气候变化研究进展 ›› 2021, Vol. 17 ›› Issue (6): 705-712.doi: 10.12006/j.issn.1673-1719.2021.176
所属专题: IPCC第六次评估报告WGI解读专栏
收稿日期:
2021-08-18
修回日期:
2021-08-30
出版日期:
2021-11-30
发布日期:
2021-10-09
作者简介:
左志燕,女,教授, 基金资助:
Received:
2021-08-18
Revised:
2021-08-30
Online:
2021-11-30
Published:
2021-10-09
摘要:
尽管气候变化是全球性的现象,但其表现和结果随区域不同而不同,因此区域气候信息对于气候变化的作用和风险评估很重要。基于此,IPCC第六次评估报告(AR6)第一工作组(WGI)报告第十章对如何从全球链接到区域气候变化方面进行了评估。区域气候变化是对自然强迫和人类活动的区域响应、对大尺度气候系统内部变率的响应和区域气候本身反馈过程的相互作用结果。因此,本章重点关注如何从多套观测资料,不同模式的集合,物理过程的理解、专家判断和本地信息等多元信息中有效提炼出区域信息的方法。通过提炼方法指出人类活动是许多次大陆尺度上1950年代以来区域平均温度变化的主要驱动力,但参考时段和阈值的选择对人类活动信号是否出现和出现的早晚有影响。人类活动对一些区域的多年代际降水变化有一定贡献,但其不确定性相对全球平均而言更大。气候系统内部变率可以在很大程度上延迟和阻碍人类活动信号在区域气候变化中的出现。区域气候变化的评估给决策者提供了更多有用的信息,增加了评估报告的适用性。
左志燕, 肖栋. 从全球到区域气候变化[J]. 气候变化研究进展, 2021, 17(6): 705-712.
ZUO Zhi-Yan, XIAO Dong. Linking global to regional climate change[J]. Climate Change Research, 2021, 17(6): 705-712.
[1] | IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013: 1217-1308 |
[2] | IPCC. Regional context in climate change 2014: impacts, adaptation, and vulnerability [M]. Cambridge: Cambridge University Press, 2014: 1133-1197 |
[3] | Hoegh-Guldberg O, Jacob D, Taylor M, et al. Impacts of 1.5℃ of global warming on natural and human systems, in global warming of 1.5℃[M]. Cambridge: Cambridge University Press, 2018: 175-311 |
[4] | Jia G, Shevliakova E, Artaxo P, et al. Land-climate interactions [M]//Shukla P R, Skea J, Calvo Buendia E. Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Cambridge: Cambridge University Press, 2019: 131-248 |
[5] |
Thorne P W, Diamond H J, Goodison B, et al. Towards a global land surface climate fiducial reference measurements network[J]. International Journal of Climatology, 2018, 38: 2760-2774
doi: 10.1002/joc.2018.38.issue-6 URL |
[6] |
Chen H, Xu C Y, Guo S. Comparison and evaluation of multiple GCMs, statistical downscaling and hydrological models in the study of climate change impacts on runoff [J]. Journal of Hydrology, 2012: 434-435, 36-45. DOI: 10.1016/j.jhydrol.2012.02.040
doi: 10.1016/j.jhydrol.2012.02.040 |
[7] |
Bosilovich M G, Chern J D, Mocko D, et al. Evaluating observation influence 21 on regional water budgets in reanalyses[J]. Journal of Climate, 2015, 28(9): 3631-3649. DOI: 10.1175/jcli-d-14-22 00623.1
doi: 10.1175/jcli-d-14-22 00623.1 URL |
[8] |
Tapiador F J, Navarro A, Levizzani V, et al. Global precipitation measurements for validating climate models[J]. Atmospheric Research, 2017, 197: 1-20. DOI: 10.1016/j.atmosres.2017.06.021
doi: 10.1016/j.atmosres.2017.06.021 URL |
[9] |
Venema V K C, Mestre O, Aguilar E, et al. Benchmarking homogenization algorithms for monthly data[J]. Climate of The Past, 2012, 8(1): 89-115. DOI: 10.5194/cp-8-89-2012
doi: 10.5194/cp-8-89-2012 URL |
[10] |
McPherson R A. High-resolution surface observations for climate monitoring[M]//Tarhule A. Climate variability: regional and thematic patterns. UK, 2013, DOI: 10.5772/56044
doi: 10.5772/56044 |
[11] |
von Clarmann T. Smoothing error pitfalls[J]. Atmospheric Measurement Techniques, 2014, 7(9): 3023-3034. DOI: 10.5194/amt-7-3023-2014
doi: 10.5194/amt-7-3023-2014 URL |
[12] |
Lin G, Wan H, Zhang H, et al. Can nudging be used to quantify model sensitivities in precipitation and cloud forcing?[J]. Journal of Advances in Modeling Earth Systems, 2016, 8(3): 1073-1091. DOI: 10.1002/2016ms000659
doi: 10.1002/2016ms000659 URL |
[13] |
Blenkinsop S, Lewis E, Chan S C, et al. Quality-control of an hourly rainfall dataset and climatology of extremes for the UK[J]. International Journal of Climatology, 2017, 37(2): 722-740. DOI: 10.1002/joc.4735
doi: 10.1002/joc.4735 pmid: 28239235 |
[14] |
Frankcombe L M, England M H, Mann M E, et al. Separating internal variability from the externally forced climate response[J]. Journal of Climate, 2015, 28(20): 8184-8202. DOI: 10.1175/jcli-d-15-0069.1
doi: 10.1175/jcli-d-15-0069.1 URL |
[15] |
Yamada T J, Lee M I, Kanamitsu M, et al. Diurnal characteristics of rainfall over the contiguous united states and northern Mexico in the dynamically downscaled reanalysis dataset (US10)[J]. Journal of Hydrometeorology, 2012, 13(3): 1142-1148. DOI: 10.1175/jhm-d-11-0121.1
doi: 10.1175/jhm-d-11-0121.1 URL |
[16] |
Su C H, Eizenberg N, Steinle P, et al. BARRA v1.0: the bureau of meteorology atmospheric high-resolution regional reanalysis for Australia[J]. Geoscientific Model Development, 2019, 12(5): 2049-2068. DOI: 10.5194/gmd-12-2049-2019
doi: 10.5194/gmd-12-2049-2019 URL |
[17] |
Bromwich D H, Wilson A B, Bai L S, et al. A comparison of the regional Arctic system reanalysis and the global ERA-Interim reanalysis for the Arctic[J]. Quarterly Journal of The Royal Meteorological Society, 2016, 142(695): 644-658. DOI: 10.1002/qj.2527
doi: 10.1002/qj.2527 URL |
[18] |
Kaspar K, Niermann D, Borsche1 M, et al. Regional atmospheric reanalysis activities at Deutscher Wetterdienst: review of evaluation results and application examples with a focus on renewable energy[J]. Advances in Science and Research, 2020, 17: 115-128. DOI: 10.5194/asr-17-115-2020
doi: 10.5194/asr-17-115-2020 URL |
[19] |
Lehner F, Deser C, Maher N, et al. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6[J]. Earth System Dynamics, 2020, 11(2): 491-508. DOI: 10.5194/esd-11-491-2020
doi: 10.5194/esd-11-491-2020 URL |
[20] |
Maraun D, Shepherd T, Widmann M, et al. Towards process-informed bias correction of climate change simulations[J]. Nature Climate Change, 2017, 7(11): 664-773. DOI: 10.1038/nclimate3418
doi: 10.1038/nclimate3418 URL |
[21] |
Maraun D, Widmann M. Statistical downscaling and bias correction for climate research [M]. Cambridge: Cambridge University Press, 2018: 360. DOI: 10.1017/9781107588783
doi: 10.1017/9781107588783 |
[22] |
Evin G, Favre A C, Hingray B. Stochastic generation of multi-site daily precipitation focusing on extreme events[J]. Hydrology and Earth System Sciences, 2018, 22(1): 655-672. DOI: 10.5194/hess-22-655-2018
doi: 10.5194/hess-22-655-2018 URL |
[23] |
Chandler R E. Multisite, multivariate weather generation based on generalised linear models[J]. Environmental Modelling & Software, 2020, 134: 104867. DOI: 10.1016/j.envsoft.2020.104867
doi: 10.1016/j.envsoft.2020.104867 |
[24] |
Chen X, Zhou T. Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon[J]. Geophysical Research Letters, 2015, 42(21): 9433-9439. DOI: 10.1002/2015gl066384
doi: 10.1002/2015gl066384 URL |
[25] |
Li D, Xiao Z. Can solar cycle modulate the ENSO effect on the Pacific/North American pattern?[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 167: 30-38. DOI: 10.1016/j.jastp.2017.10.007
doi: 10.1016/j.jastp.2017.10.007 URL |
[26] |
Sjolte J, Sturm C, Adolphi F, et al. Solar and volcanic forcing of North Atlantic climate inferred from a process-based reconstruction[J]. Climate of The Past, 2018, 14(8): 1179-1194. DOI: 10.5194/cp-14-1179-2018
doi: 10.5194/cp-14-1179-2018 URL |
[27] |
Solman S A, Orlanski I. Climate change over the extratropical Southern Hemisphere: the tale from an ensemble of reanalysis datasets[J]. Journal of Climate, 2016, 29(5): 1673-1687. DOI: 10.1175/jcli-d-15-0588.1
doi: 10.1175/jcli-d-15-0588.1 URL |
[28] |
Undorf S, Polson D, Bollasina M A, et al. Detectable impact of local and remote anthropogenic aerosols on the 20th century changes of West African and South Asian monsoon precipitation[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(10): 4871-4889. DOI: 10.1029/2017jd027711
doi: 10.1029/2017jd027711 URL |
[29] |
Swingedouw D, Mignot J, Ortega P, et al. Impact of explosive volcanic eruptions on the main climate variability modes[J]. Global and Planetary Change, 2017, 150: 24-45. DOI: 10.1016/j.gloplacha.2017.01.006
doi: 10.1016/j.gloplacha.2017.01.006 URL |
[30] |
Li X, Mitra C, Dong L. Understanding land use change impacts on microclimate using Weather 55 Research and Forecasting (WRF) model[J]. Physics and Chemistry of The Earth, Parts A/B/C, 2018, 103: 115-126, 56. DOI: 10.1016/j.pce.2017.01.017
doi: 10.1016/j.pce.2017.01.017 URL |
[31] |
Tsanis I, Tapoglou E. Winter North Atlantic Oscillation impact on European precipitation and drought under climate change[J]. Theoretical and Applied Climatology, 2019, 135(1): 323-330. DOI: 10.1007/s00704-018-2379-247
doi: 10.1007/s00704-018-2379-247 URL |
[32] |
Bandoro J, Solomon S, Donohoe S, et al. Influences of the Antarctic ozone hole on Southern Hemispheric summer climate change[J]. Journal of Climate, 2014, 27(16): 6245-6264. DOI: 10.1175/jcli-d-13-00698.1
doi: 10.1175/jcli-d-13-00698.1 URL |
[33] |
Smith K L, Polvani L M. Spatial patterns of recent Antarctic surface temperature trends and the importance of natural variability: lessons from multiple reconstructions and the CMIP5 models[J]. Climate Dynamics, 2017, 48(78): 2653-2670. DOI: 10.1007/s00382-016-3230-4
doi: 10.1007/s00382-016-3230-4 URL |
[34] |
Meehl G A, Hu A, Arblaster J M, et al. Externally forced and internally generated decadal climate variability associated with the interdecadal pacific oscillation[J]. Journal of Climate, 2013, 26(18): 7298-7310. DOI: 10.1175/jcli-d-12-00548.1
doi: 10.1175/jcli-d-12-00548.1 URL |
[35] |
Ghosh R, Müller W A, Baehr J, et al. Impact of observed North Atlantic multidecadal variations to European summer climate: a linear baroclinic response to surface heating[J]. Climate Dynamics, 2017, 48(11-12): 3547-3563. DOI: 10.1007/s00382-016-3283-4
doi: 10.1007/s00382-016-3283-4 URL |
[36] |
Dong B, Dai A, Vuille M, et al. Asymmetric modulation of ENSO teleconnections by the Interdecadal Pacific Oscillation[J]. Journal of Climate, 2018, 31(18): 7337-7361. DOI: 10.1175/jcli-d-17-0663.1
doi: 10.1175/jcli-d-17-0663.1 URL |
[37] |
Zhai P M, Zhou B Q, Chen Y. A review of climate change attribution studies[J]. Journal of Meteorological Research, 2018, 32(5): 671-692. DOI: 10.1007/s13351-018-8041-6
doi: 10.1007/s13351-018-8041-6 URL |
[38] |
Hoell A, Hoerling M, Eischeid J, et al. Reconciling theories for human and natural attribution of recent East Africa drying[J]. Journal of Climate, 2017, 30(6): 1939-1957. DOI: 10.1175/jcli-d-16-0558.1
doi: 10.1175/jcli-d-16-0558.1 URL |
[39] |
Ji F, Wu Z, Huang J, et al. Evolution of land surface air temperature trend[J]. Nature Climate Change, 2014, 4(6): 462-466. DOI: 10.1038/nclimate2223
doi: 10.1038/nclimate2223 URL |
[40] |
Xu Y, Gao X, Shi Y, et al. Detection and attribution analysis of annual mean temperature changes in China[J]. Climate Research, 2015, 63(1): 61-71. DOI: 10.3354/cr01283
doi: 10.3354/cr01283 URL |
[41] |
Deser C, Terray L, Phillips A S. Forced and internal components of winter air temperature trends over North America during the past 50 years: mechanisms and implications[J]. Journal of Climate, 2016, 29(6): 2237-2258. DOI: 10.1175/jcli-d-15-0304.1
doi: 10.1175/jcli-d-15-0304.1 URL |
[1] | 丁永建, 张世强, 陈仁升, 秦甲, 赵求东, 刘俊峰, 阳勇, 何晓波, 苌亚平, 上官冬辉, 韩添丁, 吴锦奎, 李向应. 气候变化对冰冻圈水文影响研究综述[J]. 气候变化研究进展, 2025, 21(1): 1-21. |
[2] | 秦卓凡, 廖宏, 代慧斌. 气候变化影响我国大气重污染事件的研究进展[J]. 气候变化研究进展, 2025, 21(1): 56-68. |
[3] | 吕学都, 陈佳琪, 葛慧, 朱乙丹. 气候金融实践与发展建议[J]. 气候变化研究进展, 2025, 21(1): 78-90. |
[4] | 陈德亮, 谭显春, 彭喆, 闫洪硕, 程永龙. 人工智能在气候研究和服务中的机遇与挑战[J]. 气候变化研究进展, 2024, 20(6): 669-681. |
[5] | 高翔. 国际条约下的气候资金问题辨析[J]. 气候变化研究进展, 2024, 20(6): 799-807. |
[6] | 朱磊, 张丽忠, 蒋莹, 徐剑锋, 黄艳, 孙淑欣. 工业部门的气候适应研究进展[J]. 气候变化研究进展, 2024, 20(6): 721-735. |
[7] | 欧阳志云, 张观石, 应凌霄. 气候变化对青藏高原生态系统分布范围和生态功能的影响研究进展[J]. 气候变化研究进展, 2024, 20(6): 699-710. |
[8] | 陆春晖, 袁佳双, 黄磊, 张永香. 从IPCC看全球盘点中的关键科学问题及其对中国的启示[J]. 气候变化研究进展, 2024, 20(6): 736-746. |
[9] | 周泽宇, 王君华, 曹颖. 全球适应气候变化行动进展评估及相关工作建议[J]. 气候变化研究进展, 2024, 20(6): 764-772. |
[10] | 牛振国, 景雨航, 张东启, 张波. 气候变化背景下青藏高原湿地生态系统响应特征:回顾与展望[J]. 气候变化研究进展, 2024, 20(5): 509-518. |
[11] | 吴沛泽, 陈莎, 刘影影, 李晓桐, 杜展霞, 崔淑芬, 姜克隽. 低排放分析平台LEAP:应对气候变化下的应用与挑战[J]. 气候变化研究进展, 2024, 20(5): 611-623. |
[12] | 德吉玉珍, 拉巴, 巴桑旺堆, 白玛玉措, 旦增益嘎, 平措旺丹, 德吉央宗. 近50年西藏那曲西南部湖泊变化特征及其对气候变化的响应[J]. 气候变化研究进展, 2024, 20(5): 534-543. |
[13] | 张靖宇, 曹龙. 海洋和陆地碳循环对二氧化碳正负排放响应的模拟研究[J]. 气候变化研究进展, 2024, 20(4): 416-427. |
[14] | 潘晓滨, 刘尚文. 应对气候变化背景下我国转型金融法制化路径探析[J]. 气候变化研究进展, 2024, 20(4): 465-474. |
[15] | 包文, 段安民, 游庆龙, 胡蝶. 青藏高原气候变化及其对水资源影响的研究进展[J]. 气候变化研究进展, 2024, 20(2): 158-169. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|