气候变化研究进展 ›› 2025, Vol. 21 ›› Issue (5): 641-658.doi: 10.12006/j.issn.1673-1719.2025.072

• 气候变化影响 • 上一篇    下一篇

气候变化对水稻病害影响的研究进展与展望

何昊(), 李曼, 刘淼, 陈铭杰, 李琪, 胡正华()   

  1. 南京信息工程大学气象灾害预报预警与评估协同创新中心/生态与应用气象学院南京 210044
  • 收稿日期:2025-04-02 修回日期:2025-06-16 出版日期:2025-09-30 发布日期:2025-09-05
  • 通讯作者: 胡正华,男,教授,zhhu@nuist.edu.cn
  • 作者简介:何昊,男,博士研究生,202311080003@nuist.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(42071023);国家自然科学基金面上项目(42375114)

Impact of climate change on rice diseases: research progress and future prospects

HE Hao(), LI Man, LIU Miao, CHEN Ming-Jie, LI Qi, HU Zheng-Hua()   

  1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters / School of Ecology and Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
  • Received:2025-04-02 Revised:2025-06-16 Online:2025-09-30 Published:2025-09-05

摘要:

气候变化对水稻病害的影响日益显著,已成为影响全球水稻生产和粮食安全的重要因素。文中综述了气候变化影响水稻病害的主要机制及相关研究进展,主要包括:气温升高加速病原体生命周期,提高其孢子萌发、侵染和扩散能力,同时抑制水稻防御激素信号通路,削弱其免疫能力;降水模式的变化不仅影响田间湿度和病原体传播,还通过改变水稻冠层结构和根际环境,调控微气候与土壤微生物群落,间接影响病害的发生与流行;大气CO2浓度升高改变水稻碳氮代谢,降低抗病次生代谢物含量,而O3浓度升高则通过氧化胁迫破坏水稻的物理防御屏障,干扰病害信号传导网络;极端天气事件如台风、干旱增加水稻的生理胁迫和易感性,并助推病害远距离扩散。当前研究虽揭示了部分关键机制,但在跨区域、长时间尺度的监测和系统性解析方面仍存在局限,尤其是病原体的适应性进化及其与水稻生理防御的动态关系仍需深入探讨。未来建议开展跨尺度、跨区域的系统研究,以揭示水稻病害在不同气候情景下的传播规律与动态响应。此外,应加快抗病品种选育、优化农艺管理、构建智能监测预警系统,实现从基因到田间、从预警到干预的全链条、多层次协同防控体系,为气候变化背景下的水稻病害防控提供科学支撑。

关键词: 气候变化, 水稻病害, 致病机制, 抗病性

Abstract:

Climate change is exerting an increasingly profound influence on rice diseases, emerging as a major threat to global rice production and food security. This review synthesizes current understanding of the mechanisms by which climate change affects rice disease dynamics, alongside recent research advances. Rising temperatures accelerate pathogen life cycles, promote spore germination, infection, and dissemination, and impair rice immunity by disrupting hormone signaling pathways. Altered precipitation patterns not only increase field humidity and facilitate pathogen spread, but also reshape rice canopy structure and rhizosphere environments: modifying microclimates and microbial communities that indirectly influence disease outbreaks. Elevated atmospheric CO2 alters rice carbon and nitrogen metabolism, often reducing the synthesis of defense-related secondary metabolites, while higher O3 levels induce oxidative stress, weakening physical barriers and interfering with disease signaling networks. Extreme weather events, such as typhoons and droughts, further exacerbate physiological stress and susceptibility in rice, and enhance the long-distance transmission of pathogens. While significant progress has been made in uncovering these mechanisms, key limitations persist particularly the lack of long-term, cross-regional monitoring and integrated analysis. The adaptive evolution of pathogens and their dynamic interactions with host defense systems under changing climates remain underexplored. It is recommended that future research focus on cross-scale and cross-regional systematic studies to uncover the transmission patterns and dynamic responses of rice diseases under various climate scenarios. Efforts should be made to accelerate the breeding of disease-resistant varieties, optimize agronomic practices, and develop intelligent monitoring and early warning systems. This will help establish a comprehensive, multi-level, and coordinated control system that spans from genetic research to field management, and from early warning to intervention, providing strong scientific support for rice disease control in the context of climate change.

Key words: Climate change, Rice disease, Pathogenic mechanism, Disease resistance

京ICP备11008704号-4
版权所有 © 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn