气候变化研究进展 ›› 2021, Vol. 17 ›› Issue (3): 340-351.doi: 10.12006/j.issn.1673-1719.2020.102
舒章康1,2,3(), 张建云1,2,3, 金君良1,2,3(), 王国庆1,2,3, 汪琳1,3, 曹民雄1,2,3
收稿日期:
2020-05-25
修回日期:
2020-07-22
出版日期:
2021-05-30
发布日期:
2021-06-01
通讯作者:
金君良
作者简介:
舒章康,男,硕士研究生, 基金资助:
SHU Zhang-Kang1,2,3(), ZHANG Jian-Yun1,2,3, JIN Jun-Liang1,2,3(), WANG Guo-Qing1,2,3, WANG Lin1,3, CAO Min-Xiong1,2,3
Received:
2020-05-25
Revised:
2020-07-22
Online:
2021-05-30
Published:
2021-06-01
Contact:
JIN Jun-Liang
摘要:
枯季是水旱、水生态和水资源问题的重要时期,枯季径流的变化直接影响着河流生态和流域水资源管理。基于中国网格气象数据和主要江河枯季径流资料,初步分析了1961—2018年中国气候变化趋势和主要江河枯季径流演变特征与成因。结果表明,全国枯季平均气温显著上升,北方地区升温较早,南方地区2001—2018年升温明显。全国约84%的地区枯季降水有增加趋势,其中约42.2%的地区增加显著;全国枯季降水呈现西北、东北和东南显著增加,中部变化不显著格局。黄河中游和海河枯季径流下降显著,2001—2018年黄河中游枯季径流较1961—1980年减少了34%,同时期海河流域枯季径流量减少幅度均超过80%;松花江上游和长江流域枯季径流增加显著,2001—2018年松花江上游枯季径流量增加了约67%,长江流域枯季径流量增加了约16%。枯季降水增加主导了松花江上游、辽河、淮河、长江以及珠江枯季径流的增加;气温的显著上升对黄河中游和海河等地枯季径流有显著负向作用;人类活动是松花江中游、黄河和海河枯季径流下降的主要影响因素。尽管全国枯季降水的增加对于缓解流域生态和水资源问题有积极作用,但人类活动和气温显著上升加速了水资源的消耗,加大了流域水资源脆弱性。
舒章康, 张建云, 金君良, 王国庆, 汪琳, 曹民雄. 1961—2018年中国主要江河枯季径流演变特征与成因[J]. 气候变化研究进展, 2021, 17(3): 340-351.
SHU Zhang-Kang, ZHANG Jian-Yun, JIN Jun-Liang, WANG Guo-Qing, WANG Lin, CAO Min-Xiong. Evolution characters and causes of the dry season runoff for the major rivers in China during 1961-2018[J]. Climate Change Research, 2021, 17(3): 340-351.
图2 中国1961—2018年和枯季气温变化趋势及其显著性 注:台湾地区无数据,空白表示。显著性水平α=0.05,对应MK临界值为±1.96。
Fig. 2 Trend of the annual and dry season temperature during 1961-2018 in China
图3 代表性水文站1981—2000年和2001—2018年枯季气温较基准期1961—1980年的变化
Fig. 3 Changes in the recorded dry season temperature during 1981-2000 and 2001-2018 relative to the baseline of 1961-1980 for the representative hydrometric stations
图5 代表性水文站1981—2000年和2001—2018年枯季降水较基准期1961—1980年的变化
Fig. 5 Changes in the recorded dry season precipitation during 1981-2000 and 2001-2018 relative to the baseline of 1961?1980 for the representative hydrometric stations
表2 中国七大江河代表性水文站1961—2018年实测年和枯季径流量MK趋势值
Table 2 MK trend values of the recorded annual and dry season runoff from 1961-2018 gauged at the representative hydrometric stations on the 7 major rivers in China
图6 代表性水文站1981—2000年和2001—2018年枯季径流量较基准期1961—1980年的变化
Fig. 6 Changes in the recorded dry season runoff during 1981-2000 and 2001-2018 relative to the baseline of 1961?1980 for the representative hydrometric stations
图7 1961—2018年代表性水文站枯季降雨量-径流深双累积曲线
Fig. 7 Double accumulation curve of rainfall?runoff depth in dry season at representative hydrological stations in 1961-2018
[1] | 丁一汇, 王会军. 近百年中国气候变化科学问题的新认识[J]. 科学通报, 2016,61(10):1029-1041. |
Ding Y H, Wang H J. Newly acquired knowledge on the scientific issues related to climate change over the recent 100 years in China[J]. Chinese Science Bulletin, 2016,61(10):1029-1041 (in Chinese) | |
[2] |
Yin J B, Gentine P, Zhou S, et al. Large increase in global storm runoff extremes driven by climate and anthropogenic changes[J]. Nature Communications, 2018,9(1):1-10
doi: 10.1038/s41467-017-02088-w URL |
[3] |
V?r?smarty C J, Green P, Salisbury J, et al. Global water resources: vulnerability from climate change and population growth[J]. Science, 2000,289(5477):284-288
doi: 10.1126/science.289.5477.284 URL |
[4] |
Piao S, Friedlingstein P, Ciais P, et al. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends[J]. Proceedings of the National Academy of Sciences, 2007,104(39):15242-15247
doi: 10.1073/pnas.0707213104 URL |
[5] |
Haddeland I, Heinke J, Biemans H, et al. Global water resources affected by human interventions and climate change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014,111(9):3251-3256
doi: 10.1073/pnas.1222475110 pmid: 24344275 |
[6] | 张建云, 王国庆, 金君良, 等. 1956—2018年中国江河径流演变及其变化特征[J]. 水科学进展, 2020,31(2):153-161. |
Zhang J Y, Wang G Q, Jin J L, et al. Evolution and variation characteristics of the recorded runoff for the major rivers in China during 1956-2018[J]. Advances in Water Science, 2020,31(2):153-161 (in Chinese) | |
[7] | 宋晓猛, 张建云, 占车生, 等. 气候变化和人类活动对水文循环影响研究进展[J]. 水利学报, 2013,44(7):779-790. |
Song X M, Zhang J Y, Zhan C S, et al. Review for impacts of climate change and human activities on water cycle[J]. Journal of Hydraulic Engineering, 2013,44(7):779-790 (in Chinese) | |
[8] | 张利平, 于松延, 段尧彬, 等. 气候变化和人类活动对永定河流域径流变化影响定量研究[J]. 气候变化研究进展, 2013,9(6):391-397. |
Zhang L P, Yu S Y, Duan Y B, et al. Quantitative assessment of the effects of climate change and human activities on runoff in the Yongding River basin[J]. Climate Change Research, 2013,9(6):391-397 (in Chinese) | |
[9] |
Dai A, Qian T, Trenberth K E, et al. Changes in continental freshwater discharge from 1948 to 2004[J]. Journal of Climate, 2009,22(10):2773-2792
doi: 10.1175/2008JCLI2592.1 URL |
[10] |
王彦君, 王随继, 苏腾. 1955—2010年松花江流域不同区段径流量变化影响因素定量评估[J]. 地理科学进展, 2014,33(1):65-75.
doi: 10.11820/dlkxjz.2014.01.008 |
Wang Y J, Wang S J, Su T. Quantification of impacts of precipitation and human activities on runoff changes in different sections of Songhua River during 1955-2010[J]. Progress in Geography, 2014,33(1):65-75 (in Chinese) | |
[11] | 张建云, 贺瑞敏, 齐晶, 等. 关于中国北方水资源问题的再认识[J]. 水科学进展, 2013,24(3):303-310. |
Zhang J Y, He R M, Qi J, et al. A new perspective on water issues in North China[J]. Advances in Water Science, 2013,24(3):303-310 (in Chinese) | |
[12] |
刘昌明, 成立. 黄河干流下游断流的径流序列分析[J]. 地理学报, 2000,55(3):257-265
doi: 10.11821/xb200003001 |
Liu C M, Cheng L. Analysis on runoff series with special reference to drying up courses of lower Yellow River[J]. Acta Geographica Sinica, 2000,55(3):257-265 (in Chinese) | |
[13] |
Xu J X. The water fluxes of the Yellow River to the sea in the past 50 years, in response to climate change and human activities[J]. Environmental Management, 2005,35(5):620-631
doi: 10.1007/s00267-004-3094-y URL |
[14] |
Miao C Y, Ni J R, Alistair G L, et al. A preliminary estimate of human and natural contributions to the changes in water discharge and sediment load in the Yellow River[J]. Global and Planetary Change, 2011,76(3-4):196-205
doi: 10.1016/j.gloplacha.2011.01.008 URL |
[15] | 孙鹏, 孙玉燕, 张强, 等. 淮河流域径流过程变化时空特征及成因[J]. 湖泊科学, 2018,30(2):497-508. |
Sun P, Sun Y Y, Zhang Q, et al. Spatiotemporal characteristics and causes of runoff changes in the Huaihe River basin[J]. Journal of Lakers, 2018,30(2):497-508 (in Chinese) | |
[16] | 张建云, 刘九夫, 金君良, 等. 青藏高原水资源演变与趋势分析[J]. 中国科学院院刊, 2019,34(11):1264-1273. |
Zhang J Y, Liu J F, Jin J L, et al. Evolution and trend of water resources in Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019,34(11):1264-1273 (in Chinese) | |
[17] | 汤秋鸿, 兰措, 苏凤阁, 等. 青藏高原河川径流变化及其影响研究进展[J]. 科学通报, 2019,64(27):2807-2821. |
Tang Q H, Lan C, Su F G, et al. Streamflow change on the Qinghai-Tibet Plateau and its impacts[J]. Chinese Science Bulletin, 2019,64(27):2807-2821 (in Chinese) | |
[18] | 罗玉, 秦宁生, 庞轶舒, 等. 气候变暖对长江源径流变化的影响分析: 以沱沱河为例[J]. 冰川冻土, 2020,42(3):952-964. |
Luo Y, Qin N S, Pang Y S, et al. Effect of climate warming on the runoff of source regions of the Yangtze River: take Tuotuo River basin as an example[J]. Journal of Glaciology and Geocryology, 2020,42(3):952-964 (in Chinese) | |
[19] | 陈立华, 刘为福, 滕翔, 等. 水量调度下西江下游枯季径流演变特征[J]. 长江科学院院报, 2020,37(1):22-29. |
Chen L H, Liu W F, Teng X, et al. Evolution characteristics of dry season runoff with water quantity dispatching in the lower reach of Xijiang River[J]. Journal of Yangtze River Scientific Research Institute, 2020,37(1):22-29 (in Chinese) | |
[20] |
罗贤, 何大明, 季漩, 等. 近50年怒江流域中上游枯季径流变化及其对气候变化的响应[J]. 地理科学, 2016,36(1):107-113.
doi: 10.13249/j.cnki.sgs.2016.01.013 |
Luo X, He D M, Ji X, et al. Low flow variations in the middle and upper Nujiang River basin and possible responds to climate change in recent 50 years[J]. Scientia Geographica Sinica, 2016,36(1):107-113 (in Chinese) | |
[21] | 顾颖, 汪向兰, 林锦. 近60年来我国主要江河枯季径流变化及趋势分析[J]. 水利水电技术, 2011,42(4):6-8. |
Gu Y, Wang X L, Lin J. Analysis on change and trend of dry season runoff for major rivers in China since past 60 years[J]. Water Resources and Hydropower Engineering, 2011,42(4):6-8 (in Chinese) | |
[22] | Wu J, Gao X, Giorgi F, et al. Changes of effective temperature and cold/hot days in late decades over China based on a high resolution gridded observation dataset[J]. International Journal of Climatology, 2017,37. DOI: 10.1002/joc.5038 |
[23] |
Yue S, Wang C Y. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series[J]. Water Resources Management, 2004,18(3):201-218
doi: 10.1023/B:WARM.0000043140.61082.60 URL |
[24] | 涂新军, 陈晓宏, 李宁, 等. 东江径流年内分配不均匀性的年际变异识别[J]. 中山大学学报: 自然科学版, 2011,50(6):114-119. |
Tu X J, Chen X H, Li N, et al. Variability recognition of the nonuniformity of annual streamflow distribution in the Dongjiang River[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2011,50(6):114-119 (in Chinese) | |
[25] | 穆兴民, 张秀勤, 高鹏, 等. 双累积曲线方法理论及在水文气象领域应用中应注意的问题[J]. 水文, 2010,30(4):47-51. |
Mu X M, Zhang X Q, Gao P, et al. Theory of double mass curves and its applications in hydrology and meteorology[J]. Journal of China Hydrology, 2010,30(4):47-51 (in Chinese) | |
[26] | 王蕊, 姚治君, 刘兆飞, 等. 雅鲁藏布江中游地区气候要素变化及径流的响应[J]. 资源科学, 2015,37(3):619-628. |
Wang R, Yao Z J, Liu Z F, et al. Changes in climate and runoff in the middle course area of the Yarlung Zangbo River basin[J]. Resources Science, 2015,37(3):619-628 (in Chinese) | |
[27] | 王国庆, 张建云, 管晓祥, 等. 中国主要江河径流变化成因定量分析[J]. 水科学进展, 2020,31(3):313-323. |
Wang G Q, Zhang J Y, Guan X X, et al. Quantifying attribution of runoff change for major rivers in China[J]. Advances in Water Science, 2020,31(3):313-323 (in Chinese) | |
[28] | 温姗姗, 姜彤, 李修仓, 等. 1961—2010年松花江流域实际蒸散发时空变化及影响要素分析[J]. 气候变化研究进展, 2014,10(2):79-86. |
Wen S S, Jiang T, Li X C, et al. Changes of actual evapotranspiration over the Songhua River basin from 1961 to 2010[J]. Climate Change Research, 2014,10(2):79-86 (in Chinese) | |
[29] | 赵宇铭. 基于广义互补相关理论的流域实际蒸散发估算及驱动力分析[D]. 南京: 南京信息工程大学, 2019. |
Zhao Y M. Analysis of estimating and driving force of actual evapotranspiration in watershed based on generalized complementary relationship[D]. Nanjing: Nanjing University of Information Science and Technology, 2019 (in Chinese) | |
[30] | 赵娜, 王治国, 张复明, 等. 海河流域潜在蒸散发估算方法及其时空变化特征[J]. 南水北调与水利科技, 2017,15(6):11-16, 65. |
Zhao N, Wang Z G, Zhang F M, et al. Model evaluation and spatial-temporal variations of potential evapotranspiration in Haihe catchment[J]. South-to-North Water Transfers and Water Science & Technology, 2017,15(6):11-16, 65 (in Chinese) | |
[31] | 蓝永超, 文军, 赵国辉, 等. 黄河河源区径流对气候变化的敏感性分析[J]. 冰川冻土, 2010,32(1):175-182. |
Lan Y C, Wen J, Zhao G H, et al. Sensibility analysis of the runoff in the headwater regions of the Yellow River to climate change[J]. Journal of Glaciology and Geocryology, 2010,32(1):175-182 (in Chinese) | |
[32] | 王根绪, 李娜, 胡宏昌. 气候变化对长江黄河源区生态系统的影响及其水文效应[J]. 气候变化研究进展, 2009,5(4):202-208. |
Wang G X, Li N, Hu H C. Hydrologic effect of ecosystem responses to climatic change in the source regions of Yangtze River and Yellow River[J]. Climate Change Research, 2009,5(4):202-208 (in Chinese) | |
[33] |
Cuo L, Zhang Y, Gao Y, et al. The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River basin, China[J]. Journal of Hydrology, 2013,502:37-52
doi: 10.1016/j.jhydrol.2013.08.003 URL |
[34] | 贺瑞敏, 张建云, 鲍振鑫, 等. 海河流域河川径流对气候变化的响应机理[J]. 水科学进展, 2015,26(1):1-9. |
He R M, Zhang J Y, Bao Z X, et al. Response of runoff to climate change in the Haihe River basin[J]. Advances in Water Science, 2015,26(1):1-9 (in Chinese) | |
[35] | 周志鹏, 孙文义, 穆兴民, 等. 2001—2017年黄土高原实际蒸散发的时空格局[J]. 人民黄河, 2019,41(6):76-80, 84. |
Zhou Z P, Sun W Y, Mu X M, et al. Temporal and spatial pattern of actual evapotranspiration in the Loess Plateau from 2001 to 2017[J]. Yellow River, 2019,41(6):76-80, 84 (in Chinese) | |
[36] | 金勇, 周建军, 黄国鲜. 长江上游大型水库运行对长江上游水文过程的影响[J]. 水力发电学报, 2010,29(2):94-101. |
Jin Y, Zhou J J, Huang G X. Impact of large reservoirs operation on the hydrological process in the upper Yangtze reaches[J]. Journal of Hydroelectric Engineering, 2010,29(2):94-101 (in Chinese) |
[1] | 尚华明, 范煜婷, 张瑞波, 喻树龙, 张同文, 魏文寿, 刘卫平. 帕米尔高原东部径流量变化及其对气候变化的响应[J]. 气候变化研究进展, 2021, 17(3): 352-360. |
[2] | 安岩, 顾佰和, 王毅, 谭显春, 翟寒冰. 基于自然的解决方案:中国应对气候变化领域的政策进展、问题与对策[J]. 气候变化研究进展, 2021, 17(2): 184-194. |
[3] | 王雪琦, 陈进. 影响中国沿海地区青少年气候变化减缓意愿及行为的因子分析[J]. 气候变化研究进展, 2021, 17(2): 212-222. |
[4] | 张莹, 姬潇然, 王谋. 国际气候治理中的公正转型议题:概念辨析与治理进展[J]. 气候变化研究进展, 2021, 17(2): 245-254. |
[5] | 张文华, 闫庆友, 何钢, 袁家海. 气候变化约束下中国电力系统低碳转型路径及策略[J]. 气候变化研究进展, 2021, 17(1): 18-26. |
[6] | 张雅欣, 罗荟霖, 王灿. 碳中和行动的国际趋势分析[J]. 气候变化研究进展, 2021, 17(1): 88-97. |
[7] | 左佳鹭, 张磊, 陈敏鹏. 全球应对气候变化的合作新模式——探析“气候变化三方合作”[J]. 气候变化研究进展, 2021, 17(1): 98-106. |
[8] | 朱光熙, 效存德, 陈波, 赵映东. 气候变化背景下黑河上游春季融雪洪水预估研究[J]. 气候变化研究进展, 2020, 16(6): 667-678. |
[9] | 赵梦霞, 苏布达, 王艳君, 王安乾, 姜彤. 气候变化对东部季风区赣江和官厅流域径流的影响[J]. 气候变化研究进展, 2020, 16(6): 679-689. |
[10] | 运晓博, 汤秋鸿, 徐锡蒙, 周园园, 刘星才, 王杰, 孙思奥. 气候变化对澜湄流域上下游水资源合作潜力的影响[J]. 气候变化研究进展, 2020, 16(5): 555-563. |
[11] | 苏勃, 效存德. 冰冻圈影响区恢复力研究和实践:进展与展望[J]. 气候变化研究进展, 2020, 16(5): 579-590. |
[12] | 赵敏, 张华, 王海波, 朱丽. 2000—2018年东亚地区云顶高度的时空变化特征[J]. 气候变化研究进展, 2020, 16(5): 591-599. |
[13] | 李林, 申红艳, 刘彩红, 校瑞香. 青海湖水位波动对气候暖湿化情景的响应及其机理研究[J]. 气候变化研究进展, 2020, 16(5): 600-608. |
[14] | 孙丽丽, 崔惠娟, 葛全胜. “一带一路”沿线主要国家碳捕集、利用和封存潜力与前景研究[J]. 气候变化研究进展, 2020, 16(5): 609-616. |
[15] | 付琳, 周泽宇, 杨秀. 适应气候变化政策机制的国际经验与启示[J]. 气候变化研究进展, 2020, 16(5): 641-651. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|