|
Climate Change Research ›› 2022, Vol. 18 ›› Issue (4): 422-432.doi: 10.12006/j.issn.1673-1719.2022.035
• Special Section on the Sixth Assessment Report of IPCC: WGII • Previous Articles Next Articles
DUAN Ju-Qi1(), YUAN Jia-Shuang1(), XU Xin-Wu2, JU Hui3
Received:
2022-02-23
Revised:
2022-04-01
Online:
2022-07-30
Published:
2022-05-11
Contact:
YUAN Jia-Shuang
E-mail:duanjq@cma.gov.cn;yuanjs@cma.gov.cn
DUAN Ju-Qi, YUAN Jia-Shuang, XU Xin-Wu, JU Hui. Interpretation of the IPCC AR6 report on agricultural systems[J]. Climate Change Research, 2022, 18(4): 422-432.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2022.035
Fig. 3 The global effects of five biotic and abiotic stresses (soil nutrients, ozone, pests and diseases, heat stress and aridity) on soybean and wheat. (All data are presented for the 1˚×1˚ (latitude and longitude) grid squares where the mean production of soybean or wheat is larger than 500 t (0.0005 Tg)) [13]
[1] | IPCC. Climate change 2014:impacts, adaptation, and vulnerability[M]. Cambridge: Cambridge University Press, 2014 |
[2] | IPCC. Global warming of 1.5℃: an IPCC special report on the impacts of global warming of 1.5℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty[M]. Cambridge: Cambridge University Press, 2018 |
[3] | IPCC. Climate change and land:an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems[M]. Cambridge: Cambridge University Press, 2019 |
[4] | IPCC. Climate change 2022: impacts, adaptation and vulnerability[M/OL]. 2022 [2022-02-21]. https://www.ipcc.ch/report/sixth-assessment-report-working-group-ii/ |
[5] |
Challinor A J, Koehler A K, Ramirez-Villegas J, et al. Current warming will reduce yields unless maize breeding and seed systems adapt immediately[J]. Nature Climate Change, 2016, 6 (10): 954-958
doi: 10.1038/NCLIMATE3061 |
[6] |
Minoli S, Müller C, Elliott J, et al. Global response patterns of major rainfed crops to adaptation by maintaining current growing periods and irrigation[J]. Earths Future, 2019, 7 (12): 1464-1480
doi: 10.1029/2018EF001130 |
[7] |
Sultan B, Defrance D, Iizumi T. Evidence of crop production losses in West Africa due to historical global warming in two crop models[J]. Scientific Reports, 2019, 9 (1): 12834. DOI: 10.1038/s41598-019-49167-0
doi: 10.1038/s41598-019-49167-0 URL |
[8] |
Hochman Z, Gobbett D L, Horan H. Climate trends account for stalled wheat yields in Australia since 1990 [J]. Global Change Biology, 2017, 23 (5): 2071-2081
doi: 10.1111/gcb.13604 pmid: 28117534 |
[9] | Moore F C, Lobell D B. The fingerprint of climate trends on European crop yields[J]. Proceedings of The National Academy of Science of The United States of America, 2015, 112 (9): 2670-2675 |
[10] |
Agnolucci P, Lipsis V D. Long-run trend in agricultural yield and climatic factors in Europe[J]. Climatic Change, 2020, 159 (3): 385-405
doi: 10.1007/s10584-019-02622-3 URL |
[11] |
Brás T A, Seixas J, Carvalhais N, et al. Severity of drought and heatwave crop losses tripled over the last five decades in Europe[J]. Environment Research Letters, 2021, 16: 065012. DOI: 10.1088/1748-389326/abf004
doi: 10.1088/1748-389326/abf004 |
[12] |
Hasegawa T, Wakatsuki H, Ju H, et al. A global dataset for the projected impacts of climate change on four major crops[J]. Climatic Change, 2021. DOI: 10.1101/2021.05.27.444762
doi: 10.1101/2021.05.27.444762 |
[13] |
Mills G, Sharps K, Simpson D, et al. Closing the global ozone yield gap: quantification and cobenefits for multistress tolerance[J]. Global Change Biology, 2018, 24 (10): 4869-4893
doi: 10.1111/gcb.14381 pmid: 30084165 |
[14] |
Shindell D T. Crop yield changes induced by emissions of individual climate-altering pollutants[J]. Earths Future, 2016, 4 (8): 373-380
doi: 10.1002/2016EF000377 URL |
[15] |
Manners R, Etten J V. Are agricultural researchers working on the right crops to enable food and nutrition security under future climates?[J]. Global Environmental Change, 2018, 53: 182-194
doi: 10.1016/j.gloenvcha.2018.09.010 URL |
[16] |
Kummu M, Heino M, Taka M, et al. Climate change risks pushing one-third of global food production outside the safe climatic space[J]. One Earth, 2021, 4 (5): 720-729
doi: 10.1016/j.oneear.2021.04.017 URL |
[17] |
Tao F, Zhang Z, Zhang S, et al. Historical data provide new insights into response and adaptation of maize production systems to climate change/variability in China[J]. Field Crops Research, 2016, 185: 1-11
doi: 10.1016/j.fcr.2015.10.013 URL |
[18] |
Shaffril H A M, Krauss S E, Samsuddin S F. A systematic review on Asian’s farmers’ adaptation practices towards climate change[J]. Science of The Total Environment, 2018, 644: 683-695
doi: 10.1016/j.scitotenv.2018.06.349 URL |
[19] |
Bebber D P, Ramotowski M A T, Gurr S J. Crop pests and pathogens move polewards in a warming world[J]. Nature Climate Change, 2013, 3 (11): 985-988
doi: 10.1038/nclimate1990 URL |
[20] |
Pecl G T, Araújo M B, Bell J D. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being[J]. Science, 2017, 355 (6332): eaai9214. DOI: 10.1126/science.aai9214
doi: 10.1126/science.aai9214 |
[21] |
Hobbs R J, Valentine L E, Standish R J, et al. Movers and stayers: novel assemblages in changing environments[J]. Trends in Ecology and Evolution, 2018, 33 (2): 116-128
doi: 10.1016/j.tree.2017.11.001 URL |
[22] |
Kim W, Iizumi T, Nishimori M. Global patterns of crop production losses associated with droughts from 1983 to 2009 [J]. Journal of Applied Meteorology and Climatology, 2019, 58 (6): 1233-1244
doi: 10.1175/JAMC-D-18-0174.1 URL |
[23] |
Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production[J]. Nature, 2016, 529 (7584): 84-87
doi: 10.1038/nature16467 URL |
[24] |
Zampieri M, Ceglar A, Dentener F, et al. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales[J]. Environment Research Letters, 2017, 12 (6). DOI: 10.1088/1748-9326/aa723b
doi: 10.1088/1748-9326/aa723b |
[25] |
Liu S L, Wang X, Ma S T, et al. Extreme stress threatened double rice production in Southern China during 1981-2010 [J]. Theoretical and Applied Climatology, 2019, 137 (3-4): 1987-1996
doi: 10.1007/s00704-018-2719-7 URL |
[26] |
Michael M, Ankerst D P, Annette M, et al. Interactions between temperature and drought in global and regional crop yield variability during 1961-2014[J]. PLoS One, 2017, 12 (5): e0178339. DOI: 10.1371/journal.pone.0178339
doi: 10.1371/journal.pone.0178339 |
[27] | Food and Agriculture Organization of The United Nations (FAO). The impact of disasters and crises on agriculture and food security[M]. Rome: FAO, 2021: 143 |
[28] |
de Lima C Z, Buzan J R, Moore F C, et al. Heat stress on agricultural workers exacerbates crop impacts of climate change[J]. Environment Research Letters, 2021, 16 (4): 044020. DOI: 10.1088/1748-9326/abeb9f
doi: 10.1088/1748-9326/abeb9f |
[29] |
Battilani P, Toscano P, van der Fels-Klerx H J, et al. Aflatoxin B1 contamination in maize in Europe increases due to climate change[J]. Scientific Reports, 2016, 6 (1): 24328. DOI: 10.1038/srep24328
doi: 10.1038/srep24328 |
[30] | Nelson G C, Valin H, Sands R D, et al. Climate change effects on agriculture: economic responses to biophysical shocks[J]. Proceedings of The National Academy of Science of The United States of America, 2014, 111 (9): 3274-3279 |
[31] |
Myers S S, Smith M R, Guth S, et al. Climate change and global food systems: potential impacts on food security and undernutrition[J]. Annual Review of Public Health, 2017, 38 (1): 259-277
doi: 10.1146/annurev-publhealth-031816-044356 URL |
[32] | 丁永建, 罗勇, 宋连春, 等. 中国气候与生态环境演变2021:第二卷领域和行业影响、脆弱性与适应∙第六章农业[M]. 北京: 科学出版社, 2021: 227-278. |
Ding Y J, Luo Y, Song L C, et al. China climate and ecological environment evolution 2021:volume II, chapter 6, sector and sector impacts, vulnerability and adaptation, agriculture[M]. Beijing: Science Press, 2021: 227-278 (in Chinese) | |
[33] |
Yang X G, Chen F, Lin X M, et al. Potential benefits of climate change for crop productivity in China[J]. Agricultural and Forest Meteorology, 2015, 208: 76-84
doi: 10.1016/j.agrformet.2015.04.024 URL |
[34] | 巢清尘, 严中伟, 孙颖, 等. 中国气候变化的科学新认知[J]. 中国人口∙资源与环境, 2020, 30 (3): 1-9. |
Chao Q C, Yan Z W, Sun Y, et al. A recent scientific understanding of climate change in China[J]. China Population, Resources and Environment, 2020, 30 (3): 1-9 (in Chinese) | |
[35] |
Janssens C, Havlík P, Krisztin T, et al. Global hunger and climate change adaptation through international trade[J]. Nature Climate Change, 2020, 10: 829-835
doi: 10.1038/s41558-020-0847-4 URL |
[36] | Rosenzweig C, Elliott J, Deryng D, et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison[J]. Proceedings of The National Academy of Science of The United States of America, 2014, 111: 3268-3273 |
[37] | 钱龙, 饶清玲, 曹宝明, 等. 中国与“一带一路”沿线国家的粮食贸易及其虚拟水土资源估算[J]. 农业现代化研究, 2021, 42 (3): 430-440. |
Qian L, Rao Q L, Cao B M, et al. China’s grain trade with countries along the “One Belt and One Road” and the estimation of the virtual water and farmland resources[J]. Research of Agricultural Modernization, 2021, 42 (3): 430-440 (in Chinese) | |
[38] | 赵辉, 郑有飞, 曹嘉晨, 等. 近地层O3污染对作物产量与经济损失的影响: 以江苏省冬小麦和水稻为例[J]. 中国环境科学, 2018, 38 (3): 1165-1173. |
Zhao H, Zheng Y F, Cao J C, et al. Impact of yield and economic losses of crops due to exposure to ozone pollution: a case study of winter wheat and rice in Jiangsu province[J]. China Environmental Science, 2018, 38 (3): 1165-1173 (in Chinese) |
[1] | LIU Junguo, MENG Ying, ZHANG Xue-Jing. Interpretation of IPCC AR6 report: groundwater [J]. Climate Change Research, 2022, 18(4): 414-421. |
[2] | LIU Junguo, CHEN He, TIAN Zhan. Interpretation of IPCC AR6: climate change and water security [J]. Climate Change Research, 2022, 18(4): 405-413. |
[3] | ZHANG Bai-Chao, PANG Bo, QIN Yun, HAN Zhen-Yu, LU Bo. Interpretation of Climate Resilient Development in IPCC AR6 WGII [J]. Climate Change Research, 2022, 18(4): 460-467. |
[4] | ZHOU Jian-Qin, HUANG Wei, LI Meng, ZHENG Jian-Meng, LUO Meng, FU Rui. Dry-wet climate evolution feature and projection of future changes based on CMIP6 models in early summer over Yunnan province, China [J]. Climate Change Research, 2022, 18(4): 482-491. |
[5] | WANG Lei, ZHANG Bai-Chao, SHI Ying, HAN Zhen-Yu, LU Bo. Interpretation of the IPCC AR6 on the impacts and risks of climate change [J]. Climate Change Research, 2022, 18(4): 389-394. |
[6] | QIN Yun, XU Xin-Wu, WANG Lei, HAN Zhen-Yu, LU Bo. Interpretation of the IPCC AR6 on adaptation options of climate change [J]. Climate Change Research, 2022, 18(4): 452-459. |
[7] | WANG Jun-Neng, QIN Nian-Xiu, JIANG Tong, SU Bu-Da. Interpretation of IPCC AR6: impacts and adaptations of climate change on cities, settlements and key infrastructure [J]. Climate Change Research, 2022, 18(4): 433-441. |
[8] | HUANG Cunrui, LIU Qiyong. Interpretation of IPCC AR6 on climate change and human health [J]. Climate Change Research, 2022, 18(4): 442-451. |
[9] | XU Yi-Jian, LI Tan-Feng, XU Li-Li. Greenhouse gas inventory model for territorial spatial master plans [J]. Climate Change Research, 2022, 18(3): 355-365. |
[10] | WANG Xia, WANG Ying, LIN Qi-Gen, LI Ning, ZHANG Xin-Ren, ZHOU Xiao-Ying. Projection of China landslide disasters population risk under climate change [J]. Climate Change Research, 2022, 18(2): 166-176. |
[11] | LI Ying, ZHAO Shan-Shan. Floods losses and hazards in China from 2001 to 2020 [J]. Climate Change Research, 2022, 18(2): 154-165. |
[12] | XIAO Cun-De, YANG Jiao, ZHANG Tong, SU Bo, WANG Lei, XU Qian, YAN Zhan, HAO Hai-Rui, HUANG Yi. The predictability, irreversibility and deep uncertainty of cryospheric change [J]. Climate Change Research, 2022, 18(1): 1-11. |
[13] | HUA Li-Juan, YU Yong-Qiang. Long term variation and projection of ocean circulation [J]. Climate Change Research, 2022, 18(1): 19-30. |
[14] | LIAO Hong, XIE Pei-Fu. The roles of short-lived climate forcers in a changing climate [J]. Climate Change Research, 2021, 17(6): 685-690. |
[15] | ZUO Zhi-Yan, XIAO Dong. Linking global to regional climate change [J]. Climate Change Research, 2021, 17(6): 705-712. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|