气候变化研究进展 ›› 2020, Vol. 16 ›› Issue (4): 415-423.doi: 10.12006/j.issn.1673-1719.2020.004
所属专题: 气候变化的灾害效应专栏
徐粒1,3(), 李倩1,3, 王瑛1,2,3, 黄靖玲1,3, 许映军1,2,3(
)
收稿日期:
2020-01-03
修回日期:
2020-04-19
出版日期:
2020-07-30
发布日期:
2020-08-05
通讯作者:
许映军
作者简介:
徐粒,男,硕士研究生, 基金资助:
XU Li1,3(), LI Qian1,3, WANG Ying1,2,3, HUANG Jing-Ling1,3, XU Ying-Jun1,2,3(
)
Received:
2020-01-03
Revised:
2020-04-19
Online:
2020-07-30
Published:
2020-08-05
Contact:
XU Ying-Jun
摘要:
通过中国1950—2010年降水日值0.5°×0.5°格点数据和CMIP5的6个气候模式数据,以2010年舟曲8·7特大山洪泥石流为例,估算此次灾害发生的降雨重现期,并估算未来同等重现期下的降雨量,基于HEC-HMS和FLO-2D模型模拟该降雨量下山洪泥石流堆积面积与泥沙冲出量,进而得到了气候变化背景下的泥石流危险性变化。结果表明:2010年舟曲8·7山洪泥石流灾害的降雨重现期为1500 a,未来相同重现期下降雨量为113.7 mm。设防水平不变条件下,舟曲县城泥石流堆积面积可达2010年灾害的173%,总泥沙量增加到148%,且泥石流堆积面积增加的区域主要位于2010年舟曲县城人口密集区。可见,灾后重建中舟曲县城一半以上居民的转移安置政策有利于弱化未来气候变化背景下泥石流危险性增加的不利影响,是一种有效的气候变化适应性举措。
徐粒, 李倩, 王瑛, 黄靖玲, 许映军. 气候变化情景下泥石流危险性响应分析[J]. 气候变化研究进展, 2020, 16(4): 415-423.
XU Li, LI Qian, WANG Ying, HUANG Jing-Ling, XU Ying-Jun. Analysis of the changes in debris flow hazard in the context of climate change[J]. Climate Change Research, 2020, 16(4): 415-423.
图6 研究区1950—2010年历史年内最大日降雨量序列(a)与Gumbel估计极值降雨累计概率分布(b)
Fig. 6 The series of annual maximum daily rainfall from 1950 to 2010 in the study area (a) and the cumulative probability of extreme precipitation estimated by Gumbel model (b)
[1] |
Goswami B N, Venugopal V, Sengupta D, et al. Increasing trend of extreme rain events over India in a warming environment[J]. Science, 2006,314(5804):1442-1445
doi: 10.1126/science.1132027 URL pmid: 17138899 |
[2] |
Allan R P, Soden B J. Atmospheric warming and the amplification of precipitation extremes[J]. Science, 2008,321(5895):1481-1484
doi: 10.1126/science.1160787 URL pmid: 18687921 |
[3] | IPCC. Special report on global warming of 1.5℃[M]. Cambridge: Cambridge University Press, 2018 |
[4] | 国家防汛抗旱总指挥部办公室. 水利部印发全国山洪灾害防治项目2017—2020年实施方案[Z/OL]. 中华人民共和国水利部, 2017 [2019-11-02]. http://www.mwr.gov.cn/xw/slyw/201711/t20171127_1015909.html. |
The Office of State Flood Control and Drought Relief Headquarters. MWR issues the national flood disaster prevention project implementation plan, 2017-2020 [Z/OL]. Ministry of Water Resources of the People's Republic of China, 2017 [2019-11-02]. http://www.mwr.gov.cn/xw/slyw/201711/t20171127_1015909.html (in Chinese) | |
[5] | Ainuddin S, Routray J K, Ainuddin S, et al. People's risk perception in earthquake prone Quetta city of Baluchistan[J]. International Journal of Disaster Risk Reduction, 2014,7:165-175 |
[6] | 陈活泼. CMIP5模式对21世纪末中国极端降水事件变化的预估[J]. 科学通报, 2013,58(8):743-752. |
Chen H P. Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models[J]. Chinese Science Bulletin, 2013,58(8):743-752 (in Chinese) | |
[7] | 王艳君, 刘俸霞, 翟建青, 等. 全球升温1.5℃与2.0℃目标下长江流域极端降水的变化特征[J]. 气象科学, 2019,39(4):540-547. |
Wang Y J, Liu F X, Zhai J Q, et al. Variation characteristics of extreme precipitation in the Yangtze River basin under the global warming 1.5℃ and 2.0℃[J]. Journal of the Meteorological Sciences, 2019,39(4):540-547 (in Chinese) | |
[8] | 王俊超, 彭涛, 王清. 乌江流域极端降水时空分布特征及重现期分析[J]. 暴雨灾害, 2019,38(3):267-275. |
Wang J C, Peng T, Wang Q. Spatial and temporal distributions of extreme precipitation in the Wujiang River valley and reproducibility analysis[J]. Torrential Rain and Disasters, 2019,38(3):267-275 (in Chinese) | |
[9] | Farinosi F, Arias M E, Lee E, et al. Future climate and land use change impacts on river flows in the Tapajos basin in the Brazilian Amazon[J]. Earth Future, 2019,7(8):993-1017 |
[10] | 王书霞, 张利平, 李意, 等. 气候变化情景下澜沧江流域极端洪水事件研究[J]. 气候变化研究进展, 2019,15(1):23-32. |
Wang S X, Zhang L P, Li Y, et al. Extreme flood in the Lancang River basin under climate change[J]. Climate Change Research, 2019,15(1):23-32 (in Chinese) | |
[11] | 李帅, 魏虹, 刘媛, 等. 气候与土地利用变化下宁夏清水河流域径流模拟[J]. 生态学报, 2017,37(4):1252-1260. |
Li S, Wei H, Liu Y, et al. Runoff prediction for Ningxia Qingshui River basin under scenarios of climate and land use changes[J]. Acta Ecologica Sinica, 2017,37(4):1252-1260 (in Chinese) | |
[12] | 路阳. 基于临界雨量指标的小流域山洪灾害预警研究[D]. 兰州: 兰州大学, 2016. |
Lu Y. A flash flood disaster warning in small watershed based on the critical rainfall[D]. Lanzhou: Lanzhou University, 2016 (in Chinese) | |
[13] | 赵煜飞, 朱江. 近50年中国降水格点日值数据集精度及评估[J]. 高原气象, 2015,34(1):50-58. |
Zhao Y F, Zhu J. Assessing quality of grid daily precipitation datasets in China in recent 50 years[J]. Plateau Meteorology, 2015,34(1):50-58 (in Chinese) | |
[14] | 王铭昊, 李焕连, 孙小婷. 中国6个CMIP5模式对全球降水年际-年代际变率模拟的定量评估[J]. 气象, 2018,44(5):634-644. |
Wang M H, Li H L, Sun X T. Quantitative evaluation on the interannual and interdecadal precipitation variability simulated by six CMIP5 models of China[J]. Meteorological Monthly, 2018,44(5):634-644 (in Chinese) | |
[15] | 周梦子, 周广胜, 吕晓敏, 等. 1.5和2℃升温阈值下中国温度和降水变化的预估[J]. 气象学报, 2019,77(4):728-744. |
Zhou M Z, Zhou G S, Lü X M, et al. Projection of temperature and precipitation changes over China under global warming of 1.5 and 2℃[J]. Acta Meteorologica Sinica, 2019,77(4):728-744 (in Chinese) | |
[16] | Tang C, Rengers N, van Asch T W J, et al. Triggering conditions and depositional characteristics of a disastrous debris flow event in Zhouqu city, Gansu province, northwestern China[J]. Natural Hazards and Earth System Sciences, 2011,11(11):2903-2912 |
[17] | 刘纪远. 中国资源环境遥感宏观调查与动态研究[M]. 北京: 中国科学技术出版社, 1996. |
Liu J Y. Macro-scale survey and dynamic study of natural resources and environment of China by remote sensing [M]. Beijing: China Science and Technology Press, 1996 (in Chinese) | |
[18] | Fischer G, Shah M, van Velthuizen H, et al. Global agro-ecological zones assessment for agriculture (GAEZ 2008): IIASA[C]. Rome, Italy, 2008 |
[19] | Xiao H, Luo Z, Niu Q, et al. The 2010 Zhouqu mudflow disaster: possible causes, human contributions, and lessons learned[J]. Natural Hazards, 2013,67(2):611-625 |
[20] | 马东涛. 舟曲“8·8”特大泥石流灾害治理之我见[J]. 山地学报, 2010 (5):635-640. |
Ma D T. Some suggestions on controlling catastrophic debris flows on Aug. 8th, 2010 in Zhouqu, Gansu[J]. Journal of Mountain Science, 2010 (5):635-640 (in Chinese) | |
[21] | 铁永波, 胡凯衡. 基于遥感解译的典型低频泥石流形成机制研究: 以四川省宁南县矮子沟泥石流为例[J]. 灾害学, 2014,29(3):77-80. |
Tie Y B, Hu K H. Formation of typical low-frequency debris flow process based on remote sensing data: take Aizi debris flow in Ningnan, Sichuan province as an example[J]. Journal of Catastrophology, 2014,29(3):77-80 (in Chinese) | |
[22] | 赵煜飞, 朱江, 许艳. 近50 a中国降水格点数据集的建立及质量评估[J]. 气象科学, 2014,34(4):414-420. |
Zhao Y F, Zhu J, Xu Y. Establishment and assessment of the grid precipitation datasets in China for recent 50 years[J]. Journal of the Meteorological Sciences, 2014,34(4):414-420 (in Chinese) | |
[23] | 赵虹. 中国陆地高空间分辨率月气温和降水格点数据集的修正与对比[D]. 兰州: 兰州大学, 2015. |
Zhao H. High spatial resolution of monthly air temperature and precipitation gridded dataset revision and comparisons[D]. Lanzhou: Lanzhou University, 2015 (in Chinese) | |
[24] | Mishra B K, Emam A R, Masago Y, et al. Assessment of future flood inundations under climate and land use change scenarios in the Ciliwung River basin, Jakarta[J]. Journal of Flood Risk Management, 2018,112:S1105-S1115 |
[25] | Chang T K, Tailei A, Alaghmand S, et al. Choice of rainfall inputs for event-based rainfall-runoff modeling in a catchment with multiple rainfall stations using data-driven techniques[J]. Journal of Hydrology, 2017,545:100-108 |
[26] | Deshmukh D S, Chaube U C, Hailu A E, et al. Estimation and comparison of curve numbers based on dynamic land use land cover change, observed rainfall-runoff data and land slope[J]. Journal of Hydrology, 2013,492:89-101 |
[27] | Chang C, Chung M, Yang S, et al. A case study for the application of an operational two-dimensional real-time flooding forecasting system and smart water level gauges on roads in Tainan city, Taiwan[J]. Water, 2018,10(5):574 |
[28] | 陈瑜彬, 杨文发, 许银山. 不同土壤含水量的动态临界雨量拟定方法研究[J]. 人民长江, 2015,46(12):21-26. |
Chen Y B, Yang W F, Xu Y S. Study of dynamic critical precipitation drafted method under different soil moisture content level[J]. Yangtze River, 2015,46(12):21-26 (in Chinese) | |
[29] | Brien J S. FLO-2D user manual [CP/OL]. 2009 [2019-11-01]. https://www.flo-2d.com/wp-content/uploads/2018/09/FLO-2D-Plugin-Users-Manual.pdf |
[30] | Chang M, Tand C, van Asch T W J, et al. Hazard assessment of debris flows in the Wenchuan earthquake-stricken area, South West China[J]. Landslides, 2017,14(5):1783-1792 |
[31] | Han Z, Li Y, Huang J, et al. Numerical simulation for run-out extent of debris flows using an improved cellular automaton model[J]. Bulletin of Engineering Geology and the Environment, 2017,76(3):961-974 |
[32] | 夏军, 石卫, 张利平, 等. 气候变化对防洪安全影响研究面临的机遇与挑战[J]. 四川大学学报: 工程科学版, 2016,48(2):7-13. |
Xia J, Shi W, Zhang L P, et al. Opportunity and challenge of the climate change impact on flood protection[J]. Journal of Sichuan University: Engineering Science Edition, 2016,48(2):7-13 (in Chinese) | |
[33] | 中华人民共和国中央人民政府. 国务院关于印发舟曲灾后恢复重建总体规划的通知: 国发[2010] 38号[A/OL]. 2010 [2019-11-01]. http://www.gov.cn/gongbao/content/2010/content_1745844.htm. |
The Central People's Government of the People's Republic of China. Circular of the State Council on printing and issuing the comprehensive planning for post-disaster recovery and reconstruction in Zhouqu: issue No.38 (2010) [A/OL]. 2010 [2019-11-01]. http://www.gov.cn/gongbao/content/2010/content_1745844.htm (in Chinese) |
[1] | 丁永建, 张世强, 陈仁升, 秦甲, 赵求东, 刘俊峰, 阳勇, 何晓波, 苌亚平, 上官冬辉, 韩添丁, 吴锦奎, 李向应. 气候变化对冰冻圈水文影响研究综述[J]. 气候变化研究进展, 2025, 21(1): 1-21. |
[2] | 秦卓凡, 廖宏, 代慧斌. 气候变化影响我国大气重污染事件的研究进展[J]. 气候变化研究进展, 2025, 21(1): 56-68. |
[3] | 吕学都, 陈佳琪, 葛慧, 朱乙丹. 气候金融实践与发展建议[J]. 气候变化研究进展, 2025, 21(1): 78-90. |
[4] | 陈德亮, 谭显春, 彭喆, 闫洪硕, 程永龙. 人工智能在气候研究和服务中的机遇与挑战[J]. 气候变化研究进展, 2024, 20(6): 669-681. |
[5] | 高翔. 国际条约下的气候资金问题辨析[J]. 气候变化研究进展, 2024, 20(6): 799-807. |
[6] | 朱磊, 张丽忠, 蒋莹, 徐剑锋, 黄艳, 孙淑欣. 工业部门的气候适应研究进展[J]. 气候变化研究进展, 2024, 20(6): 721-735. |
[7] | 欧阳志云, 张观石, 应凌霄. 气候变化对青藏高原生态系统分布范围和生态功能的影响研究进展[J]. 气候变化研究进展, 2024, 20(6): 699-710. |
[8] | 陆春晖, 袁佳双, 黄磊, 张永香. 从IPCC看全球盘点中的关键科学问题及其对中国的启示[J]. 气候变化研究进展, 2024, 20(6): 736-746. |
[9] | 周泽宇, 王君华, 曹颖. 全球适应气候变化行动进展评估及相关工作建议[J]. 气候变化研究进展, 2024, 20(6): 764-772. |
[10] | 牛振国, 景雨航, 张东启, 张波. 气候变化背景下青藏高原湿地生态系统响应特征:回顾与展望[J]. 气候变化研究进展, 2024, 20(5): 509-518. |
[11] | 吴沛泽, 陈莎, 刘影影, 李晓桐, 杜展霞, 崔淑芬, 姜克隽. 低排放分析平台LEAP:应对气候变化下的应用与挑战[J]. 气候变化研究进展, 2024, 20(5): 611-623. |
[12] | 德吉玉珍, 拉巴, 巴桑旺堆, 白玛玉措, 旦增益嘎, 平措旺丹, 德吉央宗. 近50年西藏那曲西南部湖泊变化特征及其对气候变化的响应[J]. 气候变化研究进展, 2024, 20(5): 534-543. |
[13] | 张靖宇, 曹龙. 海洋和陆地碳循环对二氧化碳正负排放响应的模拟研究[J]. 气候变化研究进展, 2024, 20(4): 416-427. |
[14] | 潘晓滨, 刘尚文. 应对气候变化背景下我国转型金融法制化路径探析[J]. 气候变化研究进展, 2024, 20(4): 465-474. |
[15] | 包文, 段安民, 游庆龙, 胡蝶. 青藏高原气候变化及其对水资源影响的研究进展[J]. 气候变化研究进展, 2024, 20(2): 158-169. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1155
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 920
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|