气候变化研究进展 ›› 2022, Vol. 18 ›› Issue (1): 19-30.doi: 10.12006/j.issn.1673-1719.2021.230
所属专题: IPCC第六次评估报告WGI解读专栏
• IPCC 第六次评估报告WGI 专栏 • 上一篇 下一篇
收稿日期:
2021-10-08
修回日期:
2021-11-08
出版日期:
2022-01-30
发布日期:
2021-12-22
作者简介:
华莉娟,女,副研究员, 基金资助:
HUA Li-Juan1(), YU Yong-Qiang2,3
Received:
2021-10-08
Revised:
2021-11-08
Online:
2022-01-30
Published:
2021-12-22
摘要:
IPCC第六次评估报告(AR6)于2021年8月在IPCC第一工作组第14次联合大会上得到审议通过,并得到了IPCC第54届全会接受和批准。文中主要对该报告第九章“海洋、冰冻圈和海平面”中与海洋环流的相关评估内容进行解读。与以前的IPCC报告相比,AR6进一步确认人类活动对海洋环流的影响,并基于最新的数值模式给出对未来变化预估的结果。报告指出,海洋各区域表层盐度梯度增加(基本确定),预估到21世纪末认为海水较淡的海洋区域将变得更淡,而咸的区域将变得更咸(中信度);至少自1970年以来在全球海洋绝大多数区域的上层海洋层结更稳定(基本确定),预估到21世纪末认为上层海洋的密度层结会继续增加(基本确定),而绝大多数区域的混合层深度在高排放情景下会变浅(低信度);自20世纪80年代以来海洋热浪的发生频次翻倍(高信度)且持续时间更久(中信度),预估结果认为海洋热浪发生频次将更高;在4个东边界上升流系统中,20世纪80年代以来,仅有加利福尼亚上升流系统经历了有利于上升流的风力增强,而其他3个上升流系统未出现(中信度),东边界上升流系统将以偶极子的空间型态变化,即低纬度减弱而高纬度增强(高信度);所有预估情景下大西洋经向翻转环流(AMOC)均将减弱(非常可能),虽然AMOC会减弱,但全球变暖不会导致AMOC在2100年之前突然停止(中信度);AR6增加了可分辨海洋中尺度涡旋的高分辨率数值模拟试验,结果显示高分辨率模式有效地改进了海洋表面温度(SST)、海气通量和动力海面高度变化等要素的模拟。
华莉娟, 俞永强. 海洋环流的长期变化和预估[J]. 气候变化研究进展, 2022, 18(1): 19-30.
HUA Li-Juan, YU Yong-Qiang. Long term variation and projection of ocean circulation[J]. Climate Change Research, 2022, 18(1): 19-30.
图1 观测和预估的冬季和夏季混合层深度 注:混合层深度定义为位密度比10 m处位密度大0.03 kg/m3的深度。无斜线覆盖区域显示模式间具有高的一致性,即>80%的模式变化符号一致。斜线覆盖区域显示模式间具有低的一致性,即<80%的模式变化符号一致。冬季显示的是北半球DJF和南半球JJA的结果,夏季显示的是北半球JJA和南半球DJF的结果。
Fig. 1 Observed and projected mixed layer depth in winter and summer. (The winter row shows DJF in the Northern Hemisphere and JJA in the Southern Hemisphere, and the summer row shows JJA in the Northern Hemisphere and DJF in the Southern Hemisphere)
图2 观测和模式中海洋热浪MHWs的区域概率比 注:概率比指的是每年MHW天数相对于工业革命前增加的比例。海洋热浪定义为日海表温度超过季节阈值,日海表温度的季节阈值指的是11 d窗口中超过99%的结果。图中灰色斜线区域指的是持久的MHWs(即每年MHW大于360 d)。
Fig. 2 Observed and simulated regional probability ratio of marine heatwaves (MHWs)
[1] | IPCC. Climate change 2021: the physical science basis[M/OL]. 2021 [2021-08-06].https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM.pdf |
[2] | IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013 |
[3] | IPCC. IPCC special report on the ocean and cryosphere in a changing climate [M]. Cambridge: Cambridge University Press, 2019 |
[4] |
Holliday N P, Bersh M, Berx B, et al. Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic[J]. Nature Communications, 2020, 11(1): 585. DOI: 10.1038/s41467-020-14474-y
doi: 10.1038/s41467-020-14474-y pmid: 31996687 |
[5] |
Cheng L, Trenberth K E, Gruber N, et al. Improved estimates of changes in upper ocean salinity and the hydrological cycle[J]. Journal of Climate, 2020, 33(23): 10357-10381. DOI: 10.1175/JCLI-D-20-0366.1
doi: 10.1175/JCLI-D-20-0366.1 URL |
[6] |
Rye C D, Marshall J, Kelley M, et al. Antarctic glacial melt as a driver of recent southern ocean climate trends[J]. Geophysical Research Letters, 2020, 47(11): e2019GL086892. DOI: 10.1029/2019gl086892
doi: 10.1029/2019gl086892 |
[7] |
Du Y, Zhang Y, Shi J. Relationship between sea surface salinity and ocean circulation and climate change[J]. Science China: Earth Sciences, 2019, 62(5): 771-782. DOI: 10.1007/s11430-018-9276-6
doi: 10.1007/s11430-018-9276-6 URL |
[8] |
Liu C, Liang X, Ponte R M, et al. Vertical redistribution of salt and layered changes in global ocean salinity[J]. Nature Communications, 2019, 10(1): 3445. DOI: 10.1038/s41467-019-11436-x
doi: 10.1038/s41467-019-11436-x URL |
[9] |
Dukhovskoy D S, Yashayaev I, Proshutinsky A, et al. Role of Greenland freshwater anomaly in the recent freshening of the subpolar North Atlantic[J]. Journal of Geophysical Research: Oceans, 2019, 124(5): 3333-3360. DOI: 10.1029/2018jc014686
doi: 10.1029/2018JC014686 pmid: 31341755 |
[10] |
Stendardo I, Rhein M, Steinfeldt R. The North Atlantic current and its volume and freshwater transports in the subpolar North Atlantic, time period 1993-2016[J]. Journal of Geophysical Research: Oceans, 2020, 125(9): e2020JC016065. DOI: 10.1029/2020jc016065
doi: 10.1029/2020jc016065 |
[11] |
Li G, Zhang Y H, Xiao J G, et al. Examining the salinity change in the upper Pacific Ocean during the Argo period[J]. Climate Dynamics, 2019, 53(9): 6055-6074. DOI: 10.1007/s00382-019-04912-z
doi: 10.1007/s00382-019-04912-z URL |
[12] |
Levang S J, Schmitt R W. Intergyre salt transport in the climate warming response[J]. Journal of Physical Oceanography, 2020, 50(1): 255-268. DOI: 10.1175/jpo-d-19-0166.1
doi: 10.1175/jpo-d-19-0166.1 URL |
[13] |
Silvy Y, Guilyardi E, Sallée J B, et al. Human-induced changes to the global ocean water masses and their time of emergence[J]. Nature Climate Change, 2020, 10(11): 1030-1036. DOI: 10.1038/s41558-020-0878-x
doi: 10.1038/s41558-020-0878-x URL |
[14] |
Metzner E P, Salzmann M, Gerdes R. Arctic ocean surface energy flux and the cold halocline in future climate projections[J]. Journal of Geophysical Research: Oceans, 2020, 125(2): e2019JC015554. DOI: 10.1029/2019jc015554
doi: 10.1029/2019jc015554 |
[15] |
Parras-Berrocal I M, Vazquez R, Cabos W, et al. The climate change signal in the Mediterranean Sea in a regionally coupled atmosphere-ocean model[J]. Ocean Science, 2020, 16(3): 743-765. DOI: 10.5194/os-16-743-2020
doi: 10.5194/os-16-743-2020 URL |
[16] |
Soto-Navarro J, Jordà G, Amores A, et al. Evolution of Mediterranean Sea water properties under climate change scenarios in the Med-CORDEX ensemble[J]. Climate Dynamics, 2020, 54(3): 2135-2165. DOI: 10.1007/s00382-019-05105-4
doi: 10.1007/s00382-019-05105-4 URL |
[17] |
Li G C, Cheng L J, Zhu J, et al. Increasing ocean stratification over the past half-century[J]. Nature Climate Change, 2020. DOI: 10.1038/s41558-020-00918-2
doi: 10.1038/s41558-020-00918-2 |
[18] |
Yamaguchi R, Suga T. Trend and variability in global upper-ocean stratification since the 1960s[J]. Journal of Geophysical Research: Oceans, 2019, 124(12): 8933-8948. DOI: 10.1029/2019jc015439
doi: 10.1029/2019JC015439 |
[19] |
Sallée J B, Pellichero V, Akhoudas C, et al. Summertime increases in upper-ocean stratification and mixed-layer depth[J]. Nature, 2021, 591(7851): 592-598. DOI: 10.1038/s41586-021-03303-x
doi: 10.1038/s41586-021-03303-x URL |
[20] |
Kwiatkowski L, Torres O, Bopp L, et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections[J]. Biogeosciences, 2020, 17(13): 3439-3470. DOI: 10.5194/bg-17-3439-2020
doi: 10.5194/bg-17-3439-2020 URL |
[21] |
Lique C, Johnson H L, Plancherel Y. Emergence of deep convection in the Arctic Ocean under a warming climate[J]. Climate Dynamics, 2018, 50(9): 3833-3847. DOI: 10.1007/s00382-017-3849-9
doi: 10.1007/s00382-017-3849-9 URL |
[22] |
Tsujino H, Urakawa L S, Griffies S M, et al. Evaluation of global ocean-sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2)[J]. Geoscientific Model Development, 2020, 13(8): 3643-3708. DOI: 10.5194/gmd-13-3643-2020
doi: 10.5194/gmd-13-3643-2020 URL |
[23] |
Young I R, Ribal A. Multiplatform evaluation of global trends in wind speed and wave height[J]. Science, 2019, 364(6440): 548-552. DOI: 10.1126/science.aav9527
doi: 10.1126/science.aav9527 pmid: 31023894 |
[24] |
Buckingham C E, Lucas N S, Belcher S E, et al. The contribution of surface and submesoscale processes to turbulence in the open ocean surface boundary layer[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(1): 4066-4094. DOI: 10.1029/2019ms001801
doi: 10.1029/2019ms001801 URL |
[25] |
Li Q, Fox-Kemper B. Comparing ocean surface boundary vertical mixing schemes including langmuir turbulence[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(11): 3545-3592. DOI: 10.1029/2019ms001810
doi: 10.1029/2019ms001810 URL |
[26] |
Dunne J P, Horowitz L W, Adcroft A J, et al. The GFDL Earth system model version 4.1 (GFDL-ESM 4.1): overall coupled model description and simulation characteristics[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(11): e2019MS002015. DOI: 10.1029/2019ms002015
doi: 10.1029/2019ms002015 |
[27] |
McWilliams J C. A survey of submesoscale currents[J]. Geoscience Letters, 2019, 6(1): 1-15. DOI: 10.1186/s40562-019-0133-3
doi: 10.1186/s40562-019-0133-3 URL |
[28] |
Danabasoglu G, Lamarque J, Bacmeister J, et al. The community Earth system model version 2 (CESM2)[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(2): e2019MS001916. DOI: 10.1029/2019ms001916
doi: 10.1029/2019ms001916 |
[29] |
Kelley M, Schmidt G A, Nazarenko L S, et al. GISS-E2.1: configurations and climatology[J]. Journal of Advances in Modeling Earth Systems, 2020, 12(8): e2019MS002025. DOI: 10.1029/2019ms002025
doi: 10.1029/2019ms002025 |
[30] |
Hobday A J, Alexander L V, Perkins S E, et al. A hierarchical approach to defining marine heatwaves[J]. Progress in Oceanography, 2016, 141:227-238. DOI: 10.1016/j.pocean.2015.12.014
doi: 10.1016/j.pocean.2015.12.014 URL |
[31] |
Cheung W W L, Frölicher T L. Marine heatwaves exacerbate climate change impacts for fisheries in the Northeast Pacific[J]. Scientific Reports, 2020, 10(1): 6678. DOI: 10.1038/s41598-020-63650-z
doi: 10.1038/s41598-020-63650-z URL |
[32] |
Hayashida H, Matear R J, Strutton P G, et al. Insights into projected changes in marine heatwaves from a high-resolution ocean circulation model[J]. Nature Communications, 2020, 11(1): 4352. DOI: 10.1038/s41467-020-18241-x
doi: 10.1038/s41467-020-18241-x pmid: 32859903 |
[33] |
Piatt J F, Parrish J K, Renner H M, et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014-2016[J]. PLoS ONE, 2020, 15(1). DOI: 10.1371/journal.pone.0226087
doi: 10.1371/journal.pone.0226087 |
[34] |
Laufkötter C, Zscheischler J, Frölicher T L. High-impact marine heatwaves attributable to human-induced global warming[J]. Science, 2020, 369(6511): 1621-1625. DOI: 10.1126/science.aba0690
doi: 10.1126/science.aba0690 pmid: 32973027 |
[35] |
Li Y, Ren G, Wang Q, et al. More extreme marine heatwaves in the China Seas during the global warming hiatus[J]. Environmental Research Letters, 2019, 14(10): 104010. DOI: 10.1088/1748-9326/ab28bc
doi: 10.1088/1748-9326/ab28bc URL |
[36] |
Yao Y, Wang J, Yin J, et al. Marine heatwaves in China’s marginal seas and adjacent offshore waters: past, present, and future[J]. Journal of Geophysical Research: Oceans, 2020, 125(3): e2019JC015801. DOI: 10.1029/2019jc015801
doi: 10.1029/2019jc015801 |
[37] |
Holbrook N J, Scannell H A, Sen Gupta A, et al. A global assessment of marine heatwaves and their drivers[J]. Nature Communications, 2019, 10(1): 2624. DOI: 10.1038/s41467-019-10206-z
doi: 10.1038/s41467-019-10206-z pmid: 31201309 |
[38] |
Gupta S A, Thomsen M, Benthuysen J A, et al. Drivers and impacts of the most extreme marine heatwaves events[J]. Scientific Reports, 2020, 10(1): 19359. DOI: 10.1038/s41598-020-75445-3
doi: 10.1038/s41598-020-75445-3 pmid: 33168858 |
[39] |
Holbrook N J, Sen Gupta A, Oliver E C J, et al. Keeping pace with marine heatwaves[J]. Nature Reviews Earth & Environment, 2020, 1(9): 482-493. DOI: 10.1038/s43017-020-0068-4
doi: 10.1038/s43017-020-0068-4 |
[40] |
Oliver E C J, Burrows M T, Donat M G, et al. Projected marine heatwaves in the 21st century and the potential for ecological impact[J]. Frontiers in Marine Science, 2019, 6:734. DOI: 10.3389/fmars.2019.00734
doi: 10.3389/fmars.2019.00734 URL |
[41] |
Plecha S M Soares P M M. Global marine heatwave events using the new CMIP6 multi-model ensemble: from shortcomings in present climate to future projections[J]. Environmental Research Letters, 2020, 15(12): 124058. DOI: 10.1088/1748-9326/abc847
doi: 10.1088/1748-9326/abc847 URL |
[42] |
Pilo G S, Holbrook N J, Kiss A E, et al. Sensitivity of marine heatwave metrics to ocean model resolution[J]. Geophysical Research Letters, 2019, 46. DOI: 10.1029/2019gl084928
doi: 10.1029/2019gl084928 |
[43] |
Bock L, Lauer A, Schlund M, et al. Quantifying progress across different CMIP phases with the ESMValTool[J]. Journal of Geophysical Research, 2020, 125(21): e2019JD032321. DOI: 10.1029/2019JD032321
doi: 10.1029/2019JD032321 |
[44] |
Qiao F, Yuan Y, Deng J, et al. Wave-turbulence interaction-induced vertical mixing and its effects in ocean and climate models[J]. Philosophical Transactions of The Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 374(2065): 20150201. DOI: 10.1098/rsta.2015.0201
doi: 10.1098/rsta.2015.0201 URL |
[45] |
Reichl B G, Hallberg R. A simplified energetics based planetary boundary layer (ePBL) approach for ocean climate simulations[J]. Ocean Modelling, 2018, 132:112-129. DOI: 10.1016/j.ocemod.2018.10.004
doi: 10.1016/j.ocemod.2018.10.004 URL |
[46] |
Caldwell P M, Mametjanov A, Tang Q, et al. The DOE E3SM coupled model version 1: description and results at high resolution[J]. Journal of Advances in Modeling Earth Systems, 2019, 11(12): 4095-4146. DOI: 10.1029/2019ms001870
doi: 10.1029/2019MS001870 |
[47] |
Docquier D, Grist J P, Roberts M J, et al. Impact of model resolution on Arctic sea ice and North Atlantic Ocean heat transport[J]. Climate Dynamics, 2019, 53(7): 4989-5017. DOI: 10.1007/s00382-019-04840-y
doi: 10.1007/s00382-019-04840-y URL |
[48] |
Beadling R L, Russell J L, Stouffer R J, et al. Representation of southern ocean properties across Coupled Model Intercomparison Project generations: CMIP3 to CMIP6[J]. Journal of Climate, 2020, 33:6555-6581. DOI: 10.1175/jcli-d-19-0970.1
doi: 10.1175/jcli-d-19-0970.1 URL |
[49] |
Li J L F, Xu K M, Jiang J H, et al. An overview of CMIP5 and CMIP6 simulated cloud ice, radiation fields, surface wind stress, sea surface temperatures, and precipitation over tropical and subtropical oceans[J]. Journal of Geophysical Research: Atmospheres, 2020, 125(15): e2020JD032848. DOI: 10.1029/2020jd032848
doi: 10.1029/2020jd032848 |
[50] |
Chassignet E P, Yeager S G, Fox-Kemper B, et al. Impact of horizontal resolution on global ocean-sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2)[J]. Geoscientific Model Development, 2020, 13(9): 4595-4637. DOI: 10.5194/gmd-13-4595-2020
doi: 10.5194/gmd-13-4595-2020 URL |
[51] |
Hewitt H T, Roberts M, Mathiot P, et al. Resolving and parameterising the ocean mesoscale in Earth system models[J]. Current Climate Change Reports, 2020, 6:137-152. DOI: 10.1007/s40641-020-00164-w
doi: 10.1007/s40641-020-00164-w URL |
[52] |
Jackson L C, Roberts M J, Hewitt H T, et al. Impact of ocean resolution and mean state on the rate of AMOC weakening[J]. Climate Dynamics, 2020, 55:1711-1732. DOI: 10.1007/s00382-020-05345-9
doi: 10.1007/s00382-020-05345-9 URL |
[53] |
Sérazin G, Meyssignac B, Penduff T, et al. Quantifying uncertainties on regional sea level change induced by multidecadal intrinsic oceanic variability[J]. Geophysical Research Letters, 2016, 43(15): 8151-8159. DOI: 10.1002/2016gl069273
doi: 10.1002/2016gl069273 URL |
[54] |
Sérazin G, Jaymond A, Leroux S, et al. A global probabilistic study of the ocean heat content low-frequency variability: atmospheric forcing versus oceanic chaos[J]. Geophysical Research Letters, 2017, 44(11): 5580-5589. DOI: 10.1002/2017gl073026.
doi: 10.1002/2017gl073026 URL |
[55] |
Small R J, Bryan F O, Bishop S P, et al. Air-sea turbulent heat fluxes in climate models and observational analyses: what drives their variability?[J]. Journal of Climate, 2019, 32(8): 2397-2421. DOI: 10.1175/jclid-18-0576.1
doi: 10.1175/jclid-18-0576.1 URL |
[56] |
Chelton D B, Xie S P. Coupled ocean-atmosphere interaction at oceanic mesoscales[J]. Oceanography, 2010, 23:52-69. DOI: 10.2307/24860862
doi: 10.2307/24860862 URL |
[57] |
Frenger I, Gruber N, Knutti R, et al. Imprint of southern ocean eddies on winds, clouds and rainfall[J]. Nature Geoscience, 2013, 6(8): 608-612. DOI: 10.1038/ngeo1863
doi: 10.1038/ngeo1863 URL |
[58] |
Han W, Meehl G A, Stammer D, et al. Spatial patterns of sea level variability associated with natural internal climate modes[J]. Surveys in Geophysics, 2017, 38(1): 217-250. DOI: 10.1007/s10712-016-9386-y
doi: 10.1007/s10712-016-9386-y URL |
[59] |
Piecuch C G, Thompson P R, Ponte R M, et al. What caused recent shifts in tropical pacific decadal sea-level trends?[J]. Journal of Geophysical Research: Oceans, 2019, 124(11): 7575-7590. DOI: 10.1029/2019jc015339
doi: 10.1029/2019jc015339 URL |
[60] |
Haigh I D, Pickering M D, Green J A, et al. The tides they are a-Changin’: a comprehensive review of past and future non-astronomical changes in tides, their driving mechanisms and future implications[J]. Reviews of Geophysics, 2019. DOI: 10.1029/2018rg000636
doi: 10.1029/2018rg000636 |
[61] |
Varela R, Álvarez I, Santos F, et al. Has upwelling strengthened along worldwide coasts over 1982-2010?[J]. Scientific Reports, 2015, 5:10016. DOI: 10.1038/srep10016
doi: 10.1038/srep10016 pmid: 25952477 |
[62] |
Seo H, Brink K H, Dorman C E, et al. What determines the spatial pattern in summer upwelling trends on the U.S. West Coast?[J]. Journal of Geophysical Research: Oceans, 2012, 117(C8). DOI: 10.1029/2012jc008016
doi: 10.1029/2012jc008016 |
[63] |
Bakun A, Field D B, Redondo-Rodriguez A, et al. Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems[J]. Global Change Biology, 2010, 16(4): 1213-1228. DOI: 10.1111/j.1365-2486.2009.02094.x
doi: 10.1111/j.1365-2486.2009.02094.x URL |
[64] |
Sydeman W J, Garcia-Reyes M, Schoeman D S, et al. Climate change and wind intensification in coastal upwelling ecosystems[J]. Science, 2014, 345(6192): 77-80. DOI: 10.1126/science.1251635
doi: 10.1126/science.1251635 pmid: 24994651 |
[65] |
Brady R X, Alexander M A, Lovenduski N S, et al. Emergent anthropogenic trends in California current upwelling[J]. Geophysical Research Letters, 2017, 44(10): 5044-5052. DOI: 10.1002/2017gl072945
doi: 10.1002/2017gl072945 URL |
[66] |
Bakun A. Global climate change and intensification of coastal ocean upwelling[J]. Science, 1990, 247(4939): 198-201. DOI: 10.1126/science.247.4939.198
doi: 10.1126/science.247.4939.198 pmid: 17813287 |
[67] |
García-Reyes M, Sydeman W J, Black B A, et al. Relative influence of oceanic and terrestrial pressure systems in driving upwelling favorable winds[J]. Geophysical Research Letters, 2013, 40(19): 5311-5315. DOI: 10.1002/2013gl057729
doi: 10.1002/2013gl057729 URL |
[68] |
Staten P W, Lu J, Grise K M, et al. Re-examining tropical expansion[J]. Nature Climate Change, 2018, 8(9): 768-775. DOI: 10.1038/s41558-018-0246-2
doi: 10.1038/s41558-018-0246-2 URL |
[69] |
He C, Wu B, Zou L, et al. Responses of the summertime subtropical anticyclones to global warming[J]. Journal of Climate, 2017, 30(16): 6465-6479. DOI: 10.1175/JCLI-D-16-0529.1
doi: 10.1175/JCLI-D-16-0529.1 URL |
[70] |
Cherchi A, Ambrizzi T, Behera S, et al. The response of subtropical highs to climate change[J]. Current Climate Change Reports, 2018, 4(4): 371-382. DOI: 10.1007/s40641-018-0114-1
doi: 10.1007/s40641-018-0114-1 URL |
[71] |
Sylla A, Mignot J, Capet X, et al. Weakening of the Senegalo-Mauritania upwelling system under climate change[J]. Climate Dynamics, 2019, 53:4447-4473. DOI: 10.1007/s00382-019-04797-y
doi: 10.1007/s00382-019-04797-y URL |
[72] |
Aguirre C, Rojas M, Garreaud R D, et al. Role of synoptic activity on projected changes in upwelling-favourable winds at the ocean’s eastern boundaries[J]. NPJ Climate and Atmospheric Science, 2019, 2(1): 44. DOI: 10.1038/s41612-019-0101-9
doi: 10.1038/s41612-019-0101-9 URL |
[73] |
Oyarzún D, Brierley C M. The future of coastal upwelling in the Humboldt current from model projections[J]. Climate Dynamics, 2019, 52(1-2): 599-615. DOI: 10.1007/s00382-018-4158-7
doi: 10.1007/s00382-018-4158-7 URL |
[74] |
Menary M B, Jackson L C, Lozier M S. Reconciling the relationship between the AMOC and Labrador Sea in OSNAP observations and climate models[J]. Geophysical Research Letters, 2020, 47(18). DOI: 10.1029/2020gl089793
doi: 10.1029/2020gl089793 |
[75] |
Weijer W, Cheng W, Garuba O A, et al. CMIP6 models predict significant 21st century decline of the Atlantic Meridional Overturning Circulation[J]. Geophysical Research Letters, 2020, 47(12). DOI: 10.1029/2019gl086075
doi: 10.1029/2019gl086075 |
[76] |
Weijer W, Cheng W, Drijfhout S S, et al. Stability of the Atlantic Meridional Overturning Circulation: a review and synjournal[J]. Journal of Geophysical Research: Oceans, 2019, 2019JC015083. DOI: 10.1029/2019jc015083
doi: 10.1029/2019jc015083 |
[77] |
Golledge N R, Keller E D, Gomez N, et al. Global environmental consequences of twenty-first-century ice-sheet melt[J]. Nature, 2019, 566(7742). DOI: 10.1038/s41586-019-0889-9
doi: 10.1038/s41586-019-0889-9 |
[78] |
Liu W, Xie S P, Liu Z, et al. Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate[J]. Science Advances, 2017, 3(1). DOI: 10.1126/sciadv.1601666
doi: 10.1126/sciadv.1601666 |
[79] |
Lohmann J, Ditlevsen P D. Risk of tipping the overturning circulation due to increasing rates of ice melt[J]. Proceedings of The National Academy of Sciences, 2021, 118(9): e2017989118. DOI: 10.1073/pnas.2017989118
doi: 10.1073/pnas.2017989118 URL |
[1] | 丁永建, 张世强, 陈仁升, 秦甲, 赵求东, 刘俊峰, 阳勇, 何晓波, 苌亚平, 上官冬辉, 韩添丁, 吴锦奎, 李向应. 气候变化对冰冻圈水文影响研究综述[J]. 气候变化研究进展, 2025, 21(1): 1-21. |
[2] | 秦卓凡, 廖宏, 代慧斌. 气候变化影响我国大气重污染事件的研究进展[J]. 气候变化研究进展, 2025, 21(1): 56-68. |
[3] | 吕学都, 陈佳琪, 葛慧, 朱乙丹. 气候金融实践与发展建议[J]. 气候变化研究进展, 2025, 21(1): 78-90. |
[4] | 陈德亮, 谭显春, 彭喆, 闫洪硕, 程永龙. 人工智能在气候研究和服务中的机遇与挑战[J]. 气候变化研究进展, 2024, 20(6): 669-681. |
[5] | 高翔. 国际条约下的气候资金问题辨析[J]. 气候变化研究进展, 2024, 20(6): 799-807. |
[6] | 朱磊, 张丽忠, 蒋莹, 徐剑锋, 黄艳, 孙淑欣. 工业部门的气候适应研究进展[J]. 气候变化研究进展, 2024, 20(6): 721-735. |
[7] | 欧阳志云, 张观石, 应凌霄. 气候变化对青藏高原生态系统分布范围和生态功能的影响研究进展[J]. 气候变化研究进展, 2024, 20(6): 699-710. |
[8] | 陆春晖, 袁佳双, 黄磊, 张永香. 从IPCC看全球盘点中的关键科学问题及其对中国的启示[J]. 气候变化研究进展, 2024, 20(6): 736-746. |
[9] | 周泽宇, 王君华, 曹颖. 全球适应气候变化行动进展评估及相关工作建议[J]. 气候变化研究进展, 2024, 20(6): 764-772. |
[10] | 牛振国, 景雨航, 张东启, 张波. 气候变化背景下青藏高原湿地生态系统响应特征:回顾与展望[J]. 气候变化研究进展, 2024, 20(5): 509-518. |
[11] | 吴沛泽, 陈莎, 刘影影, 李晓桐, 杜展霞, 崔淑芬, 姜克隽. 低排放分析平台LEAP:应对气候变化下的应用与挑战[J]. 气候变化研究进展, 2024, 20(5): 611-623. |
[12] | 德吉玉珍, 拉巴, 巴桑旺堆, 白玛玉措, 旦增益嘎, 平措旺丹, 德吉央宗. 近50年西藏那曲西南部湖泊变化特征及其对气候变化的响应[J]. 气候变化研究进展, 2024, 20(5): 534-543. |
[13] | 张靖宇, 曹龙. 海洋和陆地碳循环对二氧化碳正负排放响应的模拟研究[J]. 气候变化研究进展, 2024, 20(4): 416-427. |
[14] | 潘晓滨, 刘尚文. 应对气候变化背景下我国转型金融法制化路径探析[J]. 气候变化研究进展, 2024, 20(4): 465-474. |
[15] | 包文, 段安民, 游庆龙, 胡蝶. 青藏高原气候变化及其对水资源影响的研究进展[J]. 气候变化研究进展, 2024, 20(2): 158-169. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1346
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 891
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
|