| [1] |
IPCC. Climate change 2021: the physical science basis[M]. Cambridge: Cambridge University Press, 2021
|
| [2] |
Sun X B, Tian Q, Long L, et al. Influence of temperature and sunlight on growth and yield of rice in different growth stages in Xuancheng area[J]. Chinese Agricultural Science Bulletin, 2016, 32 (27): 1-6
|
| [3] |
Lobell D, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980[J]. Science, 2011, 333 (6042): 616-620
doi: 10.1126/science.1204531
pmid: 21551030
|
| [4] |
段居琦, 周广胜. 中国双季稻种植区的气候适宜性研究[J]. 中国农业科学, 2012, 45 (2): 218-227.
doi: 10.3864/j.issn.0578-1752.2012.02.003
|
|
Duan J Q, Zhou G S. Climatic suitability of double rice planting regions in China[J]. Scientia Agricultura Sinica, 2012, 45 (2): 218-227 (in Chinese)
|
| [5] |
马润佳. 我国作物主要种植区气候生产潜力及种植适宜性分析[D]. 南京: 南京信息工程大学, 2017.
|
|
Ma R J. Climate potential and planting suitability analysis of major crop growing areas in China[D]. Nanjing: Nanjing University of Information Science and Technology, 2017 (in Chinese)
|
| [6] |
Zhang Y J, Wang Y F, Niu H S. Spatio-temporal variations in the areas suitable for the cultivation of rice and maize in China under future climate scenarios[J]. Science of the Total Environment, 2017 (601-602): 518-531
|
| [7] |
Phillips S J, Anderson R P, Schapire R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190 (3-4): 231-259
doi: 10.1016/j.ecolmodel.2005.03.026
URL
|
| [8] |
吕彤, 郭倩, 丁永霞, 等. 基于MaxEnt模型预测未来气候变化情景下中国区域水稻潜在适生区的变化[J]. 中国农业气象, 2022, 43 (4): 262-275.
|
|
Lv T, Guo Q, Ding Y X, et al. Predicting potential suitable planting area of rice in China under future climate change scenarios using the MaxEnt model[J]. Chinese Journal of Agrometeorology, 2022, 43 (4): 262-275 (in Chinese)
|
| [9] |
Liu B, Huang L, Jiang X, et al. Quantitative evaluation and mechanism analysis of soil chemical factors affecting rice yield in saline-sodic paddy field[J]. Agricultural Water Management, 2023, 289: 108523
doi: 10.1016/j.agwat.2023.108523
URL
|
| [10] |
王胜, 许红梅, 王德燕, 等. 基于CMIP5模式安徽省植被净初级生产力预估[J]. 气候变化研究进展, 2018, 14 (3): 266-274.
|
|
Wang S, Xu H M, Wang D Y, et al. Projection of vegetation net primary productivity based on CMIP5 models in Anhui province[J]. Climate Change Research, 2018, 14 (3): 266-274 (in Chinese)
|
| [11] |
蒋文好, 陈活泼. CMIP6模式对亚洲中高纬区极端温度变化的模拟及预估[J]. 大气科学学报, 2021, 44 (4): 592-603.
|
|
Jiang W H, Chen H P. Assessment and projection of changes in temperature extremes over the mid-high latitudes of Asia based on CMIP6 models[J]. Transactions of Atmospheric Sciences, 2021, 44 (4): 592-603 (in Chinese)
|
| [12] |
Liu L L, Xu H M, Wang Y, et al. Impacts of 1.5 and 2℃ global warming on water availability and extreme hydrological events in Yiluo and Beijiang River catchments in China[J]. Climatic Change, 2017, 145 (10): 1-14
doi: 10.1007/s10584-017-2067-0
URL
|
| [13] |
Zhang L, Zhu L, Li Y, et al. Maxent modelling predicts a shift in suitable habitats of a subtropical evergreen tree (Cyclobalanopsis glauca (Thunberg) Oersted) under climate change scenarios in China[J]. Forests, 2022, 13 (1): 126
doi: 10.3390/f13010126
URL
|
| [14] |
Zhu H, Jiang Z, Li L. Projection of climate extremes in China, an incremental exercise from CMIP5 to CMIP6[J]. Science Bulletin, 2021, 66: 2528-2537
doi: 10.1016/j.scib.2021.07.026
pmid: 36654212
|
| [15] |
Zhu H, Jiang Z, Li J, et al. Does CMIP6 inspire more confidence in simulating climate extremes over China?[J]. Advance in Atmospheric Sciences, 2020, 37 (10): 1119-1132
|
| [16] |
Zhang S B, Chen J. Uncertainty in projection of climate extremes: a comparison of CMIP5 and CMIP6[J]. Journal of Meteorological Research, 2021, 35 (4): 646-662
doi: 10.1007/s13351-021-1012-3
|
| [17] |
Kumar S, Stohlgren T J. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia[J]. Journal of Ecology & The Natural Environment, 2009, 1 (4): 94-98
|
| [18] |
Hempel S, Frieler K, Warszawski L, et al. A trend-preserving bias correction the ISI-MIP approach[J]. Earth System Dynamics, 2013, 4 (2): 219-236
doi: 10.5194/esd-4-219-2013
URL
|
| [19] |
Vetter V, Huang S, Aich V, et al. Multi-model climate impact assessment and intercomparison for three large-scale river basins on three continents[J]. Earth System Dynamics, 2014, 5 (2): 849-900
|
| [20] |
全国种植制度气候研究南方协作组. 我国南方稻区种植制度的气候区划[J]. 中国农业科学, 1982, 15 (4): 35-42.
|
|
Associate Research Group for Agroclimatological Study of Cropping System in South China. Regionalization of cropping systems in rice growing regions in South China[J]. Scientia Agricultura Sinica, 1982, 15 (4): 35-42 (in Chinese)
|
| [21] |
中国水稻研究所. 中国水稻种植区划[M]. 杭州: 浙江科技出版社, 1989.
|
|
China National Rice Research Institute. Rice cropping regionalization in China[M]. Hangzhou: Zhejiang Science and Technology Press, 1989 (in Chinese)
|
| [22] |
周广胜, 王玉辉. 全球生态学[M]. 北京: 气象出版社, 2003.
|
|
Zhou G S, Wang Y H. Global ecology[M]. Beijing: China Meteorological Press, 2003 (in Chinese)
|
| [23] |
朱世峰, 王卫光, 丁一民, 等. 基于CMIP6的长江中下游未来水稻高温热害时空变化特征[J]. 农业工程学报, 2023, 39 (3): 113-122.
|
|
Zhu S F, Wang W G, Ding Y M, et al. Spatiotemporal variation of future heat damage of rice in the middle and lower reaches of the Yangtze River using CMIP6 projections[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39 (3): 113-122 (in Chinese)
|
| [24] |
翁恩生, 周广胜. 用于全球变化研究的中国植物功能型划分[J]. 植物生态学报, 2005, 29 (1): 81-97.
doi: 10.17521/cjpe.2005.0012
|
|
Weng E S, Zhou G S. Defining plant functional types in China for global change studies[J]. Chinese Journal of Plant Ecology, 2005, 29 (1): 81-97 (in Chinese)
doi: 10.17521/cjpe.2005.0012
URL
|
| [25] |
Kumar A, Kumar A, Adhikari D, et al. Ecological niche modeling for assessing potential distribution of Pterocarpus marsupium Roxb. in Ranchi, eastern India[J]. Ecological Research, 2020, 35 (6): 1095-1105
doi: 10.1111/1440-1703.12176
|
| [26] |
应邦肯, 田阔, 郭浩宇, 等. 基于MaxEnt模型预测未来气候变化情境下红树秋茄在中国潜在适生区的变化[J]. 生态学报, 2024, 44 (1): 224-234.
|
|
Ying B K, Tian K, Guo H Y, et al. Predicting potential suitable habitats of Kandelia obovata in China under future climatic scenarios based on MaxEnt model[J]. Acta Ecologica Sinica, 2024, 44 (1): 224-234 (in Chinese)
|
| [27] |
Swets K A. Measuring the accuracy of diagnostic systems[J]. Science, 1988, 240 (4857): 1285-1293
doi: 10.1126/science.3287615
pmid: 3287615
|
| [28] |
Taylor K E. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research, 2001, 106 (7): 7183-7192
doi: 10.1029/2000JD900719
URL
|
| [29] |
张丽霞, 陈晓龙, 辛晓歌. CMIP6情景模式比较计划 (ScenarioMIP) 概况与评述[J]. 气候变化研究进展, 2019, 15 (5): 519-525.
|
|
Zhang L X, Chen X L, Xin X G. Short commentary on CMIP6 Scenario Model Intercomparison Project (ScenarioMIP)[J]. Climate Change Research, 2019, 15 (5): 519-525 (in Chinese)
|
| [30] |
杨明鑫, 肖天贵, 李勇, 等. CMIP6模式对我国西南地区夏季气候变化的模拟和预估[J]. 高原气象, 2022, 41 (6): 1557-1571.
doi: 10.7522/j.issn.1000-0534.2021.00119
|
|
Yang M X, Xiao T G, Li Y, et al. Evaluation and projection of climate change in Southwest China using CMIP6 models[J]. Plateau Meteorology, 2022, 41 (6): 1557-1571 (in Chinese)
doi: 10.7522/j.issn.1000-0534.2021.00119
|