气候变化研究进展 ›› 2025, Vol. 21 ›› Issue (6): 777-788.doi: 10.12006/j.issn.1673-1719.2025.079
肖雪1(
), 黄萌田1(
), 周佰铨1, 王晨鹏2, 翟盘茂1
收稿日期:2025-04-10
修回日期:2025-06-10
出版日期:2025-11-30
发布日期:2025-09-05
通讯作者:
黄萌田,女,副研究员,huang_mengtian@126.com
作者简介:肖雪,女,硕士研究生,基金资助:
XIAO Xue1(
), HUANG Meng-Tian1(
), ZHOU Bai-Quan1, WANG Chen-Peng2, ZHAI Pan-Mao1
Received:2025-04-10
Revised:2025-06-10
Online:2025-11-30
Published:2025-09-05
摘要:
2022年青藏高原夏季遭遇罕见的极端高温干旱复合事件,但该事件造成的区域植被变化及其机制尚不明确。文中利用2000—2022年的气候资料和遥感植被指数产品,应用主成分分析等方法,旨在揭示该事件对区域植被生长的影响及其驱动机制。研究发现,2022年青藏高原复合极端高温干旱事件整体上抑制了青藏高原的植被生长,当年区域平均生长季归一化植被指数(NDVI)较前一年同期下降28%,受严重抑制(去趋势后的NDVI标准化距平低于-2)的植被生长区域占比约6%,位居研究时段内第三位。植被生长受抑制最严重的区域主要位于青藏高原南部和东北部部分地区。进一步分析发现,2022年青藏高原春季偏暖,利于春季物候提前,加快土壤水分消耗;而当年夏季降水偏少,不足以补充蒸腾失水,造成夏季土壤严重干旱。这继而改变了夏季地表能量平衡,通过陆气反馈加剧地表气温升高,在青藏高原90%以上地区同期日最高气温超过了植物光合作用的最适温度。这种复合的水分和温度胁迫共同抑制了青藏高原植被生长。研究结果为理解气候变化下青藏高原的生态响应提供了重要的科学依据。
肖雪, 黄萌田, 周佰铨, 王晨鹏, 翟盘茂. 2022年青藏高原复合高温干旱事件对区域植被的影响[J]. 气候变化研究进展, 2025, 21(6): 777-788.
XIAO Xue, HUANG Meng-Tian, ZHOU Bai-Quan, WANG Chen-Peng, ZHAI Pan-Mao. Impact of the 2022 compound hot-dry extreme events on vegetation growth over the Tibetan Plateau[J]. Climate Change Research, 2025, 21(6): 777-788.
图1 青藏高原高程及植被类型分布图 注:I代表暖温带灌木、半灌木、裸露;II代表温带南部森林(草甸)草原;III代表温带南部荒漠草原;IV代表高寒草原;V代表高寒灌丛,草甸;VI代表高寒草甸;VII代表亚热带山地寒温性针叶林;VIII代表暖温带灌木、半灌木荒漠;IX代表高寒荒漠;X代表温性荒漠;XI代表温性草原;XII代表中亚热带常绿阔叶林;XIII代表北热带季节雨林、半常绿季雨林;XIV代表中亚热带常绿阔叶林;XV代表北热带半常绿季雨林、湿润雨林;XVI代表暖温带南部落叶栎林;XVII代表温带灌木、半灌木荒漠;XVIII代表温带半灌木,灌木荒漠。
Fig. 1 Elevation and vegetation type distribution map of the Tibetan Plateau
图2 2000—2022年青藏高原生长季平均日最高气温和累积降水量的标准化距平 注:日最高气温标准化距平基于2000—2021年气候标准态计算,下同。
Fig. 2 Standardized anomalies of growing-season averaged daily maximum temperature and cumulative precipitation over the Tibetan Plateau from 2000 to 2022
图3 青藏高原植被生长状况(a) 2000—2022年青藏高原区域生长季平均NDVI的标准化距平,(b) 2022年生长季平均NDVI标准化距平值的空间分布,(c) 2000—2022年去趋势后的生长季平均NDVI标准化距平的概率密度函数,(d) 2000—2022年去趋势后的生长季平均NDVI标准化距平低于-2.0、-2.5和-3.0的像元占比
Fig. 3 Vegetation growth status on the Tibetan Plateau. (a) Standardized anomaly of growing-season averaged NDVI over the Tibetan Plateau from 2000 to 2022, (b) spatial distribution of standardized anomaly of growing-season averaged NDVI in 2022, (c) probability density function of detrended standardized anomaly of growing-season averaged NDVI from 2000 to 2022, (d) pixel proportion of detrended standardized anomaly of growing season average NDVI below -2.0, -2.5 and -3.0 from 2000 to 2022
图4 青藏高原生长季NDVI标准化距平的主成分分析结果(a) 2000—2022年青藏高原NDVI标准化距平的区域平均、第1主成分重建的NDVI-PC1及第2~6主成分重建的NDVI-IAV时间序列,(b) 2022年NDVI-PC1空间分布,(c) 2022年NDVI-IAV空间分布
Fig. 4 Principal component analysis results of NDVI standardization anomaly during the growing season in the Tibetan Plateau. (a) Time series of regional average standardized anomaly of NDVI, NDVI-PC1 reconstructed by the first principal component, and NDVI-IAV reconstructed by the 2nd to 6th principal components over the Tibetan Plateau from 2000 to 2022, (b) spatial distribution of NDVI-PC1 in 2022, (c) spatial distribution of NDVI-IAV in 2022
图5 青藏高原GPP变化情况(a) 2022年青藏高原GPP-IAV空间分布,(b) 2022年青藏高原7—8月GPP标准化距平的空间分布 注:GPP-IAV由2001—2022年青藏高原GPP标准化距平主成分分析后的第2~7主成分重建得到。
Fig. 5 Ecosystem GPP over the Tibetan Plateau. (a) Spatial distribution of GPP-IAV on the Tibetan Plateau in 2022 (with GPP-IAV reconstructed from the 2nd to 7th principal components of the standardized anomaly of GPP on the Tibetan Plateau from 2001 to 2022),(b) spatial distribution of standardized anomaly of GPP on the Tibetan Plateau in July-August, 2022
图6 2000—2022年去趋势的青藏高原地区生长季平均NDVI与平均日最高气温(a)和累积降水量(b)的偏相关系数的空间分布 注:图中空心圆标注像元代表通过了显著性检验(p<0.05)。括号中*代表通过0.05显著性检验,数字代表通过显著性检验的像元占比。
Fig. 6 Spatial distribution of partial correlation coefficients between detrended growing season NDVI and mean daily maximum temperature (a) and cumulative precipitation (b) on the Tibetan Plateau from 2000 to 2022
图7 2022年复合高温干旱事件造成青藏高原植被变化的空间分布特征 注:填色像元代表对应相关系数下2022年青藏高原地区经PCA处理得到的NDVI-IAV的平均值。
Fig. 7 The spatial distribution characteristics of vegetation change in the Tibetan Plateau caused by the compound hot-dry extreme event in 2022
图8 青藏高原生长季内NDVI变化情况(a) 2000—2022年生长季区域平均NDVI变化,(b) 2022年研究区域7—8月平均NDVI标准化距平值的空间分布
Fig. 8 Changes in NDVI during the growing season in the Tibetan Plateau. (a) Interannual variability of regionally averaged NDVI, (b) spatial distribution of standardized anomaly of NDVI in July-August, 2022
图9 2022年青藏高原研究区域日最高气温(a)、累积降水(b)和0~289 cm深度平均土壤湿度(c)的逐月变化情况
Fig. 9 Monthly variations of daily maximum temperature (a), cumulative precipitation (b), and soil moisture averaged over 0-289 cm depth (c) on the Tibetan Plateau in 2022
图10 2022年青藏高原7—8月日最高气温(a)及其与植被生长最适温度的差值(b)的空间分布 注:(b)图空心矩形标注像元代表7—8月平均NDVI标准化距平值低于-1.5的区域。植被光合最适温度数据因其分辨率过高且青藏高原缺值较多,重采样单独采用最近邻插值方法以保留较多原始数据。
Fig. 10 Spatial distribution of daily maximum temperature (a) and the difference between daily maximum temperature and the optimal temperature for vegetation growth (b) on the Tibetan Plateau during July-August, 2022
| [1] | IPCC. Climate change 2021: the physical science basis[M]. Cambridge: Cambridge University Press, 2021 |
| [2] | Piao S L, Zhang X P, Chen A P, et al. The impacts of climate extremes on the terrestrial carbon cycle: a review[J]. Science China: Terrae, 2019, 49 (9): 1321-1334 |
| [3] | 孙博, 王会军, 黄艳艳, 等. 2022年夏季中国高温干旱气候特征及成因探讨[J]. 大气科学学报, 2023, 46 (1): 1-8. |
| Sun B, Wang H J, Huang Y Y, et al. Discussion on the climatic characteristics and causes of high temperature and drought in summer 2022 in China[J]. Journal of Atmospheric Sciences, 2023, 46 (1): 1-8 (in Chinese) | |
| [4] | Xu W F, Yuan W P, Wu D H, et al. Impacts of record-breaking compound heatwave and drought events in 2022 China on vegetation growth[J]. Agricultural and Forest Meteorology, 2024: 344 |
| [5] | Libonati R, Geirinhas J L, Silva P S, et al. Assessing the role of compound drought and heatwave events on unprecedented 2020 wildfires in the Pantanal[J]. Environmental Research Letters, 2022, 17 (1): 1-11 |
| [6] |
Ga?lle R, Jean N C, Fran?ois L, et al. Effects of drought and heat on forest insect populations in relation to the 2003 drought in western Europe[J]. Annals of Forest Science, 2006, 63 (6): 613-624
doi: 10.1051/forest:2006044 URL |
| [7] |
Xiao L Y, Wu X Q, Zhao S, et al. Memory effects of vegetation after extreme weather events under various geological conditions in a typical karst watershed in southwestern China[J]. Agricultural and Forest Meteorology, 2024, 345: 109840
doi: 10.1016/j.agrformet.2023.109840 URL |
| [8] | Shi Z T, Jia G S, Zhou Y Y, et al. Amplified intensity and duration of heatwaves by concurrent droughts in China[J]. Atmospheric Research, 2021: 261 |
| [9] |
Zscheischler J, Westra S, Hurk D V M J J B, et al. Future climate risk from compound events[J]. Nature Climate Change, 2018, 8 (6): 469-477
doi: 10.1038/s41558-018-0156-3 |
| [10] | Corey L, Weston A, Angela R, et al. Compound heat and moisture extreme impacts on global crop yields under climate change[J]. Nature Reviews Earth & Environment, 2022, 3 (12): 872-889 |
| [11] |
张晶, 郝芳华, 吴兆飞, 等. 植被物候对极端气候响应及机制[J]. 地理学报, 2023, 78 (9): 2241-2255.
doi: 10.11821/dlxb202309008 |
| Zhang J, Hao F H, Wu Z F, et al. Vegetation phenology responses and mechanisms to extreme climate[J]. Acta Geographica Sinica, 2023, 78 (9): 2241-2255 (in Chinese) | |
| [12] | Dreesen E F, Boeck D J H, Janssens A I, et al. Do successive climate extremes weaken the resistance of plant communities? An experimental study using plant assemblages [J]. Biogeosciences, 2014, 11 (1): 109-121 |
| [13] |
Ciais P, Reichstein M, Viovy N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003[J]. Nature, 2005, 437 (7058): 529-533
doi: 10.1038/nature03972 |
| [14] |
Von B J, Zscheischler J, Rammig A, et al. Impacts of droughts and extreme temperature events on gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones[J]. Biogeosciences, 2018, 15: 1293-1318
doi: 10.5194/bg-15-1293-2018 URL |
| [15] |
Gebrechorkos S H, Sheffield J, Vicente-Serrano S M, et al. Warming accelerates global drought severity[J]. Nature, 2025, 642: 628-635
doi: 10.1038/s41586-025-09047-2 |
| [16] |
Shukla S, Safeeq M, AghaKouchak A, et al. Temperature impacts on the water year 2014 drought in California[J]. Geophysical Research Letters, 2015, 42 (11): 4384-4393
doi: 10.1002/grl.v42.11 URL |
| [17] | Gu L, Schumacher D L, Fischer E M, et al. Flash drought impacts on global ecosystems amplified by extreme heat[J]. Nature Geoscience, 2025 (18): 709-715 |
| [18] |
Zhou S, Wu S H, Gao J B, et al. Increased stress from compound drought and heat events on vegetation[J]. The Science of the Total Environment, 2024, 949: 175113
doi: 10.1016/j.scitotenv.2024.175113 URL |
| [19] |
Piao S L, Cui M D, Chen A P, et al. Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau[J]. Agricultural and Forest Meteorology, 2012, 151 (12): 1599-1608
doi: 10.1016/j.agrformet.2011.06.016 URL |
| [20] |
Xu B Q, Cao J J, Hansen J, et al. Black soot and the survival of Tibetan glaciers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106 (52): 22114-22118
doi: 10.1073/pnas.0910444106 pmid: 19996173 |
| [21] |
Yao T D, Xue Y K, Chen D L, et al. Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis[J]. Bulletin of the American Meteorological Society, 2019, 100: 423-444
doi: 10.1175/BAMS-D-17-0057.1 URL |
| [22] | Klein J A, Harte J, Zhao X Q. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau[J]. Blackwell Science Ltd, 2004, 7 (12): 1170-1179 |
| [23] | 周佰铨, 翟盘茂, 廖圳. 2022年夏季青藏高原高温干旱复合事件的双变量归因[J]. 中国科学: 地球科学, 2024, 54 (7): 2152-2166. |
|
Zhou B Q, Zhai P M, Liao Z. Bivariate attribution of the compound hot and dry summer of 2022 on the Tibetan Plateau[J]. Science China: Earth Sciences, 2024, 67 (7): 2122-2136 (in Chinese)
doi: 10.1007/s11430-023-1320-y |
|
| [24] |
Wang L C. Impacts of multiple temporal and spatial scale drought on grassland vegetation dynamics in the Tibetan Plateau region of China, 1982-2015[J]. Environmental Development, 2024, 51: 101033
doi: 10.1016/j.envdev.2024.101033 URL |
| [25] | Wu D, Hu Z Y. Increasing compound drought and hot event over the Tibetan Plateau and its effects on soil water[J]. Ecological Indicators, 2023, 153: 1-14 |
| [26] |
朱玉英, 张华敏, 丁明军, 等. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47: 51-64.
doi: 10.17521/cjpe.2021.0500 |
|
Zhu Y Y, Zhang H M, Ding M J, et al. Vegetation greenness change and its response to dry-wet changes on the Tibetan Plateau[J]. Chinese Journal of Plant Ecology, 2023, 47: 51-64 (in Chinese)
doi: 10.17521/cjpe.2021.0500 URL |
|
| [27] | 张乐乐, 高黎明, 赵林, 等. 基于 ITPCAS数据的青藏高原太阳总辐射时空变化特征[J]. 太阳能学报, 2019, 40 (9): 2521-2529. |
| Zhang L L, Gao L M, Zhao L, et al. Spatio-temporal variation characteristics of total solar radiation on the Tibetan Plateau based on ITPCAS data[J]. Acta Energiae Solaris Sinica, 2019, 40 (9): 2521-2529 (in Chinese) | |
| [28] | 龚成麒, 董晓华, 魏冲. 1978—2018年青藏高原降水区划及各区降水量时空演变特征[J]. 水资源与水工程学报, 2022, 33 (5): 96-108. |
| Gong C Q, Dong X H, Wei C. Precipitation zoning and spatio-temporal evolution characteristics in the Tibetan Plateau from 1978 to 2018[J]. Journal of Water Resources and Water Engineering, 2022, 33 (5): 96-108 (in Chinese) | |
| [29] | 康兴成. 青藏高原地区近40年来气候变化的特征[J]. 冰川冻土, 1996 (S1): 281-288. |
| Kang X C. Characteristics of climate change in the Tibetan Plateau over the past 40 years[J]. Journal of Glaciology and Geocryology, 1996 (S1): 281-288 (in Chinese) | |
| [30] | 吴佳, 高学杰. 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013 (56): 1102-1111. |
| Wu J, Gao X J. A gridded daily observational dataset for regional China and comparisons with other datasets[J]. Chinese Journal of Geophysics, 2013 (56): 1102-1111 (in Chinese) | |
| [31] | Huang M T, Piao S L, Ciais P, et al. Air temperature optima of vegetation productivity across global biomes[J]. Nature Ecology & Evolution, 2019, 3 (5): 772-779 |
| [32] |
Faour G, Mhawej M, Nasrallah A. Global trends analysis of the main vegetation types throughout the past four decades[J]. Applied Geography, 2018, 97: 184-195
doi: 10.1016/j.apgeog.2018.05.020 URL |
| [33] | 封建民, 郭玲霞, 刘宇峰, 等. 2000—2021年泾河流域植被NDVI变化及影响因素[J]. 水土保持研究, 2024, 32 ( 1): 249-256. ] |
| Feng J M, Guo L X, Liu Y F, et al. Changes of vegetation NDVI and influencing factors in the Jinghe River basin from 2000 to 2021[J]. Research of Soil and Water Conservation, 2024, 32 (1): 249-256 (in Chinese) | |
| [34] | Zscheischler J, Martius O, Westra S, et al. A typology of compound weather and climate events[J]. Nature Reviews Earth & Environment, 2020, 17: 333-347 |
| [35] |
Gurgel C H, Ferreira J N. Annual and interannual variability of NDVI in Brazil and its connections with climate[J]. International Journal of Remote Sensing, 2003, 24 (18): 3595-3609
doi: 10.1080/0143116021000053788 URL |
| [36] | Jolliffe I T. Principal component analysis[J]. Journal of Marketing Research, 2002, 87 (4): 513 |
| [37] | Theil H. A rank-invariant method of linear and polynomial regression analysis[J]. Netherlands Academy of Sciences, Proceedings, 1992, 12 (2): 345-381 |
| [38] | Sen P K. Estimates of the regression coefficient based on Kendall’s tau[J]. Publications of the American Statistical Association, 1968, 63: 1379-1389 |
| [39] |
Mann H B. Non-parametric test against trend[J]. Econometrica, 1945, 13 (3): 245-259
doi: 10.2307/1907187 URL |
| [40] | Kendall M G. Rank correlation methods[J]. British Journal of Psychology, 1990, 25 (1): 86-91 |
| [41] |
杨梦娇, 赵伟, 詹琪琪, 等. 基于偏相关分析的 2003—2020年青藏高原地表温度变化驱动因子量化研究[J]. 测绘学报, 2024, 53 (5): 848-859.
doi: 10.11947/j.AGCS.2024.20230206 |
| Yang M J, Zhao W, Zhan Q Q, et al. Quantitative study on driving factors of surface temperature change on the Tibetan Plateau from 2003 to 2020 based on partial correlation analysis[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53 (5): 848-859 (in Chinese) | |
| [42] |
Anniwaer N, Li X Y, Wang K, et al. Shifts in the trends of vegetation greenness and photosynthesis in different parts of Tibetan Plateau over the past two decades[J]. Agricultural and Forest Meteorology, 2024, 345: 109851
doi: 10.1016/j.agrformet.2023.109851 URL |
| [43] | Zhang Y, Yang Z, Zong Q R C, et al. Spatial variations in carbon dioxide fertilization effect on vegetation greening across the Tibetan Plateau[J]. Global and Planetary Change, 2025 (252): 104839 |
| [44] | Piao S L, Wang X H, Park T J, et al. Characteristics, drivers and feedbacks of global greening[J]. Nature Reviews Earth & Environment, 2020, 1 (1): 14 |
| [45] | 李新鸽, 韩广轩, 朱连奇, 等. 降雨引起的干湿交替对土壤呼吸的影响: 进展与展望[J]. 生态学杂志, 2019, 38 (2): 567-575. |
| Li X G, Han G X, Zhu L Q, et al. Effects of dry-wet alternation caused by rainfall on soil respiration: advances and prospects[J]. Chinese Journal of Ecology, 2019, 38 (2): 567-575 (in Chinese) | |
| [46] |
Wang J, Yan R, Wu G, et al. Unprecedented decline in photosynthesis caused by summer 2022 record-breaking compound drought-heatwave over Yangtze River basin[J]. Science Bulletin, 2023, 68 (19): 2160-2163
doi: 10.1016/j.scib.2023.08.011 URL |
| [47] | 李红英, 张存桂, 汪生珍, 等. 近40年青藏高原植被动态变化对水热条件的响应[J]. 生态学报, 2022, 42 (12): 4770-4783. |
| Li H Y, Zhang C G, Wang S Z, et al. Responses of vegetation dynamics to water and heat conditions on the Tibetan Plateau over the past 40 years[J]. Acta Ecologica Sinica, 2022, 42 (12): 4770-4783 (in Chinese) | |
| [48] | 欧阳习军, 董晓华, 魏榕, 等. 青藏高原植被生长季NDVI时空变化及对气候因子的响应分析[J]. 水土保持研究, 2023, 30 (2): 220-229. |
| Ouyang X J, Dong X H, Wei R, et al. Analysis of the spatiotemporal changes of NDVI during the growing season of vegetation in the Tibetan Plateau and its response to climate factors[J]. Research of Soil and Water Conservation, 2023, 30 (2): 220-229 (in Chinese) | |
| [49] |
马炳鑫, 和彩霞, 靖娟利, 等. 1982—2019年中国西南地区植被变化归因研究[J]. 地理学报, 2023, 78 (3): 714-728.
doi: 10.11821/dlxb202303013 |
| Ma B X, He C X, Jing J L, et al. Attribution study of vegetation change in Southwest China from 1982 to 2019[J]. Acta Geographica Sinica, 2023, 78 (3): 714-728 (in Chinese) | |
| [50] | 朴世龙, 张宪洲, 汪涛, 等. 青藏高原生态系统对气候变化的响应及其反馈[J]. 科学通报, 2019, 64 (27): 2842-2855. |
| Piao S L, Zhang X Z, Wang T, et al. Responses and feedbacks of the Tibetan Plateau ecosystem to climate change[J]. Science Bulletin, 2019, 64 (27): 2842-2855 (in Chinese). | |
| [51] | Li L H, Zhang Y L, Wu J S, et al. Increasing sensitivity of alpine grasslands to climate variability along an elevational gradient on the Qinghai-Tibet Plateau[J]. Science of the Total Environment, 2019 (678): 21-29 |
| [52] |
Berg A, Findell K, Lintner B, et al. Land-atmosphere feedbacks amplify aridity increase over land under global warming[J]. Nature Climate Change, 2016, 6 (9): 869-874
doi: 10.1038/nclimate3029 |
| [53] |
Sherwood S, Fu Q. A drier future?[J]. Science, 2014, 343 (6172): 737-739
doi: 10.1126/science.1247620 pmid: 24531959 |
| [54] |
Frank D, Reichstein M, Bahn M, et al. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts[J]. Global Change Biology, 2015, 21 (8): 2861-2880
doi: 10.1111/gcb.12916 pmid: 25752680 |
| [55] |
Niu S L, Luo Y Q, Fei S F, et al. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms[J]. New Phytologist, 2012, 194: 775-783
doi: 10.1111/j.1469-8137.2012.04095.x pmid: 22404566 |
| [56] | Chen A P, Huang L, Liu Q, et al. Optimal temperature of vegetation productivity and its linkage with climate and elevation on the Tibetan Plateau[J]. Global Change Biology, 2021 (27): 1942-1951 |
| [1] | 曾颖婷, 唐振飞, 吴滨, 周明珠. 中国近海光伏发电潜力预估及驱动因子分析[J]. 气候变化研究进展, 2025, 21(6): 830-838. |
| [2] | 郭艳君, 邹成智. 风云三号D星气温观测气候变化应用稳定性评估[J]. 气候变化研究进展, 2025, 21(6): 733-741. |
| [3] | 王胜, 陈健, 周宇, 孙佳丽, 翟振芳, 谢五三, 戴娟, 丁小俊, 吴蓉. 基于CMIP6和MaxEnt模型的江淮一季稻适生区分布预估[J]. 气候变化研究进展, 2025, 21(6): 766-776. |
| [4] | 韩池, 温洪启, 张书林, 张俊龙, 李伟, 陈明帅, 尤立. 气候变化多情景下缺水流域跨行业水权交易的水管理效应研究[J]. 气候变化研究进展, 2025, 21(6): 753-765. |
| [5] | 何昊, 李曼, 刘淼, 陈铭杰, 李琪, 胡正华. 气候变化对水稻病害影响的研究进展与展望[J]. 气候变化研究进展, 2025, 21(5): 641-658. |
| [6] | 胡金鹏, 何研, 史培军. 复合干热事件对小麦产量影响的研究进展与展望[J]. 气候变化研究进展, 2025, 21(5): 625-640. |
| [7] | 张馨月, 李阔, 赵明月, 许吟隆. 中国农业适应气候变化能力建设进展回顾与展望[J]. 气候变化研究进展, 2025, 21(5): 613-624. |
| [8] | 樊星, 梁启迪, 吴承霖, 高翔. 巴库气候大会成果盘点及全球气候治理形势展望[J]. 气候变化研究进展, 2025, 21(4): 583-592. |
| [9] | 孙若水, 梁媚聪. 从巴黎到贝伦——《巴黎协定》十周年进展与展望[J]. 气候变化研究进展, 2025, 21(4): 574-582. |
| [10] | 谭显春, 程永龙, 闫洪硕, 幸绣程, 朱开伟, 王晨旭. IPCC第七次评估报告第三工作组减缓气候变化概要解读及启示[J]. 气候变化研究进展, 2025, 21(4): 494-501. |
| [11] | 陈显尧, 毕瀚文, 郝潇洁, 马天骄, 郭凌瑞. 大西洋经向翻转环流及其对全球气候的影响[J]. 气候变化研究进展, 2025, 21(4): 469-476. |
| [12] | 朱松丽. 联合国气候公约体系下的国家分类演变[J]. 气候变化研究进展, 2025, 21(4): 565-573. |
| [13] | 丁杰, 曹左男, 胡国铮, 干珠扎布, 赵芬, 王海锋, 高清竹. IPCC第七次评估报告第二工作组气候变化影响、适应与脆弱性大纲解读及启示[J]. 气候变化研究进展, 2025, 21(4): 484-493. |
| [14] | 王博文, 贺一, 滕飞. 我国极端天气气候事件直接和间接经济损失的评估及归因[J]. 气候变化研究进展, 2025, 21(4): 502-518. |
| [15] | 崔鹏, 王岩, 张国涛, 张正涛, 雷雨, 王昊, 王姣, 郝建盛, 朱宏. 气候变化灾害风险防范:现状、挑战与科学问题[J]. 气候变化研究进展, 2025, 21(4): 449-460. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|