气候变化研究进展 ›› 2021, Vol. 17 ›› Issue (5): 503-513.doi: 10.12006/j.issn.1673-1719.2020.246
收稿日期:
2020-10-23
修回日期:
2020-11-22
出版日期:
2021-09-30
发布日期:
2021-09-28
通讯作者:
任国玉
作者简介:
何佳骏,男,硕士研究生, 基金资助:
HE Jia-Jun1(), REN Guo-Yu1,2(
), ZHANG Pan-Feng1,3
Received:
2020-10-23
Revised:
2020-11-22
Online:
2021-09-30
Published:
2021-09-28
Contact:
REN Guo-Yu
摘要:
当前的地面气候观测资料普遍存在非气候性因素导致的非均一性,对气候变化监测和研究结论可靠性造成重要影响。结合观测台站的历史沿革数据,使用ACMANT和Pairwise Comparisons方法以及RHtest V4软件,对北京地区20个台站均一化前的月平均气温序列进行了非均一性检验和订正,最后评估了均一化对北京地区气温序列变化趋势及其城市化偏差估算的影响。结果表明:除元数据中记录的断点外,无元数据记录的断点也会对序列的趋势变化造成明显影响,其中乡村站最显著;经过订正,1958—2018年整个北京地区、乡村站以及城市站增温趋势分别为0.27℃/(10 a)、0.10℃/(10 a)和0.32℃/(10 a),较订正前分别上升了0.03℃/(10 a)、0.06℃/(10 a)和0.02℃/(10 a)。利用均一化资料估算,1958—2018年北京观象台的城市化影响为0.24℃/(10 a),城市化贡献率为70.2%,评估结果较前人结论有所降低。可见,在现有的北京地区气温资料序列中,仍可能存在较明显的非均一性和未被记录的断点,对区域平均气温趋势估算具有显著影响。
何佳骏, 任国玉, 张盼峰. 资料均一化对气温变化趋势及其城市化偏差估计的影响:以北京地区为例[J]. 气候变化研究进展, 2021, 17(5): 503-513.
HE Jia-Jun, REN Guo-Yu, ZHANG Pan-Feng. Effects of data homogenization on the estimates of temperature trend and urbanization bias: taking Beijing area as an example[J]. Climate Change Research, 2021, 17(5): 503-513.
图3 斋堂站(a)、霞云岭站(b)、北京观象台(c)、大兴站(d)、乡村站(e)和城市站(f)订正前后的序列及其趋势对比
Fig. 3 Comparison of series and their trends before and after adjustment for Zhaitang station (a), Xiayunling station (b), Beijing Observatory (c), Daxing station (d), rural stations (e) and urban stations (f)
图5 北京地区20个台站的本文订正序列、Cao等[21]序列以及原始序列的对比
Fig. 5 Comparison between adjusted series from this paper (red), adjusted series from Cao et al[21] (blue), and raw series (green) of 20 stations in Beijing
图6 北京观象台、所有站、乡村站和城市站的年平均气温距平
Fig. 6 Annual mean surface air temperature anomaly of Beijing Observatory, all stations, rural stations and urban stations
![]() |
表3 不同时期北京观象台的增温趋势、城市化影响和城市化贡献及其与前人研究的对比
Table 3 Warming trend, urbanization effects and urbanization contribution of Beijing observatory in different periods and comparison with previous studies
![]() |
[1] |
Alexandersson H. A homogeneity test applied to precipitation data[J]. Journal of Climatology, 1986, 6(6):661-675. DOI: 10.1002/joc.3370060607
doi: 10.1002/joc.3370060607 URL |
[2] |
Easterling D R, Peterson T C. A new method for detecting undocumented discontinuities in climatological time series[J]. International Journal of Climatology, 1995, 15(4):369-377. DOI: 10.1002/joc.3370150403
doi: 10.1002/joc.3370150403 URL |
[3] |
Vincent L A. A technique for the identification of inhomogeneities in Canadian temperature series[J]. Journal of Climate, 1998, 11(5):1094-1104. DOI: 10.1175/1520-0442(1998)011<1094:ATFTIO>2.0.CO;2
doi: 10.1175/1520-0442(1998)011<1094:ATFTIO>2.0.CO;2 URL |
[4] |
Peterson T C, Easterling D R, Karl T R, et al. Homogeneity adjustments of in situ atmospheric climate data: a review[J]. International Journal of Climatology, 1998, 18(13):1493-1517. DOI: 10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T;2-T
doi: 10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T;2-T URL |
[5] |
Menne M J, Williams C N. Homogenization of temperature series via pairwise comparisons[J]. Journal of Climate, 2008, 22(7):1700-1717. DOI: 10.1175/2008JCLI2263.1
doi: 10.1175/2008JCLI2263.1 URL |
[6] |
Li Q X, Liu X N, Zhang H Z, et al. Detecting and adjusting temporal inhomogeneity in Chinese mean surface air temperature data[J]. Advances in Atmospheric Sciences, 2004, 21(2):260-268. DOI: 10.1007/BF02915712
doi: 10.1007/BF02915712 URL |
[7] |
Vincent L A, Wang X L, Milewska E J, et al. A second generation of homogenized Canadian monthly surface air temperature for climate trend analysis[J]. Journal of Geophysical Research: Atmospheres, 2012, 117(D18). DOI: 10.1029/2012JD017859
doi: 10.1029/2012JD017859 |
[8] | Wang X L, Feng Y. RHtestsV4 user manual[R/OL]. 2013 [2020-10-23]. http://etccdi.pacificclimate.org/software.shtml |
[9] |
Trewin B. A daily homogenized temperature data set for Australia[J]. International Journal of Climatology, 2013, 33(6):1510-1529. DOI: 10.1002/joc.3530
doi: 10.1002/joc.3530 URL |
[10] |
Kuglitsch F G, Auchmannet R, Bleisch R, et al. Break detection of annual Swiss temperature series[J]. Journal of Geophysical Research, 2012, 117(D13). DOI: 10.1029/2012JD017729
doi: 10.1029/2012JD017729 |
[11] |
Squintu A A, Gerard S, Yuri B, et al. Homogenization of daily temperature series in the European climate assessment & dataset[J]. International Journal of Climatology, 2019, 39(3):1243-1261. DOI: 10.1002/joc.5874
doi: 10.1002/joc.5874 URL |
[12] |
Trewin B, Braganza K, Fawcett R, et al. An updated long-term homogenized daily temperature data set for Australia[J]. Geoscience Data Journal, 2020, 7(2):149-169. DOI: 10.1002/gdj3.95
doi: 10.1002/gdj3.95 URL |
[13] |
Yan Z W, Yang C, Jones P D. Influence of inhomogeneity on the estimation of mean and extreme temperature trends in Beijing and Shanghai[J]. Advances in Atmospheric Sciences, 2001, 18(3):309-322. DOI: 10.1007/BF02919312
doi: 10.1007/BF02919312 URL |
[14] |
Li Z, Yan Z W. Homogenized daily mean/maximum/minimum temperature series for China from 1960-2008[J]. Atmospheric and Oceanic Science Letters, 2009, 2(4):237-243. DOI: 10.1080/16742834.2009.11446802
doi: 10.1080/16742834.2009.11446802 URL |
[15] |
Li Q X, Chen J, Li W, et al. A mainland China homogenized historical temperature dataset of 1951-2004[J]. Bulletin of the American Meteorological Society, 2009, 90(8):1062. DOI: 10.1175/2009BAMS2736.1
doi: 10.1175/2009BAMS2736.1 URL |
[16] |
Xu W H, Li Q X, Wang X L, et al. Homogenization of Chinese daily surface air temperatures and analysis of trends in the extreme temperature indices[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(17):9708-9720. DOI: 10.1002/jgrd.50791
doi: 10.1002/jgrd.50791 URL |
[17] |
郭艳君, 丁一汇. 近50年我国探空温度序列均一化及变化趋势[J]. 应用气象学报, 2008, 19(6):646-654. DOI: 10.3969/j.issn.1001-7313.2008.06.002.
doi: 10.3969/j.issn.1001-7313.2008.06.002 |
Guo Y J, Ding Y H. Homogeneity and long-term trend analysis on radiosonde temperature time series in China during recent 50 years[J]. Journal of Applied Meteorological Science, 2008, 19(6):646-654. DOI: 10.3969/j.issn.1001-7313.2008.06.002 (in Chinese)
doi: 10.3969/j.issn.1001-7313.2008.06.002 |
|
[18] | 司鹏, 郝立生, 罗传军, 等. 河北保定气象站长序列气温资料缺测记录插补和非均一性订正[J]. 气候变化研究进展, 2017, 13(1):41-51. |
Si P, Hao L S, Luo C J, et al. The interpolation and homogenization of long-term temperature time series at Baoding observation station in Hebei province[J]. Climate Change Research, 2017, 13(1):41-51. DOI: 10.12006/j.issn.1673-1719.2016.043 (in Chinese)
doi: 10.12006/j.issn.1673-1719.2016.043 (in Chinese |
|
[19] | 王秋香, 周昊楠, 陈晓燕. 单站资料均一性对本地气候资料趋势结果的影响[J]. 沙漠与绿洲气象, 2010, 4(4):1-5. |
Wang Q X, Zhou H N, Chen X Y. The influence of homogeneity of single-station data on trends in local climate data[J]. Desert and Oasis Meteorology, 2010, 4(4):1-5 (in Chinese) | |
[20] | 赵美艳, 余君, 蒋镇, 等. 重庆地区气温序列均一性检验及订正[J]. 气象与环境学报, 2018, 34(6):148-155. |
Zhao M Y, Yu J, Jiang Z, et al. Homogeneity test and correction of temperature series in Chongqing[J]. Journal of Meteorology and Environment, 2018, 34(6):148-155 (in Chinese) | |
[21] |
Cao L J, Zhu Y N, Tang G L, et al. Climatic warming in China according to a homogenized data set from 2419 stations[J]. International Journal of Climatology, 2016, 36(12):4384-4392. DOI: 10.1002/joc.4639
doi: 10.1002/joc.4639 URL |
[22] | 任芝花, 余予, 邹凤玲, 等. 部分地面要素历史基础气象资料质量检测[J]. 应用气象学报, 2012, 23(6):739-747. |
Ren Z H, Yu Y, Zou F L, et al. Quality detection of surface historical basic meteorological data[J]. Journal of Applied Meteorological Science, 2012, 23(6):739-747 (in Chinese) | |
[23] |
Tysa S K, Ren G Y, Qin Y, et al. Urbanization effect in regional temperature series based on a remote sensing classification scheme of stations[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(20):10646-10661. DOI: 10.1029/2019JD030948
doi: 10.1029/2019JD030948 URL |
[24] | Aguilar E, Auer I, Brunet M, et al. Guidelines on climate metadata and homogenization [R/OL]. 2003 [2020-10-23]. http://www.wmo.int/datastat/documents/WCDMP-53_1.pdf |
[25] |
Domonkos P. Adapted Caussinus-Mestre algorithm for networks of temperature series (ACMANT)[J]. International Journal of Geosciences, 2011, 2(3):293-309. DOI: 10.4236/ijg.2011.23032
doi: 10.4236/ijg.2011.23032 URL |
[26] |
Hawkins D M. On the choice of segments in piecewise approximation[J]. IMA Journal of Applied Mathematics, 1972, 2(2):250-256. DOI: 10.1093/imamat/9.2.250
doi: 10.1093/imamat/9.2.250 |
[27] |
Caussinus H, Lyazrhi F. Choosing a linear model with a random number of change-points and outliers[J]. Annals of the Institute of Statistical Mathematics, 1997, 49(4):761-775. DOI: 10.1023/a:1003230713770
doi: 10.1023/a:1003230713770 URL |
[28] |
DeGaetano A T. Attributes of several methods for detecting discontinuities in mean temperature series[J]. Journal of Climate, 2006, 19(5):838-853. DOI: 10.1175/JCLI3662.1
doi: 10.1175/JCLI3662.1 URL |
[29] |
Wang X L, Wen Q H, Wu Y. Penalized maximal t test for detecting undocumented mean change in climate data series[J]. Journal of Applied Meteorology and Climatology, 2007, 46(6):916-931. DOI: 10.1175/jam2504.1
doi: 10.1175/jam2504.1 URL |
[30] |
Wang X L. Accounting for autocorrelation in detecting mean shifts in climate data series using the Penalized maximal t or F test[J]. Journal of Applied Meteorology and Climatology, 2008, 47(9):2423-2444. DOI: 10.1175/2008JAMC1741.1
doi: 10.1175/2008JAMC1741.1 URL |
[31] |
Wang X L. Penalized maximal F test for detecting undocumented mean shift without trend change[J]. Journal of Atmospheric and Oceanic Technology, 2008, 25(3):368-384. DOI: 10.1175/2007JTECHA982.1
doi: 10.1175/2007JTECHA982.1 URL |
[32] |
Wang X L, Chen H, Wu Y, et al. New techniques for the detection and adjustment of shifts in daily precipitation data series[J]. Journal of Applied Meteorology and Climatology, 2010, 49(12):2416-2436. DOI: 10.1175/2010JAMC2376.1
doi: 10.1175/2010JAMC2376.1 URL |
[33] | 初子莹, 任国玉. 北京地区城市热岛强度变化对区域温度序列的影响[J]. 气象学报, 2005, 63(4):534-540. |
Chu Z Y, Ren G Y. Change in urban heat island magnitude and its effect on mean air temperature record in Beijing region[J]. Acta Meteorologica Sinica, 2005, 63(4):534-540 (in Chinese) | |
[34] |
Ren G Y, Zhou Y Q, Chu Z Y, et al. Urbanization effects on observed surface air temperature trends in North China[J]. Journal of Climate, 2008, 21(6):1333-1348. DOI: 10.1175/2007JCLI1348.1
doi: 10.1175/2007JCLI1348.1 URL |
[35] |
Hansen J, Ruedy R, Sato M, et al. Global surface temperature change[J]. Reviews of Geophysics, 2010, 48(4). DOI: 10.1029/2010RG000345
doi: 10.1029/2010RG000345 |
[36] |
Jones P D, Lister D H, Osborn T J, et al. Hemispheric and large-scale land-surface air temperature variations: an extensive revision and an update to 2010[J]. Journal of Geophysical Research, 2012, 117(D5). DOI: 10.1029/2011JD017139
doi: 10.1029/2011JD017139 |
[37] |
Sun X B, Ren G Y, Xu W H, et al. Global land-surface air temperature change based on the new CMA GLSAT data set[J]. Science Bulletin, 2017, 62(4):236-238. DOI: 10.1016/j.scib.2017.01.017
doi: 10.1016/j.scib.2017.01.017 URL |
[38] |
Yan Z W, Li Z, Li Q X, et al. Effects of site change and urbanisation in the Beijing temperature series 1977-2006[J]. International Journal of Climatology, 2010, 30(8):1226-1234. DOI: 10.1002/joc.1971
doi: 10.1002/joc.1971 URL |
[39] |
林学椿, 于淑秋. 北京地区气温的年代际变化和热岛效应[J]. 地球物理学报, 2005, 48(1):39-45. DOI: 10.3321/j.issn:0001-5733.2005.01.007.
doi: 10.3321/j.issn:0001-5733.2005.01.007 |
Lin X C, Yu S Q. Interdecadal changes of temperature in the Beijing region and its heat island effect[J]. Chinese Journal of Geophysics, 2005, 48(1):39-45. DOI: 10.3321/j.issn:0001-5733.2005.01.007 (in Chinese)
doi: 10.3321/j.issn:0001-5733.2005.01.007 |
[1] | 丁永建, 张世强, 陈仁升, 秦甲, 赵求东, 刘俊峰, 阳勇, 何晓波, 苌亚平, 上官冬辉, 韩添丁, 吴锦奎, 李向应. 气候变化对冰冻圈水文影响研究综述[J]. 气候变化研究进展, 2025, 21(1): 1-21. |
[2] | 秦卓凡, 廖宏, 代慧斌. 气候变化影响我国大气重污染事件的研究进展[J]. 气候变化研究进展, 2025, 21(1): 56-68. |
[3] | 吕学都, 陈佳琪, 葛慧, 朱乙丹. 气候金融实践与发展建议[J]. 气候变化研究进展, 2025, 21(1): 78-90. |
[4] | 陈德亮, 谭显春, 彭喆, 闫洪硕, 程永龙. 人工智能在气候研究和服务中的机遇与挑战[J]. 气候变化研究进展, 2024, 20(6): 669-681. |
[5] | 高翔. 国际条约下的气候资金问题辨析[J]. 气候变化研究进展, 2024, 20(6): 799-807. |
[6] | 朱磊, 张丽忠, 蒋莹, 徐剑锋, 黄艳, 孙淑欣. 工业部门的气候适应研究进展[J]. 气候变化研究进展, 2024, 20(6): 721-735. |
[7] | 欧阳志云, 张观石, 应凌霄. 气候变化对青藏高原生态系统分布范围和生态功能的影响研究进展[J]. 气候变化研究进展, 2024, 20(6): 699-710. |
[8] | 陆春晖, 袁佳双, 黄磊, 张永香. 从IPCC看全球盘点中的关键科学问题及其对中国的启示[J]. 气候变化研究进展, 2024, 20(6): 736-746. |
[9] | 周泽宇, 王君华, 曹颖. 全球适应气候变化行动进展评估及相关工作建议[J]. 气候变化研究进展, 2024, 20(6): 764-772. |
[10] | 牛振国, 景雨航, 张东启, 张波. 气候变化背景下青藏高原湿地生态系统响应特征:回顾与展望[J]. 气候变化研究进展, 2024, 20(5): 509-518. |
[11] | 杜军, 高佳佳, 陈涛, 次旺, 巴果卓玛. 1981—2023年雅鲁藏布江流域大气饱和水汽压差变化及影响因素[J]. 气候变化研究进展, 2024, 20(5): 544-557. |
[12] | 吴沛泽, 陈莎, 刘影影, 李晓桐, 杜展霞, 崔淑芬, 姜克隽. 低排放分析平台LEAP:应对气候变化下的应用与挑战[J]. 气候变化研究进展, 2024, 20(5): 611-623. |
[13] | 德吉玉珍, 拉巴, 巴桑旺堆, 白玛玉措, 旦增益嘎, 平措旺丹, 德吉央宗. 近50年西藏那曲西南部湖泊变化特征及其对气候变化的响应[J]. 气候变化研究进展, 2024, 20(5): 534-543. |
[14] | 张靖宇, 曹龙. 海洋和陆地碳循环对二氧化碳正负排放响应的模拟研究[J]. 气候变化研究进展, 2024, 20(4): 416-427. |
[15] | 潘晓滨, 刘尚文. 应对气候变化背景下我国转型金融法制化路径探析[J]. 气候变化研究进展, 2024, 20(4): 465-474. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|