气候变化研究进展 ›› 2021, Vol. 17 ›› Issue (6): 671-684.doi: 10.12006/j.issn.1673-1719.2021.170
收稿日期:
2021-08-15
修回日期:
2021-09-07
出版日期:
2021-11-30
发布日期:
2021-09-27
作者简介:
曹龙,男,教授, 基金资助:
Received:
2021-08-15
Revised:
2021-09-07
Online:
2021-11-30
Published:
2021-09-27
摘要:
IPCC第六次评估报告(AR6)第一工作组报告评估了太阳辐射干预(Solar radiation modification,SRM)对气候系统和碳循环的影响。在大幅度减排基础上,太阳辐射干预有潜力作为应对气候变化的备用措施。目前,对于太阳辐射干预气候影响的评估都是基于模式模拟结果。评估主要结论如下:太阳辐射干预可以在全球和区域尺度上抵消一部分温室气体增加造成的气候变化(高信度);但是太阳辐射干预无法在全球和区域尺度上完全抵消温室气体增加引起的气候变化(几乎确定);有可能通过适当的太阳辐射干预设计,同时实现多个温度变化减缓目标(中等信度);在高强度温室气体排放情景下,如果太阳辐射干预实施后突然终止,并且这种终止长时间持续,将会造成快速的气候变化(高信度);如果在减排和CO2移除的情况下,太阳辐射干预的实施强度逐渐减小至零,将显著降低太阳辐射干预突然终止产生的快速气候变化风险(中等信度);太阳辐射干预会通过降温作用,促进陆地和海洋对大气CO2的吸收(中等信度),但是太阳辐射干预无法缓解海洋酸化(高信度);太阳辐射干预对其他生物化学循环影响的不确定性大。由于对云-气溶胶-辐射过程的相互作用和微物理过程认知有限,目前对平流层气溶胶注入、海洋低云亮化、高层卷云变薄等太阳辐射干预方法的冷却潜力和气候效应的认知还有很大的不确定性。
曹龙. IPCC AR6报告解读:气候系统对太阳辐射干预响应[J]. 气候变化研究进展, 2021, 17(6): 671-684.
CAO Long. Climate system response to solar radiation modification[J]. Climate Change Research, 2021, 17(6): 671-684.
图1 地球工程模式比较计划多模式模拟的温度和降水对CO2强迫和太阳辐射干预强迫的响应[1] 注:第一行是在工业革命前CO2浓度下的模拟与4倍CO2浓度下的模拟差值(11个模式的平均);第二行是地球工程多模式模拟试验(GeoMIP)G1试验模拟(全球减少大气层顶的太阳辐射强度)和4倍CO2浓度模拟下的差值(11个模式的平均);第三行是GeoMIP G4试验(在RCP4.5情景下,向赤道地区的平流层低部持续每年注入5 Tg的SO2)和RCP4.5模拟试验的差值(6个模式的平均);第四行是GeoMIP G4cndc试验(在RCP4.5情景下,将全球海洋上空低云的颗粒浓度数增加50%)和RCP4.5模拟试验的差值(8个模式平均)。温度和降水变化代表各组试验的11~50年的平均,并且已经除以各组模拟试验的GSAT变化。斜线覆盖的区域代表少于80%的模式结果的变化正负号是一致的。图中显示的相关系数代表不同太阳辐射干预方法引起的温度和降水变化的空间分布和CO2减少引起的相应空间分布的相关性。均方根差(RMS)根据每幅图中被GSAT变化标准化后的变量值计算。
Fig. 1 Multi-model response per degree global mean cooling in temperature and precipitation in response to CO2 forcing and SRM forcing. (Top row shows the response to a CO2 decrease, calculated as the difference between pre-industrial control simulation and abrupt 4 ×CO2 simulations where the CO2 concentration is quadrupled abruptly from the pre-industrial level (11-model average); second row shows the response to a globally uniform solar reduction, calculated as the difference between GeoMIP experiment G1 and abrupt 4× CO2 (11-model average); third row shows the response to stratospheric sulphate aerosol injection, calculated as the difference between GeoMIP experiment G4 (a continuous injection of 5 Tg SO2 per year at one point on the equator into the lower stratosphere against the RCP4.5 background scenario) and RCP4.5 (6-model average); and bottom row shows the response to marine cloud brightening, calculated as the difference between GeoMIP experiment G4cdnc (increase cloud droplet concentration number in marine low cloud by 50% over the global ocean against RCP4.5 background scenario) and RCP4.5 (8-model average). All differences (average of years 11-50 of simulation) are normalized by the global mean cooling in each scenario, averaged over years 11-50. Diagonal lines represent regions where fewer than 80% of the models agree on the sign of change. The values of correlation represent the spatial correlation of each SRM-induced temperature and precipitation change pattern with the pattern of change caused by a reduction of atmospheric CO2. RMS (root mean square) is calculated based on the fields shown in the maps (normalized by global mean cooling))
[1] | IPCC. Climate change 2021: the physical science basis [M]. Cambridge: Cambridge University Press, 2021 |
[2] | IPCC. Special report on global warming of 1.5℃ [M]. UK: Cambridge University Press, 2018 |
[3] | The Royal Society. Geoengineering the climate: science, governance and uncertainty [R]. London: RS Policy document 10/09, The Royal Society, 2009: 82 |
[4] |
IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013: 571-658. DOI: 10.1017/CBO9781107415324.016
doi: 10.1017/CBO9781107415324.016 |
[5] |
National Research Council. Climate intervention: reflecting sunlight to cool Earth [M]. Washington, DC: The National Academies Press, 2015: 234. DOI: 10.17226/18988
doi: 10.17226/18988 |
[6] |
National Academies of Sciences, Engineering, and Medicine. Reflecting sunlight: recommendations for solar geoengineering research and research governance [M]. Washington, DC: The National Academies Press, 2021. DOI: 10.17226/25762
doi: 10.17226/25762 |
[7] |
Kravitz B, Caldeira K, Boucher O, et al. Climate model response from the Geoengineering Model Intercomparison Project (GeoMIP)[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(15): 8320-8332. DOI: 10.1002/jgrd.50646
doi: 10.1002/jgrd.50646 URL |
[8] |
Kravitz B, MacMartin D G, Visioni D, et al. Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP)[J]. Atmospheric Chemistry and Physics, 2021, 21(6): 4231-4247. DOI: 10.5194/acp-21-4231-2021
doi: 10.5194/acp-21-4231-2021 |
[9] |
Schmidt H, Alterskjær K, Bou K D, et al. Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO2: climate responses simulated by four Earth system models[J]. Earth System Dynamic, 2012, 3(1): 63-78. DOI: 10.5194/esd-3-63-2012
doi: 10.5194/esd-3-63-2012 URL |
[10] |
Modak A, Bala G, Cao L, et al. Why must a solar forcing be larger than a CO2 forcing to cause the same global mean surface temperature change?[J]. Environmental Research Letters, 2016, 11(4). DOI: 10.1088/1748-9326/ 11/4/044013
doi: 10.1088/1748-9326/ 11/4/044013 |
[11] |
Chiodo G, Polvani L M. Reduction of climate sensitivity to solar forcing due to stratospheric ozone feedback[J]. Journal of Climate, 2016, 29(12): 4651-4663. DOI: 10.1175/JCLI-D-15-0721.1
doi: 10.1175/JCLI-D-15-0721.1 URL |
[12] |
Duan L, Cao L, Bala G, et al. RComparison of the fast and slow climate response to three radiation management geoengineering schemesR [J]. Journal of Geophysical Research: Atmospheres, 2018, 123 (21): 11, 980-912. DOI: 10.1029/2018jd029034
doi: 10.1029/2018jd029034 |
[13] |
Rick D, Russotto T, Ackerman P. Changes in clouds and thermodynamics under solar geoengineering and implications for required solar reduction[J]. Atmospheric Chemistry and Physics, 2018, 18(16): 11905-11925. DOI: 10.5194/acp-18-11905-2018
doi: 10.5194/acp-18-11905-2018 |
[14] |
Krishnamohan K, Bala G, Cao L, et al. Climate system response to stratospheric sulfate aerosols: sensitivity to altitude of aerosol layer[J]. Earth System Dynamics, 2019, 10(4): 885-900. DOI: 10.5194/esd-10-885-2019
doi: 10.5194/esd-10-885-2019 URL |
[15] |
Zhao M Y, Cao L, Duan L, et al. Climate more responsive to marine cloud brightening than ocean albedo modification: a model study [J]. Journal of Geophysical Research: Atmospheres, 2021, 126 (3): e2020JD033256. DOI: 10.1029/2020JD033256
doi: 10.1029/2020JD033256 |
[16] |
Kravitz B, Robock A, Tilmes S, et al. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results[J]. Geoscientific Model Development, 2015, 8(10): 3379-3392. DOI: 10.5194/gmd-8-3379-2015
doi: 10.5194/gmd-8-3379-2015 URL |
[17] |
Tilmes S, Richter J H, Kravitz B, et al. CESM1(WACCM) stratospheric aerosol geoengineering large ensemble project[J]. Bulletin of The American Meteorological Society, 2018, 99(11): 2361-2371. DOI: 10.1175/BAMS-D-17-0267.1
doi: 10.1175/BAMS-D-17-0267.1 URL |
[18] |
Simone T, Jadwiga H, Michael J, et al. Effects of different stratospheric SO2 injection altitudes on stratospheric chemistry and dynamics[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(9): 815-833. DOI: 10.1002/wcc.423
doi: 10.1002/wcc.423 |
[19] |
Irvine P J, Kravitz B, Mark G, et al. An overview of the Earth system science of solar geoengineering[J]. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7(6): 815-833. DOI: 10.1002/wcc.423
doi: 10.1002/wcc.423 URL |
[20] |
Lawrence M G, Stefan S, Helene M, et al. Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals[J]. Nature Communications, 2018, 9(1): 3734. DOI: 10.1038/s41467-018-05938-3
doi: 10.1038/s41467-018-05938-3 pmid: 30213930 |
[21] |
Muri H, Tjiputra J, Helge O, et al. Climate response to aerosol geoengineering: a multimethod comparison[J]. Journal of Climate, 2018, 31(16): 6319-6340. DOI: 10.1175/jcli-d-17-0620.1
doi: 10.1175/jcli-d-17-0620.1 URL |
[22] |
John M, Annette R, Yu X Y, et al. Arctic sea ice and atmospheric circulation under the GeoMIP G1 scenario[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(2): 567-583. DOI: 10.1002/ 2013JD021060
doi: 10.1002/ 2013JD021060 URL |
[23] |
Mira B, Alan R, Ji D Y, et al. Arctic cryosphere response in the Geoengineering Model Intercomparison Project G3 and G4 scenarios[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(3): 1308-1321. DOI: 10.1002/2013JD020627
doi: 10.1002/2013JD020627 URL |
[24] |
Zhao L Y, Yang Y, Cheng W, et al. Glacier evolution in high-mountain Asia under stratospheric sulfate aerosol injection geoengineering[J]. Atmospheric Chemistry and Physics, 2017, 17(11): 6547-6564. DOI: 10.5194/acp-17-6547-2017
doi: 10.5194/acp-17-6547-2017 |
[25] |
Cao L, Duan L, Bala G, et al. Simulated long-term climate response to idealized solar geoengineering[J]. John Wiley & Sons, Ltd, 2016, 43(5): 2209-2217. DOI: 10.1002/2016GL068079
doi: 10.1002/2016GL068079 |
[26] |
Hong Y, Moore J C, Jevrejeva S, et al. Impact of the GeoMIP G1 sunshade geoengineering experiment on the Atlantic meridional overturning circulation[J]. Environmental Research Letters, 2017, 12(3): 034009. DOI: 10.1088/1748-9326/aa5fb8
doi: 10.1088/1748-9326/aa5fb8 URL |
[27] |
Tilmes S, MacMartin D G, Lenaerts J T M, et al. Reaching 1.5 and 2.0℃ global surface temperature targets using stratospheric aerosol geoengineering[J]. Earth System Dynamic, 2020, 11(3): 579-601. DOI: 10.5194/esd-11-579-2020
doi: 10.5194/esd-11-579-2020 URL |
[28] |
Curry C L, Jana S, David B, et al. A multimodel examination of climate extremes in an idealized geoengineering experiment[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(7): 3900-3923. DOI: 10.1002/2013JD020648
doi: 10.1002/2013JD020648 URL |
[29] |
Ji D Y, Fang S S, Curry C L, et al. Extreme temperature and precipitation response to solar dimming and stratospheric aerosol geoengineering[J]. Atmospheric Chemistry and Physics, 2018, 18(14): 10133-10156. DOI: 10.5194/acp-18-10133-2018
doi: 10.5194/acp-18-10133-2018 |
[30] |
Rohi M, Bala G, Aditya N. Regional scale analysis of climate extremes in an SRM geoengineering simulation. Part 1: precipitation extremes[J]. Current Science, 2018, 114(5): 1024-1035. DOI: 10.18520/cs/v114/i05/1024-1035
doi: 10.18520/cs/v114/i05/1024-1035 URL |
[31] |
Moore J C, Grinsted A, Guo X, et al. Atlantic hurricane surge response to geoengineering[J]. Proceedings of The National Academy of Sciences, 2015, 112(45): 13794-13799. DOI: 10.1073/pnas.1510530112
doi: 10.1073/pnas.1510530112 URL |
[32] |
Jones A C, Haywood J M, Dunstone N, et al. Impacts of hemispheric solar geoengineering on tropical cyclone frequency[J]. Nature Communications, 2017, 8(1): 1382. DOI: 10.1038/s41467-017-01606-0
doi: 10.1038/s41467-017-01606-0 URL |
[33] |
Niemeier U, Schmidt H, Alterskjær K, et al. Solar irradiance reduction via climate engineering: impact of different techniques on the energy balance and the hydrological cycle[J]. Journal of Geophysical Research Atmospheres, 2013, 118(21): 11905-11917. DOI: 10.1002/2013JD020445
doi: 10.1002/2013JD020445 URL |
[34] |
Tilmes S, Fasullo J, Lamarque J, et al. The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP)[J]. Journal of Geophysical Research Atmospheres, 2013, 118(19): 11036-11058. DOI: 10.1002/jgrd.50868
doi: 10.1002/jgrd.50868 URL |
[35] |
Irvine P J, Sriver R L, Keller K. Tension between reducing sea-level rise and global warming through solar-radiation management[J]. Nature Climate Change, 2012, 2(2): 97-100. DOI: 10.1038/nclimate1351
doi: 10.1038/nclimate1351 URL |
[36] |
Jones A C, Hawcroft M K, Haywood J M, et al. Regional climate impacts of stabilizing global warming at 1.5 K using solar geoengineering[J]. Earth’s Future, 2018, 6(2): 230-251. DOI: 10.1002/ 2017EF000720
doi: 10.1002/ 2017EF000720 URL |
[37] |
Crook J A, Jackson L S, Osprey S M, et al. A comparison of temperature and precipitation responses to different Earth radiation management geoengineering schemes[J]. Journal of Geophysical Research Atmospheres, 2015, 120: 9352-9373. DOI: 10.1002/2015JD023269
doi: 10.1002/2015JD023269 URL |
[38] |
Dagon K, Schrag D P. Quantifying the effects of solar geoengineering on vegetation[J]. Climatic Change, 2019, 153(1): 235-251. DOI: 10.1007/s10584-019-02387-9
doi: 10.1007/s10584-019-02387-9 URL |
[39] |
Nalam A, Bala G, Modak A. Effects of Arctic geoengineering on precipitation in the tropical monsoon regions[J]. Climate Dynamics, 2018, 50(9): 3375-3395. DOI: 10.1007/s00382-017-3810-y
doi: 10.1007/s00382-017-3810-y URL |
[40] |
Fasullo J T, Tilmes S, Richter J H, et al. Persistent polar ocean warming in a strategically geoengineered climate[J]. Nature Geoscience, 2018, 11(12): 910-914. DOI: 10.1038/s41561-018-0249-7
doi: 10.1038/s41561-018-0249-7 URL |
[41] |
Cheng W, MacMartin D G, Dagon K, et al. Soil moisture and other hydrological changes in a stratospheric aerosol geoengineering large ensemble[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(14): 12773-12793. DOI: 10.1029/2018JD030237
doi: 10.1029/2018JD030237 URL |
[42] |
Jiang J, Cao L, MacMartin D G, et al. Stratospheric sulfate aerosol geoengineering could alter the high-latitude seasonal cycle[J]. Geophysical Research Letters, 2019, 46(23): 14153-14163. DOI: 10.1029/2019gl085758
doi: 10.1029/2019GL085758 |
[43] |
Irvine P, Emanuel K, He J, et al. Warming with idealized solar geoengineering moderates key climate hazards[J]. Nature Climate Change, 2019, 9(4): 295-299. DOI: 10.1038/s41558-019-0398-8
doi: 10.1038/s41558-019-0398-8 |
[44] |
Irvine P J, Keith D W. Halving warming with stratospheric aerosol geoengineering moderates policy-relevant climate hazards[J]. Environmental Research Letters, 2020, 15(4): 044011. DOI: 10.1088/ 1748-9326/ab76de
doi: 10.1088/ 1748-9326/ab76de URL |
[45] |
Lee W, MacMartin D, Visioni D, et al. Expanding the design space of stratospheric aerosol geoengineering to include precipitation-based objectives and explore trade-offs[J]. Earth System Dynamic, 2020, 11(4): 1051-1072. DOI: 10.5194/esd-11-1051-2020
doi: 10.5194/esd-11-1051-2020 URL |
[46] |
Cao L, Duan L, Bala G, et al. Simultaneous stabilization of global temperature and precipitation through cocktail geoengineering[J]. Geophysical Research Letters, 2017, 44(14): 7429-7437. DOI: 10.1002/2017GL074281
doi: 10.1002/2017GL074281 URL |
[47] |
Jones A, Haywood J M, Alterskjaer K, et al. The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP)[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(17): 9743-9752. DOI: 10.1002/jgrd.50762
doi: 10.1002/jgrd.50762 URL |
[48] |
McCusker K E, Armour K C, Bitz C M, et al. Rapid and extensive warming following cessation of solar radiation management[J]. Environmental Research Letters, 2014, 9(2): 024005. DOI: 10.1088/ 1748-9326/9/2/024005
doi: 10.1088/ 1748-9326/9/2/024005 URL |
[49] |
Trisos C H, Amatulli G, Gurevitch J, et al. Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination[J]. Nature Ecology & Evolution, 2018, 2(3): 475-482. DOI: 10.1038/s41559-017-0431-0
doi: 10.1038/s41559-017-0431-0 |
[50] |
Macmartin D G, Kravitz B, Keith D W, et al. Dynamics of the coupled human-climate system resulting from closed-loop control of solar geoengineering[J]. Climate Dynamics, 2013, 43(1-2). DOI: 10.1007/s00382-013-1822-9
doi: 10.1007/s00382-013-1822-9 |
[51] |
Keith D W, MacMartin D G. A temporary, moderate and responsive scenario for solar geoengineering[J]. Nature Climate Change, 2015, 5(3): 201-206. DOI: 10.1038/nclimate2493
doi: 10.1038/nclimate2493 URL |
[52] |
Tilmes S, Sanderson B M, O’Neill B C. Climate impacts of geoengineering in a delayed mitigation scenario[J]. Geophysical Research Letters, 2016, 43(15): 8222-8229. DOI: 10.1002/ 2016GL070122
doi: 10.1002/ 2016GL070122 URL |
[53] |
Cao L, Jiang J. Simulated effect of carbon cycle feedback on climate response to solar geoengineering [J]. Geophysical Research Letters, 2017, 44 (24): 12, 484-412, 491. DOI: 10.1002/2017GL076546
doi: 10.1002/2017GL076546 |
[54] |
Robock A, MacMartin D G, Duren R, et al. Studying geoengineering with natural and anthropogenic analogs[J]. Climatic Change, 2013, 121(3): 445-458. DOI: 10.1007/s10584-013-0777-5
doi: 10.1007/s10584-013-0777-5 URL |
[55] |
Plazzotta M, Séférian R, Douville H, et al. Land surface cooling induced by sulfate geoengineering constrained by major volcanic eruptions[J]. Geophysical Research Letters, 2018, 45(11): 5663-5671. DOI: 10.1029/2018GL077583
doi: 10.1029/2018GL077583 URL |
[56] |
Duan L, Cao L, Bala G, et al. Climate response to pulse versus sustained stratospheric aerosol forcing[J]. Geophysical Research Letters, 2019, 46(15): 8976-8984. DOI: 10.1029/2019GL083701
doi: 10.1029/2019GL083701 |
[57] |
Pitari G, Aquila V, Kravitz B, et al. Stratospheric ozone response to sulfate geoengineering: results from the Geoengineering Model Intercomparison Project (GeoMIP)[J]. Journal of Geophysical Research: Atmosphere, 2014, 119(5): 2629-2653. DOI: 10.1002/ 2013jd020566
doi: 10.1002/ 2013jd020566 URL |
[58] |
Aquila V, Garfinkel C I, Newman P A, et al. Modifications of the quasi-biennial oscillation by a geoengineering perturbation of the stratospheric aerosol layer[J]. Geophysical Research Letters, 2014, 41(5): 1738-1744. DOI: 10.1002/2013GL058818
doi: 10.1002/2013GL058818 URL |
[59] |
Niemeier U, Timmreck C. What is the limit of climate engineering by stratospheric injection of SO2?[J]. Atmospheric Chemistry and Physics, 2015, 15(16): 9129-9141. DOI: 10.5194/acp-15-9129-2015
doi: 10.5194/acp-15-9129-2015 |
[60] |
Kravitz B, MacMartin D G, Mills M J, et al. First simulations of designing stratospheric sulfate aerosol geoengineering to meet multiple simultaneous climate objectives[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(23): 12616-12634. DOI: 10.1002/ 2017JD026874
doi: 10.1002/ 2017JD026874 |
[61] |
Kleinschmitt C, Boucher O, Platt U. Sensitivity of the radiative forcing by stratospheric sulfur geoengineering to the amount and strategy of the SO2 injection studied with the LMDZ-S3A model[J]. Atmospheric Chemistry and Physics, 2018, 18(4): 2769-2786. DOI: 10.5194/acp-18-2769-2018
doi: 10.5194/acp-18-2769-2018 |
[62] |
Weisenstein D K, Keith D W, Dykema J A. Solar geoengineering using solid aerosol in the stratosphere[J]. Atmospheric Chemistry and Physics, 2015, 15(20): 11835-11859. DOI: 10.5194/acp-15-11835-2015
doi: 10.5194/acp-15-11835-2015 |
[63] |
Niemeier U, Schmidt H. Changing transport processes in the stratosphere by radiative heating of sulfate aerosols[J]. Atmospheric Chemistry and Physics, 2017, 17(24): 14871-14886. DOI: 10.5194/acp-17-14871-2017
doi: 10.5194/acp-17-14871-2017 |
[64] |
Tilmes S, Richter J H, Mills M J, et al. Sensitivity of aerosol distribution and climate response to stratospheric SO2 injection locations[J]. Journal of Geophysical Research: Atmospheres, 2017, 122(23). DOI: 10.1002/2017JD026888
doi: 10.1002/2017JD026888 |
[65] |
Richter J H, Tilmes S, Glanville A. Stratospheric response in the first geoengineering simulation meeting multiple surface climate objectives[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(11): 5762-5782. DOI: 10.1029/2018JD028285
doi: 10.1029/2018JD028285 URL |
[66] |
Visioni D, Pitari G, Genova G D, et al. Upper tropospheric ice sensitivity to sulfate geoengineering[J]. Atmospheric Chemistry and Physics, 2018, 18(20): 14867-14887. DOI: 10.5194/acp-18-14867-2018
doi: 10.5194/acp-18-14867-2018 |
[67] |
Vattioni S, Weisenstein D, Keith D, et al. Exploring accumulation-mode H2SO4 versus SO2 stratospheric sulfate geoengineering in a sectional aerosol-chemistry-climate model[J]. Atmospheric Chemistry and Physics, 2019, 19(7): 4877-4897. DOI: 10.5194/acp-19-4877-2019
doi: 10.5194/acp-19-4877-2019 |
[68] |
Krishnamohan K S, Bala G, Cao L, et al. The climatic effects of hygroscopic growth of sulfate aerosols in the stratosphere [J]. Earth's Future, 2020, 8 (2): e2019EF001326. DOI: 10.1029/2019EF001326
doi: 10.1029/2019EF001326 |
[69] |
MacMartin D, Kravitz B, Tilmes S, et al. The climate response to stratospheric aerosol geoengineering can be tailored using multiple injection locations[J]. Journal of Geophysical Research: Atmospheres, 2017, 122. DOI: 10.1002/2017jd026868
doi: 10.1002/2017jd026868 |
[70] |
Dai Z, Weisenstein D K, Keith D W. Tailoring meridional and seasonal radiative forcing by sulfate aerosol solar geoengineering[J]. Geophysical Research Letters, 2018, 45(2): 1030-1039. DOI: 10.1002/2017GL076472
doi: 10.1002/2017GL076472 URL |
[71] |
Visioni D, MacMartin D G, Kravitz B, Seasonally modulated stratospheric aerosol geoengineering alters the climate outcomes [J]. Geophysical Research Letters, 2020, 47 (12): e2020GL088337. DOI: 10.1029/2020GL088337
doi: 10.1029/2020GL088337 |
[72] |
Ferraro A, Griffiths H. Quantifying the temperature-independent effect of stratospheric aerosol geoengineering on global-mean precipitation in a multi-model ensemble[J]. Environmental Research Letters, 2016, 11(3): 034012. DOI: 10.1088/1748-9326/11/3/
doi: 10.1088/1748-9326/11/3 URL |
[73] |
Visioni D, MacMartin D G, Kravitz B, et al. Reduced poleward transport due to stratospheric heating under stratospheric aerosols geoengineering [J]. Geophysical Research Letters, 2020, 47: e2020GL089470. DOI: 10.1029/2020GL089470
doi: 10.1029/2020GL089470 |
[74] |
Simpson I R, Tilmes S, Richter J H, et al. The regional hydroclimate response to stratospheric sulfate geoengineering and the role of stratospheric heating[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(23): 12587-12616. DOI: 10.1029/2019jd031093
doi: 10.1029/2019jd031093 URL |
[75] | WMO (World Meteorological Organization). Global ozone research and monitoring project [R]. Switzerland: Scientific Assessment of Ozone Depletion, 2018: 588 |
[76] |
Visioni D, Slessarev E, MacMartin D G, et al. What goes up must come down: impacts of deposition in a sulfate geoengineering scenario[J]. Environmental Research Letters, 2020, 15(9): 094063
doi: 10.1088/1748-9326/ab94eb URL |
[77] |
Keith D W. Photophoretic levitation of engineered aerosols for geoengineering[J]. Proceedings of The National Academy of Sciences, 2010, 107(38): 16428. DOI: 10/ckxqjw
doi: 10/ckxqjw URL |
[78] |
Ferraro A J, Highwood E J, Charlton-Perez A J. Stratospheric heating by potential geoengineering aerosols[J]. Geophysical Research Letters, 2011, 38(24). DOI: 10.1029/2011GL049761
doi: 10.1029/2011GL049761 |
[79] |
Pope F D, Braesicke P, Grainger R G, et al. Stratospheric aerosol particles and solar-radiation management[J]. Nature Climate Change, 2012, 2(10): 713-719. DOI: 10.1038/nclimate1528
doi: 10.1038/nclimate1528 URL |
[80] |
Keith D W, Weisenstein D K, Dykema J A, et al. Stratospheric solar geoengineering without ozone loss[J]. Proceedings of The National Academy of Sciences, 2016, 113(52): 4910-4914. DOI: 10.1073/pnas. 1615572113
doi: 10.1073/pnas. 1615572113 |
[81] |
Jones A C, Haywood J M, Jones A. Climatic impacts of stratospheric geoengineering with sulfate black carbon and titanic injection[J]. Atmospheric Chemistry and Physics, 2016, 16(5): 2843-2862. DOI: 10.5194/acp-16-2843-54
doi: 10.5194/acp-16-2843-54 |
[82] |
Twomey S. The influence of pollution on the shortwave albedo of clouds[J]. Journal of Atmospheric Sciences, 1977, 34(7): 1149-1152
doi: 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2 URL |
[83] |
Christensen M W, Stephens G L. Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: evidence of cloud deepening[J]. Journal of Geophysical Research, 2011, 116: D03201. DOI: 10.1029/2010JD014638
doi: 10.1029/2010JD014638 |
[84] |
Chen Y C, Christensen M W, Xue L, et al. Occurrence of lower cloud albedo in ship tracks[J]. Atmospheric Chemistry and Physics, 2012, 12(17): 8223-8235. DOI: 10.5194/acp-12-8223-2012
doi: 10.5194/acp-12-8223-2012 |
[85] |
Gryspeerdt E, Smith T W P, O’Keeffe E, et al. The impact of ship emission controls recorded by cloud properties[J]. Geophysical Research Letters, 2019, 46(21): 12547-12555. DOI: 10.1029/ 2019GL084700
doi: 10.1029/2019GL084700 |
[86] |
Diamond M S, Director H M, Eastman R, et al. Substantial cloud brightening from shipping in subtropical low clouds [J]. AGU Advances, 2020, 1 (1): e2019AV000111. DOI: 10.1029/2019AV000111
doi: 10.1029/2019AV000111 |
[87] |
Partanen A I, Kokkola H, Romakkaniemi S, et al. Direct and indirect effects of sea spray geoengineering and the role of injected particle size[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D2). DOI: 10.1029/2011jd016428
doi: 10.1029/2011jd016428 |
[88] |
Hill S, Ming Y. Nonlinear climate response to regional brightening of tropical marine stratocumulus[J]. Geophysical Research Letters, 2012, 39(15). DOI: 10.1029/2012gl052064
doi: 10.1029/2012gl052064 |
[89] |
Alterskjær K, Kristjánsson J, Boucher O, et al. Sea-salt injections into the low latitude marine boundary layer: the transient response in three Earth system models[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(21). DOI: 10.1002/2013JD020432
doi: 10.1002/2013JD020432 |
[90] |
Ahlm L, Jones A, Stjern C W, et al. Marine cloud brightening: as effective without clouds[J]. Atmospheric Chemistry and Physics, 2017, 17(21): 13071-13087. DOI: 10.5194/acp-17-13071-2017
doi: 10.5194/acp-17-13071-2017 |
[91] |
Stjern C W, Muri H, Ahlm L, et al. Response to marine cloud brightening in a multi-model ensemble[J]. Atmospheric Chemistry and Physics, 2018, 18(2): 621-634. DOI: 10.5194/acp-18-621-2018
doi: 10.5194/acp-18-621-2018 |
[92] |
Kravitz B, Forster P M, Jones A, et al. Sea spray geoengineering experiments in the geoengineering model intercomparison project (GeoMIP): experimental design and preliminary results[J]. Geoscientific Model Development, 2013, 118(19): 11175-11186. DOI: 10.1002/jgrd.50856
doi: 10.1002/jgrd.50856 |
[93] |
Bala G, Caldeira K, Nemani R, et al. Enhancement of marine clouds to counteract global warming: impacts on the hydrological cycle[J]. Climate Dynamics, 2011, 37(5-6): 915-931. DOI: 10.1007/s00382-010-0868-1
doi: 10.1007/s00382-010-0868-1 URL |
[94] |
Muri H, Niemeier U, Kristjánsson J E. Tropical rainforest response to marine sky brightening climate engineering[J]. Geophysical Research Letters, 2015, 42(8): 2951-2960. DOI: 10.1002/2015GL063363
doi: 10.1002/2015GL063363 URL |
[95] |
Horowitz H M, Holmes C, Wright A, et al. Effects of sea salt aerosol emissions for marine cloud brightening on atmospheric chemistry: implications for radiative forcing [J]. Geophysical Research Letters, 2020, 47 (4): e2019GL085838. DOI: 10.1029/2019gl085838
doi: 10.1029/2019gl085838 |
[96] |
Muri H, Kristjánsson J E, Storelvmo T, et al. The climatic effects of modifying cirrus clouds in a climate engineering framework[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(7): 4174-4191. DOI: 10.1002/2013JD021063
doi: 10.1002/2013JD021063 URL |
[97] |
Gasparini B, Münch S, Poncet L, et al. Is increasing ice crystal sedimentation velocity in geoengineering simulations a good proxy for cirrus cloud seeding?[J]. Atmospheric Chemistry and Physics, 2017, 17(7): 4871-4885. DOI: 10.5194/acp-17-4871-2017
doi: 10.5194/acp-17-4871-2017 |
[98] |
Lohmann U, Gasparini B. A cirrus cloud climate dial?[J]. Science, 2017, 357(6348): 248. DOI: 10/gj74jq
doi: 10.1126/science.aan3325 pmid: 28729496 |
[99] |
Gruber S, Blahak U, Haenel F, et al. A process study on thinning of arctic winter cirrus clouds with high-resolution ICON-ART simulations[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(11): 5860-5888. DOI: 10.1029/2018JD029815
doi: 10.1029/2018JD029815 URL |
[100] |
Mitchell D L, Finnegan W. Modification of cirrus clouds to reduce global warming[J]. Environmental Research Letters, 2009, 4(4): 045102. DOI: 10.1088/1748-9326/4/4/045102
doi: 10.1088/1748-9326/4/4/045102 URL |
[101] |
Storelvmo T, Kristjansson J E, Muri H, et al. Cirrus cloud seeding has potential to cool climate[J]. Geophysical Research Letters, 2013, 40(1): 178-182. DOI: 10.1029/2012GL054201
doi: 10.1029/2012GL054201 URL |
[102] |
Storelvmo T, Herger N. Cirrus cloud susceptibility to the injection of ice nuclei in the upper troposphere[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(5): 2375-2389. DOI: 10.1002/2013JD020816
doi: 10.1002/2013JD020816 URL |
[103] |
Kristjánsson J E, Muri H, Schmidt H. The hydrological cycle response to cirrus cloud thinning[J]. Geophysical Research Letters, 2015, 42(24): 10807-10815. DOI: 10.1002/2015GL066795
doi: 10.1002/2015GL066795 |
[104] |
Jackson L S, Crook J A, Forster P M. An intensified hydrological cycle in the simulation of geoengineering by cirrus cloud thinning using ice crystal fall speed changes[J]. Journal of Geophysical Research: Atmosphere, 2016, 121(12): 6822-6840. DOI: 10.1002/2015JD024304
doi: 10.1002/2015JD024304 URL |
[105] |
Gasparini B, McGraw Z, Storelvmo T, et al. To what extent can cirrus cloud seeding counteract global warming?[J]. Environmental Research Letters, 2020, 15(5): 054002. DOI: 10.1088/1748-9326/ab71a3
doi: 10.1088/1748-9326/ab71a3 URL |
[106] |
Penner J E, Zhou C, Liu X. Can cirrus cloud seeding be used for geoengineering?[J]. Geophysical Research Letters, 2015, 42(20): 8775-8782. DOI: 10.1002/2015GL065992
doi: 10.1002/2015GL065992 URL |
[107] |
Gasparini B, Lohmann U. Why cirrus cloud seeding cannot substantially cool the planet[J]. Journal of Geophysical Research: Atmosphere, 2016, 121(9): 4877-4893. DOI: 10.1002/2015JD024666
doi: 10.1002/2015JD024666 URL |
[108] |
Gabriel C J, Robock A, Xia L, et al. The G4Foam experiment: global climate impacts of regional ocean albedo modification[J]. Atmospheric Chemistry and Physics, 2017, 17(1): 595-613. DOI: 10.5194/acp-17-595-2017
doi: 10.5194/acp-17-595-2017 |
[109] |
Kravitz B, Rasch P J, Wang H L, et al. The climate effects of increasing ocean albedo: an idealized representation of solar geoengineering[J]. Atmospheric Chemistry and Physics, 2018, 18(17): 13097-13113. DOI: 10.5194/acp-18-13097-2018
doi: 10.5194/acp-18-13097-2018 |
[110] |
Zhang J, Zhang K, Liu J, et al. Revisiting the climate impacts of cool roofs around the globe using an Earth system model[J]. Environmental Research Letters, 2016, 11(8): 084014. DOI: 10.1088/1748-9326/11/8/084014
doi: 10.1088/1748-9326/11/8/084014 URL |
[111] |
Field L, Ivanova D, Bhattacharyya S, et al. Increasing Arctic sea ice albedo using localized reversible geoengineering[J]. Earth’s Future, 2018, 6(6): 882-901. DOI: 10.1029/2018EF000820
doi: 10.1029/2018EF000820 URL |
[112] |
Desch S J, Smith N, Groppi C, et al. Arctic ice management[J]. Earth’s Future, 2017, 5(1): 107-127. DOI: 10.1002/2016EF000410
doi: 10.1002/2016EF000410 URL |
[113] |
Zampieri L, Goessling H F. Sea ice targeted geoengineering can delay Arctic sea ice decline but not global warming[J]. Earth’s Future, 2019, 7(12): 1296-1306. DOI: 10.1029/2019EF001230
doi: 10.1029/2019EF001230 URL |
[114] |
Feldmann J, Levermann A, Mengel M. Stabilizing the West Antarctic ice sheet by surface mass deposition [J]. Science Advances, 2019, 5 (7): eaaw4132. DOI: 10.1126/sciadv.aaw4132
doi: 10.1126/sciadv.aaw4132 |
[115] |
Moore J C, Gladstone R, Zwinger T, et al. Geoengineer polar glaciers to slow sea-level rise[J]. Nature, 2018, 555(7696): 303-305. DOI: 10.1038/d41586-018-03036-4
doi: 10.1038/d41586-018-03036-4 URL |
[116] |
Cao L. The effects of solar radiation management on the carbon cycle[J]. Current Climate Change Reports, 2018, 4(1): 41-50. DOI: 10.1007/s40641-018-0088-z
doi: 10.1007/s40641-018-0088-z URL |
[117] |
Mercado L M, Bellouin N, Sitch S, et al. Impact of changes in diffuse radiation on the global land carbon sink[J]. Nature, 2009, 458(7241): 1014-1017. DOI: 10.1038/nature07949
doi: 10.1038/nature07949 URL |
[118] |
Kalidindi S, Bala G, Modak A, et al. Modeling of solar radiation management: a comparison of simulations using reduced solar constant and stratospheric sulphate aerosols[J]. Climate Dynamics, 2015, 44(9): 2909-2925. DOI: 10.1007/s00382-014-2240-3
doi: 10.1007/s00382-014-2240-3 URL |
[119] |
Xia L, Robock A, Tilmes S, et al. Stratospheric sulfate geoengineering could enhance the terrestrial photosynjournal rate[J]. Atmospheric Chemistry and Physics, 2016, 16(3): 1479-1489. DOI: 10.5194/acp-16-1479-2016
doi: 10.5194/acp-16-1479-2016 |
[120] |
Yang C E, Hoffman F M, Ricciuto D M, et al. Assessing terrestrial biogeochemical feedbacks in a strategically geoengineered climate[J]. Environmental Research Letters, 2020, 15(10): 104043. DOI: 10.1088/1748-9326/abacf7
doi: 10.1088/1748-9326/abacf7 URL |
[121] |
Glienke S, Irvine P, Lawrence M. The impact of geoengineering on vegetation in experiment G1 of the Geoengineering Model Intercomparison Project (GeoMIP)[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(19). DOI: 10.1002/2015JD024202
doi: 10.1002/2015JD024202 |
[122] |
Duan L, Cao L, Bala G, et al. A model lased investigation of terrestrial plant carbon uptake response to four radiation modification approaches [J]. Journal of Geophysical Research Atmospheres, 2020, 125 (9): e2019JD031883. DOI: 10.1029/2019jd031883
doi: 10.1029/2019jd031883 |
[123] |
Tjiputra J F, Grini A, Lee H. Impact of idealized future stratospheric aerosol injection on the large-scale ocean and land carbon cycles[J]. Journal of Geophysical Research: Biogeosciences, 2016, 121(1): 2-27. DOI: 10.1002/2015JG003045
doi: 10.1002/2015JG003045 URL |
[124] |
Pongratz J, Lobell D B, Cao L, et al. Crop yields in a geoengineered climate[J]. Nature Climate Change, 2012, 2(2): 1-105. DOI: 10.1038/nclimate1373
doi: 10.1038/nclimate1373 URL |
[125] |
Xia L, Robock A, Cole J. Solar radiation management impacts on agriculture in China: a case study in the Geoengineering Model Intercomparison Project (GeoMIP)[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(14): 8695-8711. DOI: 10.1002/ 2013JD020630
doi: 10.1002/ 2013JD020630 URL |
[126] |
Yang H, Dobbie S, Ramirez-Villegas J, et al. Potential negative consequences of geoengineering on crop production: a study of Indian groundnut[J]. Geophysical Research Letters, 2016, 43(22): 11786-11795. DOI: 10.1002/2016GL071209
doi: 10.1002/2016GL071209 |
[127] |
Proctor J, Hsiang S, Burney J, et al. Estimating global agricultural effects of geoengineering using volcanic eruptions[J]. Nature, 2018, 560(7719): 480-483. DOI: 10.1038/s41586-018-0417-3
doi: 10.1038/s41586-018-0417-3 URL |
[128] |
Lauvset S K, Tjiputra J, Muri H. Climate engineering and the ocean: effects on biogeochemistry and primary production[J]. Biogeosciences, 2017, 14(24): 5675-5691. DOI: 10.5194/bg-14-5675-2017
doi: 10.5194/bg-14-5675-2017 URL |
[129] |
Partanen A I, Keller D P, Korhonen H, et al. Impacts of sea spray geoengineering on ocean biogeochemistry[J]. Geophysical Research Letters, 2016, 43(14): 7600-7608. DOI: 10.1002/2016GL070111
doi: 10.1002/2016GL070111 URL |
[130] |
Jiang J, Zhang H, Cao L. Simulated effect of sunshade solar geoengineering on the global carbon cycle[J]. Science China Earth Sciences, 2018, 61(9): 1306-1315. DOI: 10.1007/s11430-017-9210-0
doi: 10.1007/s11430-017-9210-0 URL |
[131] |
Sonntag S, Ferrer González M, Ilyina T, et al. Quantifying and comparing effects of climate engineering methods on the Earth system[J]. Earth’s Future, 2018, 6(2): 149-168. DOI: 10.1002/2017EF000620
doi: 10.1002/2017EF000620 URL |
[132] |
Plazzotta M, Séférian R, Douville H. Impact of solar radiation modification on allowable CO2 emissions: what can we learn from multimodel simulations?[J]. Earth’s Future, 2019, 7(6): 664-676. DOI: 10.1029/2019ef001165
doi: 10.1029/2019ef001165 URL |
[133] |
Matthews H D, Caldeira K. Transient climate carbon simulations of planetary geoengineering[J]. Proceedings of The National Academy of Sciences of The United States of America, 2007, 104: 9949-9954. DOI: 10.1073/pnas.0700419104
doi: 10.1073/pnas.0700419104 pmid: 17548822 |
[134] |
Xia L, Nowack P J, Tilmes S, et al. Impacts of stratospheric sulfate geoengineering on tropospheric ozone[J]. Atmospheric Chemistry and Physics, 2017, 17(19): 11913-11928. DOI: 10.5194/acp-17-11913-2017
doi: 10.5194/acp-17-11913-2017 |
[135] | 温作龙, 姜玖, 曹龙. 太阳辐射管理地球工程对海洋酸化影响的模拟研究[J]. 气候变化研究进展, 2019, 15(1): 41-53. |
Wen Z L, Jiang J, Cao L. Simulated effects of solar geoengineering on ocean acidification[J]. Climate Change Research, 2019, 15(1): 41-53 (in Chinese) | |
[136] | 张莹, 陈迎, 潘家华. 气候工程的经济评估和治理核心问题探讨[J]. 气候变化研究进展, 2016, 12(5): 442-449. |
Zhang Y, Chen Y, Pan J H. Key issues in climate engineering economic assessment and governance[J]. Climate Change Research, 2016, 12(5): 442-449 (in Chinese) | |
[137] | 陈迎, 辛源. 1.5℃温控目标下地球工程问题剖析和应对政策建议[J]. 气候变化研究进展, 2017, 13(4): 337-345. |
Chen Y, Xin Y. Implications of geoengineering under 1.5℃ target: analysis and policy recommendations[J]. Climate Change Research, 2017, 13(4): 337-345 (in Chinese) |
[1] | 廖宏, 谢佩芙. IPCC AR6报告解读:短寿命气候强迫因子的气候及环境效应[J]. 气候变化研究进展, 2021, 17(6): 685-690. |
[2] | 左志燕, 肖栋. 从全球到区域气候变化[J]. 气候变化研究进展, 2021, 17(6): 705-712. |
[3] | 曹龙. IPCC AR6报告解读:气候系统对二氧化碳移除响应[J]. 气候变化研究进展, 2021, 17(6): 664-670. |
[4] | 王文, 傅文睿. IPCC AR6的“产生影响的气候因子”评估框架[J]. 气候变化研究进展, 2021, 17(6): 719-725. |
[5] | 翟盘茂, 周佰铨, 陈阳, 余荣. 气候变化科学方面的几个最新认知[J]. 气候变化研究进展, 2021, 17(6): 629-635. |
[6] | 王谋, 康文梅, 张莹. 应对气候变化南南合作优先合作国家选择方法探讨[J]. 气候变化研究进展, 2021, 17(6): 744-752. |
[7] | 何佳骏, 任国玉, 张盼峰. 资料均一化对气温变化趋势及其城市化偏差估计的影响:以北京地区为例[J]. 气候变化研究进展, 2021, 17(5): 503-513. |
[8] | 刘蕾. 应对气候变化进程中纳入性别考虑的进展与启示[J]. 气候变化研究进展, 2021, 17(5): 548-558. |
[9] | 武占云. 将适应气候变化纳入国土空间规划:进展、困境与思路[J]. 气候变化研究进展, 2021, 17(5): 559-569. |
[10] | 于晓龙, 刘援. 应对气候变化南南合作物资赠送项目评估研究[J]. 气候变化研究进展, 2021, 17(5): 608-620. |
[11] | 刘远, 王芳, 张正涛, 黄承芳, 陈曦, 李宁. 中国七大地区“气候变化—作物产量—经济影响”综合评价[J]. 气候变化研究进展, 2021, 17(4): 455-465. |
[12] | 王鑫鑫, 史兴民. 气候变化感知和适应行为研究的可视化计量分析[J]. 气候变化研究进展, 2021, 17(4): 466-475. |
[13] | 孙友源, 郭振, 张继广, 秦亚琦. 碳市场与电力市场机制影响下发电机组成本分析与竞争力研究[J]. 气候变化研究进展, 2021, 17(4): 476-483. |
[14] | 舒章康, 张建云, 金君良, 王国庆, 汪琳, 曹民雄. 1961—2018年中国主要江河枯季径流演变特征与成因[J]. 气候变化研究进展, 2021, 17(3): 340-351. |
[15] | 尚华明, 范煜婷, 张瑞波, 喻树龙, 张同文, 魏文寿, 刘卫平. 帕米尔高原东部径流量变化及其对气候变化的响应[J]. 气候变化研究进展, 2021, 17(3): 352-360. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|