气候变化研究进展 ›› 2021, Vol. 17 ›› Issue (6): 705-712.doi: 10.12006/j.issn.1673-1719.2021.176
收稿日期:
2021-08-18
修回日期:
2021-08-30
出版日期:
2021-11-30
发布日期:
2021-10-09
作者简介:
左志燕,女,教授, 基金资助:
Received:
2021-08-18
Revised:
2021-08-30
Online:
2021-11-30
Published:
2021-10-09
摘要:
尽管气候变化是全球性的现象,但其表现和结果随区域不同而不同,因此区域气候信息对于气候变化的作用和风险评估很重要。基于此,IPCC第六次评估报告(AR6)第一工作组(WGI)报告第十章对如何从全球链接到区域气候变化方面进行了评估。区域气候变化是对自然强迫和人类活动的区域响应、对大尺度气候系统内部变率的响应和区域气候本身反馈过程的相互作用结果。因此,本章重点关注如何从多套观测资料,不同模式的集合,物理过程的理解、专家判断和本地信息等多元信息中有效提炼出区域信息的方法。通过提炼方法指出人类活动是许多次大陆尺度上1950年代以来区域平均温度变化的主要驱动力,但参考时段和阈值的选择对人类活动信号是否出现和出现的早晚有影响。人类活动对一些区域的多年代际降水变化有一定贡献,但其不确定性相对全球平均而言更大。气候系统内部变率可以在很大程度上延迟和阻碍人类活动信号在区域气候变化中的出现。区域气候变化的评估给决策者提供了更多有用的信息,增加了评估报告的适用性。
左志燕, 肖栋. 从全球到区域气候变化[J]. 气候变化研究进展, 2021, 17(6): 705-712.
ZUO Zhi-Yan, XIAO Dong. Linking global to regional climate change[J]. Climate Change Research, 2021, 17(6): 705-712.
[1] | IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013: 1217-1308 |
[2] | IPCC. Regional context in climate change 2014: impacts, adaptation, and vulnerability [M]. Cambridge: Cambridge University Press, 2014: 1133-1197 |
[3] | Hoegh-Guldberg O, Jacob D, Taylor M, et al. Impacts of 1.5℃ of global warming on natural and human systems, in global warming of 1.5℃[M]. Cambridge: Cambridge University Press, 2018: 175-311 |
[4] | Jia G, Shevliakova E, Artaxo P, et al. Land-climate interactions [M]//Shukla P R, Skea J, Calvo Buendia E. Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Cambridge: Cambridge University Press, 2019: 131-248 |
[5] |
Thorne P W, Diamond H J, Goodison B, et al. Towards a global land surface climate fiducial reference measurements network[J]. International Journal of Climatology, 2018, 38: 2760-2774
doi: 10.1002/joc.2018.38.issue-6 URL |
[6] |
Chen H, Xu C Y, Guo S. Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff [J]. Journal of Hydrology, 2012: 434-435, 36-45. DOI: 10.1016/j.jhydrol.2012.02.040
doi: 10.1016/j.jhydrol.2012.02.040 |
[7] |
Bosilovich M G, Chern J D, Mocko D, et al. Evaluating observation influence 21 on regional water budgets in reanalyses[J]. Journal of Climate, 2015, 28(9): 3631-3649. DOI: 10.1175/jcli-d-14-22 00623.1
doi: 10.1175/jcli-d-14-22 00623.1 URL |
[8] |
Tapiador F J, Navarro A, Levizzani V, et al. Global precipitation measurements for validating climate models[J]. Atmospheric Research, 2017, 197: 1-20. DOI: 10.1016/j.atmosres.2017.06.021
doi: 10.1016/j.atmosres.2017.06.021 URL |
[9] |
Venema V K C, Mestre O, Aguilar E, et al. Benchmarking homogenization algorithms for monthly data[J]. Climate of The Past, 2012, 8(1): 89-115. DOI: 10.5194/cp-8-89-2012
doi: 10.5194/cp-8-89-2012 URL |
[10] |
McPherson R A. High-resolution surface observations for climate monitoring[M]//Tarhule A. Climate variability: regional and thematic patterns. UK, 2013, DOI: 10.5772/56044
doi: 10.5772/56044 |
[11] |
von Clarmann T. Smoothing error pitfalls[J]. Atmospheric Measurement Techniques, 2014, 7(9): 3023-3034. DOI: 10.5194/amt-7-3023-2014
doi: 10.5194/amt-7-3023-2014 URL |
[12] |
Lin G, Wan H, Zhang H, et al. Can nudging be used to quantify model sensitivities in precipitation and cloud forcing?[J]. Journal of Advances in Modeling Earth Systems, 2016, 8(3): 1073-1091. DOI: 10.1002/2016ms000659
doi: 10.1002/2016ms000659 URL |
[13] |
Blenkinsop S, Lewis E, Chan S C, et al. Quality-control of an hourly rainfall dataset and climatology of extremes for the UK[J]. International Journal of Climatology, 2017, 37(2): 722-740. DOI: 10.1002/joc.4735
doi: 10.1002/joc.4735 pmid: 28239235 |
[14] |
Frankcombe L M, England M H, Mann M E, et al. Separating internal variability from the externally forced climate response[J]. Journal of Climate, 2015, 28(20): 8184-8202. DOI: 10.1175/jcli-d-15-0069.1
doi: 10.1175/jcli-d-15-0069.1 URL |
[15] |
Yamada T J, Lee M I, Kanamitsu M, et al. Diurnal characteristics of rainfall over the contiguous united states and northern Mexico in the dynamically downscaled reanalysis dataset (US10)[J]. Journal of Hydrometeorology, 2012, 13(3): 1142-1148. DOI: 10.1175/jhm-d-11-0121.1
doi: 10.1175/jhm-d-11-0121.1 URL |
[16] |
Su C H, Eizenberg N, Steinle P, et al. BARRA v1.0: the bureau of meteorology atmospheric high-resolution regional reanalysis for Australia[J]. Geoscientific Model Development, 2019, 12(5): 2049-2068. DOI: 10.5194/gmd-12-2049-2019
doi: 10.5194/gmd-12-2049-2019 URL |
[17] |
Bromwich D H, Wilson A B, Bai L S, et al. A comparison of the regional Arctic system reanalysis and the global ERA-Interim reanalysis for the Arctic[J]. Quarterly Journal of The Royal Meteorological Society, 2016, 142(695): 644-658. DOI: 10.1002/qj.2527
doi: 10.1002/qj.2527 URL |
[18] |
Kaspar K, Niermann D, Borsche1 M, et al. Regional atmospheric reanalysis activities at Deutscher Wetterdienst: review of evaluation results and application examples with a focus on renewable energy[J]. Advances in Science and Research, 2020, 17: 115-128. DOI: 10.5194/asr-17-115-2020
doi: 10.5194/asr-17-115-2020 URL |
[19] |
Lehner F, Deser C, Maher N, et al. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6[J]. Earth System Dynamics, 2020, 11(2): 491-508. DOI: 10.5194/esd-11-491-2020
doi: 10.5194/esd-11-491-2020 URL |
[20] |
Maraun D, Shepherd T, Widmann M, et al. Towards process-informed bias correction of climate change simulations[J]. Nature Climate Change, 2017, 7(11): 664-773. DOI: 10.1038/nclimate3418
doi: 10.1038/nclimate3418 URL |
[21] |
Maraun D, Widmann M. Statistical downscaling and bias correction for climate research [M]. Cambridge: Cambridge University Press, 2018: 360. DOI: 10.1017/9781107588783
doi: 10.1017/9781107588783 |
[22] |
Evin G, Favre A C, Hingray B. Stochastic generation of multi-site daily precipitation focusing on extreme events[J]. Hydrology and Earth System Sciences, 2018, 22(1): 655-672. DOI: 10.5194/hess-22-655-2018
doi: 10.5194/hess-22-655-2018 URL |
[23] |
Chandler R E. Multisite, multivariate weather generation based on generalised linear models[J]. Environmental Modelling & Software, 2020, 134: 104867. DOI: 10.1016/j.envsoft.2020.104867
doi: 10.1016/j.envsoft.2020.104867 |
[24] |
Chen X, Zhou T. Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon[J]. Geophysical Research Letters, 2015, 42(21): 9433-9439. DOI: 10.1002/2015gl066384
doi: 10.1002/2015gl066384 URL |
[25] |
Li D, Xiao Z. Can solar cycle modulate the ENSO effect on the Pacific/North American pattern?[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 167: 30-38. DOI: 10.1016/j.jastp.2017.10.007
doi: 10.1016/j.jastp.2017.10.007 URL |
[26] |
Sjolte J, Sturm C, Adolphi F, et al. Solar and volcanic forcing of North Atlantic climate inferred from a process-based reconstruction[J]. Climate of The Past, 2018, 14(8): 1179-1194. DOI: 10.5194/cp-14-1179-2018
doi: 10.5194/cp-14-1179-2018 URL |
[27] |
Solman S A, Orlanski I. Climate change over the extratropical Southern Hemisphere: the tale from an ensemble of reanalysis datasets[J]. Journal of Climate, 2016, 29(5): 1673-1687. DOI: 10.1175/jcli-d-15-0588.1
doi: 10.1175/jcli-d-15-0588.1 URL |
[28] |
Undorf S, Polson D, Bollasina M A, et al. Detectable impact of local and remote anthropogenic aerosols on the 20th century changes of West African and South Asian monsoon precipitation[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(10): 4871-4889. DOI: 10.1029/2017jd027711
doi: 10.1029/2017jd027711 URL |
[29] |
Swingedouw D, Mignot J, Ortega P, et al. Impact of explosive volcanic eruptions on the main climate variability modes[J]. Global and Planetary Change, 2017, 150: 24-45. DOI: 10.1016/j.gloplacha.2017.01.006
doi: 10.1016/j.gloplacha.2017.01.006 URL |
[30] |
Li X, Mitra C, Dong L. Understanding land use change impacts on microclimate using Weather 55 Research and Forecasting (WRF) model[J]. Physics and Chemistry of The Earth, Parts A/B/C, 2018, 103: 115-126, 56. DOI: 10.1016/j.pce.2017.01.017
doi: 10.1016/j.pce.2017.01.017 URL |
[31] |
Tsanis I, Tapoglou E. Winter North Atlantic Oscillation impact on European precipitation and drought under climate change[J]. Theoretical and Applied Climatology, 2019, 135(1): 323-330. DOI: 10.1007/s00704-018-2379-247
doi: 10.1007/s00704-018-2379-247 URL |
[32] |
Bandoro J, Solomon S, Donohoe S, et al. Influences of the Antarctic ozone hole on Southern Hemispheric summer climate change[J]. Journal of Climate, 2014, 27(16): 6245-6264. DOI: 10.1175/jcli-d-13-00698.1
doi: 10.1175/jcli-d-13-00698.1 URL |
[33] |
Smith K L, Polvani L M. Spatial patterns of recent Antarctic surface temperature trends and the importance of natural variability: lessons from multiple reconstructions and the CMIP5 models[J]. Climate Dynamics, 2017, 48(78): 2653-2670. DOI: 10.1007/s00382-016-3230-4
doi: 10.1007/s00382-016-3230-4 URL |
[34] |
Meehl G A, Hu A, Arblaster J M, et al. Externally forced and internally generated decadal climate variability associated with the interdecadal pacific oscillation[J]. Journal of Climate, 2013, 26(18): 7298-7310. DOI: 10.1175/jcli-d-12-00548.1
doi: 10.1175/jcli-d-12-00548.1 URL |
[35] |
Ghosh R, Müller W A, Baehr J, et al. Impact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heating[J]. Climate Dynamics, 2017, 48(11-12): 3547-3563. DOI: 10.1007/s00382-016-3283-4
doi: 10.1007/s00382-016-3283-4 URL |
[36] |
Dong B, Dai A, Vuille M, et al. Asymmetric modulation of ENSO teleconnections by the Interdecadal Pacific Oscillation[J]. Journal of Climate, 2018, 31(18): 7337-7361. DOI: 10.1175/jcli-d-17-0663.1
doi: 10.1175/jcli-d-17-0663.1 URL |
[37] |
Zhai P M, Zhou B Q, Chen Y. A review of climate change attribution studies[J]. Journal of Meteorological Research, 2018, 32(5): 671-692. DOI: 10.1007/s13351-018-8041-6
doi: 10.1007/s13351-018-8041-6 URL |
[38] |
Hoell A, Hoerling M, Eischeid J, et al. Reconciling theories for human and natural attribution of recent East Africa drying[J]. Journal of Climate, 2017, 30(6): 1939-1957. DOI: 10.1175/jcli-d-16-0558.1
doi: 10.1175/jcli-d-16-0558.1 URL |
[39] |
Ji F, Wu Z, Huang J, et al. Evolution of land surface air temperature trend[J]. Nature Climate Change, 2014, 4(6): 462-466. DOI: 10.1038/nclimate2223
doi: 10.1038/nclimate2223 URL |
[40] |
Xu Y, Gao X, Shi Y, et al. Detection and attribution analysis of annual mean temperature changes in China[J]. Climate Research, 2015, 63(1): 61-71. DOI: 10.3354/cr01283
doi: 10.3354/cr01283 URL |
[41] |
Deser C, Terray L, Phillips A S. Forced and internal components of winter air temperature trends over North America during the past 50 years: mechanisms and implications[J]. Journal of Climate, 2016, 29(6): 2237-2258. DOI: 10.1175/jcli-d-15-0304.1
doi: 10.1175/jcli-d-15-0304.1 URL |
[1] | 曹龙. IPCC AR6报告解读:气候系统对太阳辐射干预响应[J]. 气候变化研究进展, 2021, 17(6): 671-684. |
[2] | 廖宏, 谢佩芙. IPCC AR6报告解读:短寿命气候强迫因子的气候及环境效应[J]. 气候变化研究进展, 2021, 17(6): 685-690. |
[3] | 曹龙. IPCC AR6报告解读:气候系统对二氧化碳移除响应[J]. 气候变化研究进展, 2021, 17(6): 664-670. |
[4] | 王文, 傅文睿. IPCC AR6的“产生影响的气候因子”评估框架[J]. 气候变化研究进展, 2021, 17(6): 719-725. |
[5] | 翟盘茂, 周佰铨, 陈阳, 余荣. 气候变化科学方面的几个最新认知[J]. 气候变化研究进展, 2021, 17(6): 629-635. |
[6] | 王谋, 康文梅, 张莹. 应对气候变化南南合作优先合作国家选择方法探讨[J]. 气候变化研究进展, 2021, 17(6): 744-752. |
[7] | 何佳骏, 任国玉, 张盼峰. 资料均一化对气温变化趋势及其城市化偏差估计的影响:以北京地区为例[J]. 气候变化研究进展, 2021, 17(5): 503-513. |
[8] | 刘蕾. 应对气候变化进程中纳入性别考虑的进展与启示[J]. 气候变化研究进展, 2021, 17(5): 548-558. |
[9] | 武占云. 将适应气候变化纳入国土空间规划:进展、困境与思路[J]. 气候变化研究进展, 2021, 17(5): 559-569. |
[10] | 于晓龙, 刘援. 应对气候变化南南合作物资赠送项目评估研究[J]. 气候变化研究进展, 2021, 17(5): 608-620. |
[11] | 刘远, 王芳, 张正涛, 黄承芳, 陈曦, 李宁. 中国七大地区“气候变化—作物产量—经济影响”综合评价[J]. 气候变化研究进展, 2021, 17(4): 455-465. |
[12] | 王鑫鑫, 史兴民. 气候变化感知和适应行为研究的可视化计量分析[J]. 气候变化研究进展, 2021, 17(4): 466-475. |
[13] | 孙友源, 郭振, 张继广, 秦亚琦. 碳市场与电力市场机制影响下发电机组成本分析与竞争力研究[J]. 气候变化研究进展, 2021, 17(4): 476-483. |
[14] | 舒章康, 张建云, 金君良, 王国庆, 汪琳, 曹民雄. 1961—2018年中国主要江河枯季径流演变特征与成因[J]. 气候变化研究进展, 2021, 17(3): 340-351. |
[15] | 尚华明, 范煜婷, 张瑞波, 喻树龙, 张同文, 魏文寿, 刘卫平. 帕米尔高原东部径流量变化及其对气候变化的响应[J]. 气候变化研究进展, 2021, 17(3): 352-360. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|