Ding Y, Zhang S, Zhao L, et al. Global warming weakening the inherent stability of glaciers and permafrost[J]. Science Bulletin, 2019,64(4):245-253 |
[21] | 王世金, 丁永建, 效存德. 冰冻圈变化对经济社会系统的综合影响及其适应性管理策略[J]. 冰川冻土, 2018,40(5):863-874. |
Wang S J, Ding Y J, Xiao C D. Integrated impacts of cryosphere change on the economic and social system and its adaptive management strategies[J]. Journal of Glaciology and Geocryology, 2018,40(5):863-874 (in Chinese) | |
[22] |
Schuur E A G, McGuire A D, Schädel C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015,520(7546):171-179
doi: 10.1038/nature14338 URL pmid: 25855454 |
[23] |
Vonk J E, Sánchez-García L, van Dongen B E, et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia[J]. Nature, 2012,489(7414):137
URL pmid: 22932271 |
[24] | Koven C D, Ringeval B, Friedlingstein P, et al. Permafrost carbon-climate feedbacks accelerate global warming[J]. Proceedings of the National Academy of Sciences, 2011,108(36):14769-14774 |
[25] |
Coumou D, Lehmann J, Beckmann J. The weakening summer circulation in the Northern Hemisphere mid-latitudes[J]. Science, 2015,348(6232):324-327
URL pmid: 25765067 |
[26] | Huss M, Bookhagen B, Huggel C, et al. Toward mountains without permanent snow and ice[J]. Earth’s Future, 2017,5(5):418-435 |
[27] | Huss M, Hock R. Global-scale hydrological response to future glacier mass loss[J]. Nature Climate Change, 2018,8(2):135 |
[28] | Carey M, Molden O C, Rasmussen M B, et al. Impacts of glacier recession and declining meltwater on mountain societies[J]. Annals of the American Association of Geographers, 2017,107(2):350-359 |
[29] |
Bolch T. Hydrology: Asian glaciers are a reliable water source[J]. Nature, 2017,545(7653):161
URL pmid: 28492260 |
[30] |
Chen Y, Li W, Deng H, et al. Changes in central Asia’s water tower: past, present and future[J]. Scientific Reports, 2016,6:35458
doi: 10.1038/srep35458 URL pmid: 27762285 |
[31] | Wanders N, Wada Y, van Lanen H A J. Global hydrological droughts in the 21st century under a changing hydrological regime[J]. Earth System Dynamics, 2015,6(1):1-15 |
[32] | Mankin J S, Viviroli D, Singh D, et al. The potential for snow to supply human water demand in the present and future[J]. Environmental Research Letters, 2015,10(11):114016 |
[33] | Bliss A, Hock R, Radić V. Global response of glacier runoff to twenty-first century climate change[J]. Journal of Geophysical Research: Earth Surface, 2014,119(4):717-730 |
[34] |
Immerzeel W W, van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science, 2010,328(5984):1382-1385
doi: 10.1126/science.1183188 URL pmid: 20538947 |
[35] | Overeem I, Anderson R S, Wobus C W, et al. Sea ice loss enhances wave action at the Arctic coast[J]. Geophysical Research Letters, 2011,38(17). DOI: 10.1029/2011Gl048681 |
[36] | Lantuit H, Pollard W H. Fifty years of coastal erosion and retrogressive thaw slump activity on Herschel Island, southern Beaufort Sea, Yukon Territory, Canada[J]. Geomorphology, 2008,95(1-2):84-102 |
[37] | ICIMOD. The Hindu Kush Himalaya assessment: mountains, climate change, sustainability and people [M]. Cham, Switzerland: Springer International Publishing, 2019 |
[38] | Holling C S. Resilience and stability of ecological systems[J]. Annual Review of Ecology and Systematics, 1973,4(1):1-23 |
[39] | Vayda A P, McCay B J. New directions in ecology and ecological anthropology[J]. Annual Review of Anthropology, 1975,4(1):293-306 |
[40] | 徐耀阳, 李刚, 崔胜辉, 等. 韧性科学的回顾与展望:从生态理论到城市实践[J]. 生态学报, 2018,38(15):5297-5304. |
Xu Y Y, Li G, Cui S H, et al. Review and perspective on resilience science: from ecological theory to urban practice[J]. Acta Ecologica Sinica, 2018,38(15):5297-5304 (in Chinese) | |
[41] | Gunderson L H. Panarchy: understanding transformations in human and natural systems [M]. Washington, DC: Island Press, 2001 |
[42] | 孙晶, 王俊, 杨新军. 社会-生态系统恢复力研究综述[J]. 生态学报, 2007,27(12):5371-5381. |
Sun J, Wang J, Yang X J. An overview on the resilience of social-ecological systems[J]. Acta Ecologica Sinica, 2007,27(12):5371-5381 (in Chinese) | |
[43] | Clark W C, Munn R E. Sustainable development of the biosphere [M]. Cambridge: Cambridge University Press, 1986 |
[44] | Holling C S, Gunderson L H, Light S. Barriers and bridges to the renewal of ecosystems [M]. New York: Columbia University Press, 1995 |
[45] | Lebel L, Anderies J M, Campbell B, et al. Governance and the capacity to manage resilience in regional social-ecological systems[J]. Ecology and Society, 2006,11(1):19 |
[46] | Béné C, Wood R G, Newsham A, et al. Resilience: new utopia or new tyranny? Reflection about the potentials and limits of the concept of resilience in relation to vulnerability reduction programmes[J]. IDS Working Papers, 2012 (405):1-61 |
[47] | Tschakert P, Dietrich K A. Anticipatory learning for climate change adaptation and resilience[J]. Ecology and Society, 2010,15(2):11 |
[48] |
Sellberg M M, Ryan P, Borgstræm S T, et al. From resilience thinking to resilience planning: lessons from practice[J]. Journal of Environmental Management, 2018,217:906-918
URL pmid: 29665570 |
[49] |
Zhou H, Wang X, Wang J. A way to sustainability: perspective of resilience and adaptation to disaster[J]. Sustainability, 2016,8(8):737
doi: 10.3390/su8080737 URL |
[50] |
Chapin III F S, Sommerkorn M, Robards M D, et al. Ecosystem stewardship: a resilience framework for arctic conservation[J]. Global Environmental Change, 2015,34:207-217
doi: 10.1016/j.gloenvcha.2015.07.003 URL |
[51] |
Biggs R, Schlüter M, Biggs D, et al. Toward principles for enhancing the resilience of ecosystem services[J]. Annual Review of Environment and Resources, 2012,37:421-448
doi: 10.1146/annurev-environ-051211-123836 URL |
[52] | Zautra A J, Arewasikporn A, Davis M C. Resilience: promoting well-being through recovery, sustainability, and growth[J]. Research in Human Development, 2010,7(3):221-238 |
[53] | Falkenmark M, Wang-Erlandsson L, Rockstræm J. Understanding of water resilience in the Anthropocene[J]. Journal of Hydrology X, 2019,2:100009 |
[54] |
Sellberg M, Borgstræm S, Norstræm A, et al. Improving participatory resilience assessment by cross-fertilizing the resilience alliance and transition movement approaches[J]. Ecology and Society, 2017,22(1). DOI: 10.5751/ES-09051-220128
URL pmid: 29780425 |
[55] | Quinlan A E, Berbés-Blázquez M, Haider L J, et al. Measuring and assessing resilience: broadening understanding through multiple disciplinary perspectives[J]. Journal of Applied Ecology, 2016,53(3):677-687 |
[56] | Sellberg M, Wilkinson C, Peterson G. Resilience assessment: a useful approach to navigate urban sustainability challenges[J]. Ecology and Society, 2015,20(1). DOI: 10.5751/ES-07258-200143 |
[57] | Frazier T G, Thompson C M, Dezzani R J, et al. Spatial and temporal quantification of resilience at the community scale[J]. Applied Geography, 2013,42:95-107 |
[58] |
Alessa L, Kliskey A, Lammers R, et al. The arctic water resource vulnerability index: an integrated assessment tool for community resilience and vulnerability with respect to freshwater[J]. Environmental Management, 2008,42(3):523
URL pmid: 18560929 |
[59] | Tu C, Suweis S, D'Odorico P. Impact of globalization on the resilience and sustainability of natural resources[J]. Nature Sustainability, 2019,2(4):283 |
[60] | May C K. Resilience, vulnerability & transformation: exploring community adaptability in coastal North Carolina[J]. Ocean & Coastal Management, 2019,169:86-95 |
[61] | Yletyinen J. Arctic climate resilience[J]. Nature Climate Change, 2019,9:805-806. DOI: 10.1038/s41558-019-0616-4 |
[62] | Arctic Council. Arctic resilience report[M]. Stockholm: Stockholm Environment Institute and Stockholm Resilience Centre, 2016 |
[63] | Petrov A N, BurnSilver S, Chapin III F S, et al. Arctic sustainability research: toward a new agenda[J]. Polar Geography, 2016,39(3):165-178 |
[64] | Birchall S J, MacDonald S. Climate change impacts and resilience: an Arctic case study[M] //Leal F W, Azul A, Brandli L, et al. Climate action, encyclopedia of the UN sustainable development goals. Springer: Cham, 2019: 1-12 |
[65] | Abdelrahim S, Clement J. The Arctic resilience action framework: a new paradigm for regional cooperation to build resilience [R/OL]. 2017 [2020-01-16]. https://arcticyearbook.com/arctic-yearbook/2017/2017-briefing-notes/248-the-arctic-resilience-action-framework-a-new-paradigm-for-regional-cooperation-to-build-resilience |
[66] | Sustainable Development Working Group and Arcitic Council. Examples of building resilience across the Arctic region [R/OL]. 2019 [2020-01-16]. https://www.sdwg.org/wp-content/uploads/2019/05/Compilation-of-Examples-re-ARAF-Final-Report-2019.pdf |
[67] |
Immerzeel W W, Lutz A F, Andrade M, et al. Importance and vulnerability of the world’s water towers[J]. Nature, 2020,577(7790):364-369
doi: 10.1038/s41586-019-1822-y URL pmid: 31816624 |
[68] | Chape S, Spalding M, Jenkins M. The world’s protected areas: status, values and prospects in the 21st century [M]. California: University of California Press, 2008 |
[69] | Kærner C, Jetz W, Paulsen J, et al. A global inventory of mountains for bio-geographical applications[J]. Alpine Botany, 2017,127(1):1-15 |
[70] | Lutz A F, Immerzeel W W, Shrestha A B, et al. Consistent increase in High Asia’s runoff due to increasing glacier melt and precipitation[J]. Nature Climate Change, 2014,4(7):587 |
[71] | Gardner J S, Dekens J. Mountain hazards and the resilience of social-ecological systems: lessons learned in India and Canada[J]. Natural Hazards, 2007,41(2):317-336 |
[72] |
Luthe T, Wyss R, Schuckert M. Network governance and regional resilience to climate change: empirical evidence from mountain tourism communities in the Swiss Gotthard region[J]. Regional Environmental Change, 2012,12(4):839-854
doi: 10.1007/s10113-012-0294-5 URL |
[73] |
Stadel C H. Vulnerability, resilience and adaptation: rural development in the tropical Andes[J]. Pirineos, 2008,163(15):15-36
doi: 10.3989/pirineos.2008.v163 URL |
[74] | Government of Nepal National Planning Commission. Climate-resilient planning: a tool for long-term climate adaptation [R/OL]. 2011 [2020-01-16]. https://lib.icimod.org/record/17213?ln=en |
[75] | World Meteorological Organization (WMO). Avoiding the impending crisis in mountain weather, climate, snow, ice and water: pathways to a sustainable global future [R]. WMO: High Mountain Summit, 2019 |
[76] |
Hauer M E, Fussell E, Mueller V, et al. Sea-level rise and human migration[J]. Nature Review Earth Environment, 2020,1:1-12
doi: 10.1038/s43017-019-0017-2 URL |
[77] |
Nicholls R J, Branson J. Coastal resilience and planning for an uncertain future: an introduction[J]. The Geographical Journal, 1998,164(3):255-258
doi: 10.2307/3060614 URL |
[78] |
Adger W N, Hughes T P, Folke C, et al. Social-ecological resilience to coastal disasters[J]. Science, 2005,309(5737):1036-1039
doi: 10.1126/science.1112122 URL pmid: 16099974 |
[79] | Greater London Authority. Managing climate risks and increasing resilience [R]. London: Greater London Authority, 2011 |
[80] | Mayor of New York City. A stronger, more resilient New York [R/OL]. 2013 [2020-01-16]. https://toolkit.climate.gov/reports/stronger-more-resilient-new-york |
[81] | Pacific Community. Framework for resilient development in the Pacific: an integrated approach to address climate change and disaster risk management (FRDP), 2017-2030 [R/OL]. 2016 [2020-01-16]. https://www.pacificclimatechange.net/document/frdp_2016 |
[82] | Bronen R. Climate-induced community relocations: using integrated social-ecological assessments to foster adaptation and resilience[J]. Ecology and Society, 2015,20(3). DOI: 10.5751/ES-07801-200336 |
[83] | 徐一剑. 我国沿海城市应对气候变化的发展战略[J]. 气候变化研究进展, 2020,16(1):88-98. |
Xu Y J. Development strategy of China’s coastal cities for addressing climate change[J]. Climate Change Research, 2020,16(1):88-98 (in Chinese) | |
[84] | Rockefeller Foundation. Rebound: building a more resilient world[M]. New York: Rockefeller Foundation, 2013 |
[85] | IPCC. Climate change 2007: impacts, adaptation and vulnerability [M]. Cambridge: Cambridge University Press, 2007 |
[1] | 刘世伟, 王晓明, 效存德, 杨洋, 吴雪娇. 中国积雪气候调节服务价值评估[J]. 气候变化研究进展, 2020, 16(5): 536-544. |
[2] | 运晓博, 汤秋鸿, 徐锡蒙, 周园园, 刘星才, 王杰, 孙思奥. 气候变化对澜湄流域上下游水资源合作潜力的影响[J]. 气候变化研究进展, 2020, 16(5): 555-563. |
[3] | 李晨毓, 王晓明, 丁永建, 张伟. 冰冻圈资源可持续利用探讨[J]. 气候变化研究进展, 2020, 16(5): 570-578. |
[4] | 赵敏, 张华, 王海波, 朱丽. 2000—2018年东亚地区云顶高度的时空变化特征[J]. 气候变化研究进展, 2020, 16(5): 591-599. |
[5] | 李林, 申红艳, 刘彩红, 校瑞香. 青海湖水位波动对气候暖湿化情景的响应及其机理研究[J]. 气候变化研究进展, 2020, 16(5): 600-608. |
[6] | 孙丽丽, 崔惠娟, 葛全胜. “一带一路”沿线主要国家碳捕集、利用和封存潜力与前景研究[J]. 气候变化研究进展, 2020, 16(5): 609-616. |
[7] | 付琳, 周泽宇, 杨秀. 适应气候变化政策机制的国际经验与启示[J]. 气候变化研究进展, 2020, 16(5): 641-651. |
[8] | 史培军, 杨文涛. 山区孕灾环境下地震和极端天气气候对地质灾害的影响[J]. 气候变化研究进展, 2020, 16(4): 405-414. |
[9] | 徐粒, 李倩, 王瑛, 黄靖玲, 许映军. 气候变化情景下泥石流危险性响应分析[J]. 气候变化研究进展, 2020, 16(4): 415-423. |
[10] | 王天鹏, 滕飞. 可计算一般均衡框架下的气候变化经济影响综合评估[J]. 气候变化研究进展, 2020, 16(4): 480-490. |
[11] | 李柔珂, 韩振宇, 徐影, 石英, 吴佳. 高分辨率区域气候变化降尺度数据对京津冀地区高温GDP和人口暴露度的集合预估[J]. 气候变化研究进展, 2020, 16(4): 491-504. |
[12] | 袁媛, 李国庆. 日本多主体适应气候变化框架机制及对中国的启示——基于法律政策的视角[J]. 气候变化研究进展, 2020, 16(4): 505-515. |
[13] | 田丹宇, 郑文茹. 国外应对气候变化的立法进展与启示[J]. 气候变化研究进展, 2020, 16(4): 526-534. |
[14] | 张奇谋,王润,姜彤,陈松生. RCPs情景下汉江流域未来极端降水的模拟与预估[J]. 气候变化研究进展, 2020, 16(3): 276-286. |
[15] | 黄鹤楼,邹旭恺,丁烨毅,陈鲜艳,石英,肖风劲. 气候变化对宁波四明山人体舒适度的影响[J]. 气候变化研究进展, 2020, 16(3): 316-324. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|