[1] |
何大明. 澜沧江-湄公河水文特征分析[J]. 云南地理环境研究, 1995,7(1):58-74.
|
|
He D M. Analysis of hydrological characteristics of the Lancang-Mekong River basin[J]. Yunnan Geography Environment Research, 1995,7(1):58-74 (in Chinese)
|
[2] |
Shimizu K, Masumoto T, Pham T H. Factors impacting yields in rain-fed paddies of the lower Mekong River basin[J]. Paddy and Water Environment, 2006,4(3):145-151
|
[3] |
Rees H G, Collins D N. Regional differences in response of flow in glacier-fed Himalayan rivers to climatic warming[J]. Hydrological Processes, 2006,20(10):2157-2169
|
[4] |
Hoang L P, Lauri H, Kummu M, et al. Mekong River flow and hydrological extremes under climate change[J]. Hydrology and Earth System Sciences, 2016,20(7):3027-3041
|
[5] |
Kiem A S, Ishidaira H, Hapuarachchi H P, et al. Future hydroclimatology of the Mekong River basin simulated using the high-resolution Japan Meteorological Agency (JMA) AGCM[J]. Hydrological Processes, 2008,22(9):1382-1394
|
[6] |
Thilakarathne M, Sridhar V. Characterization of future drought conditions in the Lower Mekong River basin[J]. Weather and Climate Extremes, 2017,17:47-58
|
[7] |
汤秋鸿, 兰措, 苏凤阁, 等. 青藏高原河川径流变化及其影响研究进展[J]. 科学通报, 2019,64:2807-2821.
|
|
Tang Q H, Lan C, Sun F G, et al. Streamflow change on the Qinghai-Tibet Plateau and its impacts[J]. Chinese Science Bulletin, 2019,64:2807-2821
|
[8] |
汤秋鸿, 刘星才, 周园园, 等. “亚洲水塔”变化对下游水资源的连锁效应[J]. 中国科学院院刊, 2019,34(11):1306-1312.
|
|
Tang Q H, Liu X C, Zhou Y Y, et al. Cascading impacts of Asian water tower change on downstream water systems[J]. Bulletin of Chinese Academy of Sciences, 2019,34(11):1306-1312 (in Chinese)
|
[9] |
Meyfroidt L P. Global land use change, economic globalization, and the looming land scarcity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011,108(9):3465-3472
doi: 10.1073/pnas.1100480108
URL
pmid: 21321211
|
[10] |
Huntington T G. Evidence for intensification of the global water cycle: review and synjournal[J]. Journal of Hydrology, 2006,319(1-4):0-95
|
[11] |
Milly P C D, Wetherald R T, Dunne K A, et al. Increasing risk of great floods in a changing climate[J]. Nature, 2002,415(6871):514-517
doi: 10.1038/415514a
URL
pmid: 11823857
|
[12] |
汤秋鸿. 全球变化水文学: 陆地水循环与全球变化[J]. 中国科学: 地球科学, 2020,50(3):436-438.
|
|
Tang Q H. Global change hydrology: terrestrial water cycle and global change[J]. Scientia Sinica Terrae, 2020,50(3):436-438 (in Chinese)
|
[13] |
Dai A G. Increasing drought under global warming in observations and models[J]. Nature Climate Change, 2012,3(1):52-58
|
[14] |
王书霞, 张利平, 李意, 等. 气候变化情景下澜沧江流域极端洪水事件研究[J]. 气候变化研究进展, 2019,15(1):27-36.
|
|
Wang S X, Zhang L P, Li Y, et al. Extreme flood in the Lancang River basin under climate change[J]. Climate Change Research, 2019,15(1):27-36 (in Chinese)
|
[15] |
刘波, 肖子牛. 澜沧江流域1951—2008年气候变化和2010—2099年不同情景下模式预估结果分析[J]. 气候变化研究进展, 2010,6(3):170-174.
|
|
Liu B, Xiao Z N. Observed (1951-2008) and projected (2010-2099) climate change in the Lancang River basin[J]. Climate Change Research, 2010,6(3):170-174 (in Chinese)
|
[16] |
Long D, Scanlon B R, Longuevergne L, et al. GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas[J]. Geophysical Research Letters, 2013,40(13):3395-3401
|
[17] |
Munia H, Guillaume J H A, Mirumachi N, et al. Water stress in global transboundary river basins: significance of upstream water use on downstream stress[J]. Environmental Research Letters, 2016,11(1):014002
|
[18] |
何大明, 张家桢. 澜沧江-湄公河流域持续发展与水资源整体多目标利用研究[J]. 中国科学基金, 1996 (3):200-206.
|
|
He D M, Zhang J Z. Research on the sustainable development of the Lancang-Mekong River basin and the multi-objective utilization of water resources[J]. China Science Foundation, 1996 (3):200-206 (in Chinese)
|
[19] |
Pech S, Sunada K. Population growth and natural-resources pressures in the Mekong River basin[J]. AMBIO: A Journal of the Human Environment, 2008,37(3):219-224
|
[20] |
Sheffield J, Wood E F, Roderick M L. Little change in global drought over the past 60 years[J]. Nature, 2012,491(7424):435-438
doi: 10.1038/nature11575
URL
pmid: 23151587
|
[21] |
Sheffield J, Goteti G, Wood E F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling[J]. Journal of Climate, 2006,19(13):3088-3111
doi: 10.1175/JCLI3790.1
URL
|
[22] |
MRC (Mekong River Commission). Hydrometeorological database of the Mekong River commission [R]. Vientiane, Lao PDR: Mekong River Commission, 2011
|
[23] |
McKee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales[J]. American Meteorological Society, 1993: 179-183
|
[24] |
Wu H, Svoboda M D, Hayes M J, et al. Appropriate application of the standardized precipitation index in arid locations and dry seasons[J]. International Journal of Climatology, 2010,27(1):65-79
doi: 10.1002/(ISSN)1097-0088
URL
|
[25] |
Wilks D S. Interannual variability and extreme-value characteristics of several stochastic daily precipitation models[J]. Agricultural and Forest Meteorology, 1999,93(3):153-169
|
[26] |
Nelsen R B. An introduction to Copulas (Springer series in statistics)[M]. New York, USA: Springer, 2006
|
[27] |
Huard D, Evin G, Favre A C. Bayesian copula selection[J]. Computational Statistics & Data Analysis, 2006,51(2):809-822
|
[28] |
Qu X, Huang G, Zhou W. Consistent responses of East Asian summer mean rainfall to global warming in CMIP5 simulations[J]. Theoretical and Applied Climatology, 2014,117(1-2):123-131
doi: 10.1007/s00704-013-0995-9
URL
|
[29] |
Thompson J R, Green A J, Kingston D G. Potential evapotranspiration-related uncertainty in climate change impacts on river flow: an assessment for the Mekong River basin[J]. Journal of Hydrology, 2014,510:259-279
|
[30] |
Frieler K, Lange S, Piontek F, et al. Assessing the impacts of 1.5℃ global warming: simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b)[J]. Geoscientific Model Development, 2017,12:4321-4345
|
[31] |
Hamed K H, Rao A R. A modified Mann-Kendall trend test for autocorrelated data[J]. Journal of Hydrology, 1998
doi: 10.1016/j.jhydrol.2017.04.013
URL
pmid: 32801391
|
[32] |
高峰, 蔡万园, 张玉虎, 等. 5种CMIP5模拟降水数据在中国的适用性评估[J]. 水土保持研究, 2017,24(6).
|
|
Gao F, Cai W Y, Zhang Y H, et al. Evaluation on the applicability of 5 kinds of CMIP5 simulated precipitation data in China[J]. Research of Soil and Water Conservation, 2017,24(6) (in Chinese)
|
[33] |
陈晓晨, 徐影, 许崇海, 等. CMIP5全球气候模式对中国地区降水模拟能力的评估[J]. 气候变化研究进展, 2014,10(3):217-225.
|
|
Chen X C, Xu Y, Xu C H, et al. Assessment of precipitation simulations in China by CMIP5 multi-models[J]. Advances in Climate Change Research, 2014,10(3):217-225 (in Chinese)
|
[34] |
IPCC. Climate change 2014: impacts, adaptation, and vulnerability [M]. Cambridge: Cambridge University Press, 2014: 1132
|
[35] |
IFAD (International Fund for Agricultural Development), Cambodia Environmental and Climate Change Assessment. Prepared for IFAD’s country strategic opportunities programmer 2013-2018 [R]. Rome, Italy: IFAD, 2018
|
[36] |
Smajgl A, Toan T Q, Nhan D K, et al. Responding to rising sea levels in the Mekong Delta[J]. Nature Climate Change, 2015
doi: 10.1038/s41558-017-0032-6
URL
pmid: 29375673
|
[37] |
Valbo-Jørgensen J, Coates D, Hortle K. Chapter 8: fish diversity in the Mekong River basin[J]. The Mekong, 2009: 161-196
|
[38] |
Lu X X, Li S, Kummu M, et al. Observed changes in the water flow at Chiang Saen in the lower Mekong: impacts of Chinese dams?[J]. Quaternary International, 2014,336:145-157
|
[39] |
Cronin R. Mekong dams and the perils of peace[J]. Survival, 2009,51(6):147-160
|