|
Climate Change Research ›› 2022, Vol. 18 ›› Issue (4): 405-413.doi: 10.12006/j.issn.1673-1719.2022.051
• Special Section on the Sixth Assessment Report of IPCC: WGII • Previous Articles Next Articles
LIU Junguo(), CHEN He, TIAN Zhan
Received:
2022-03-17
Revised:
2022-03-30
Online:
2022-07-30
Published:
2022-04-29
LIU Junguo, CHEN He, TIAN Zhan. Interpretation of IPCC AR6: climate change and water security[J]. Climate Change Research, 2022, 18(4): 405-413.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2022.051
Fig. 2 Geographical distributions of Global Water Security Index (GWSI) and its components for the present day. (A lower value of GWSI represents a low level of water security)
[1] |
Grey D, Sadoff C. Sink or swim? Water security for growth and development[J]. Water Policy, 2007, 9 (6): 545-557
doi: 10.2166/wp.2007.021 URL |
[2] |
Bakker K. Water security: research challenges and opportunities[J]. Science, 2012, 337 (6097): 914-915
doi: 10.1126/science.1226337 pmid: 22923564 |
[3] |
Greve P, Kahil T, Mochizuki J, et al. Global assessment of water challenges under uncertainty in water scarcity projections[J]. Nature Sustainability, 2018, 1 (9): 486-494
doi: 10.1038/s41893-018-0134-9 URL |
[4] | Douville H, Raghavan K, Renwick J, et al. Water cycle changes[M]//IPCC. Climate change 2021:the physical science basis. Cambridge: Cambridge University Press, 2021 |
[5] |
Zeng Z Z, Wang T, Zhou F, et al. A worldwide analysis of spatiotemporal changes in water balance-based evapotranspiration from 1982 to 2009 [J]. Journal of Geophysical Research: Atmospheres, 2014, 119 (3): 1186-1202
doi: 10.1002/2013JD020941 URL |
[6] | Portner H O, Roberts D C, Masson-Delmotte V, et al. Technical summary[M]// IPCC. IPCC special report on the ocean and cryosphere in a changing climate. Cambridge: Cambridge University Press, 2019 |
[7] |
Gudmundsson L, Boulange J, Do H X, et al. Globally observed trends in mean and extreme river flow attributed to climate change[J]. Science, 2021, 371 (6534): 1159-1162
doi: 10.1126/science.aba3996 pmid: 33707264 |
[8] |
Najibi N, Devineni N. Recent trends in the frequency and duration of global floods[J]. Earth System Dynamics, 2018, 9 (2): 757-783
doi: 10.5194/esd-9-757-2018 URL |
[9] | Bierkens M F, Wada Y. Non-renewable groundwater use and groundwater depletion: a review[J]. Environmental Research Letters, 2019, 14 (6): 063002 |
[10] |
Herbert C, Döll P. Global assessment of current and future groundwater stress with a focus on transboundary aquifers[J]. Water Resources Research, 2019, 55 (6): 4760-4784
doi: 10.1029/2018WR023321 URL |
[11] | IPCC. Climate change 2014:impacts, adaptation, and vulnerability[M]. Cambridge: Cambridge University Press, 2014: 485-533 |
[12] |
Yalew S G, van Vliet M T H, Gernaat D E H J, et al. Impacts of climate change on energy systems in global and regional scenarios[J]. Nature Energy, 2020, 5 (10): 794-802
doi: 10.1038/s41560-020-0664-z URL |
[13] |
Kim W, Iizumi T, Nishimori M. Global patterns of crop production losses associated with droughts from 1983 to 2009 [J]. Journal of Applied Meteorology and Climatology, 2019, 58 (6): 1233-1244
doi: 10.1175/JAMC-D-18-0174.1 URL |
[14] | van Vliet M T H, Sheffield J, Wiberg D, et al. Impacts of recent drought and warm years on water resources and electricity supply worldwide[J]. Environmental Research Letters, 2016, 11 (12): 124021 |
[15] |
Florke M, Schneider C, McDonald R I. Water competition between cities and agriculture driven by climate change and urban growth[J]. Nature Sustainability, 2018, 1 (1): 51-58
doi: 10.1038/s41893-017-0006-8 URL |
[16] | Ritchie H, Roser M. Clean water[EB/OL]. 2019 [2022-01-10]. https://ourworldindata.org/water-access |
[17] | Gain A K, Giupponi C, Wada Y. Measuring global water security towards sustainable development goals[J]. Environmental Research Letters, 2016, 11 (12): 124015 |
[18] | Young S L, Boateng G O, Jamaluddine Z, et al. The Household Water InSecurity Experiences (HWISE) scale: development 1 and validation of a household water insecurity measure for low-income and middle-income countries[J]. BMJ Global Health, 2019, 4 (5): e001750 |
[19] |
Ward P J, Jongman B, Aerts J C J H, et al. A global framework for future costs and benefits of river-flood protection in urban areas[J]. Nature Climate Change, 2017, 7 (9): 642-646
doi: 10.1038/nclimate3350 URL |
[20] |
Marson M, Savin I. Ensuring sustainable access to drinking water in Sub Saharan Africa: conflict between financial and social objectives[J]. World Development, 2015, 76: 26-39
doi: 10.1016/j.worlddev.2015.06.002 URL |
[21] |
Naik P K. Water crisis in Africa: myth or reality?[J]. International Journal of Water Resources Development, 2017, 33 (2): 326-339
doi: 10.1080/07900627.2016.1188266 URL |
[22] | Seneviratne S I, Zhang X, Adnan M, et al. Weather and climate extreme events in a changing climate[M]//IPCC. Climate change 2021:the physical science basis. Cambridge: Cambridge University Press, 2021 |
[23] | WMO. Atlas of mortality and economic losses from weather, climate and water extremes (1970-2019) [EB/OL]. 2021 [2022-01-10]. https://public.wmo.int/en/media/news/atlas-of-mortality-and-economic-lossesfrom-weather-climate-and-water-extremes-1970-2019 |
[24] |
Tellman B, Sullivan J A, Kuhnet C, et al. Satellite imaging reveals increased proportion of population exposed to floods[J]. Nature, 2021, 596 (7870): 80-86
doi: 10.1038/s41586-021-03695-w URL |
[25] |
Mudryk L, Santolaria-Otín M, Krinner G, et al. Historical Northern Hemisphere snow cover trends and projected changes in the CMIP6 multi model ensemble[J]. The Cryosphere, 2020, 14 (7): 2495-2514
doi: 10.5194/tc-14-2495-2020 URL |
[26] | Hernandez-Henriquez M A, Dery S J, Derksen C. Polar amplification and elevation-dependence in trends of Northern Hemisphere snow cover extent, 1971-2014[J]. Environmental Research Letters, 2015, 10 (4): 044010 |
[27] |
Huss M, Bookhagen B, Huggel C, et al. Toward mountains without permanent snow and ice[J]. Earth’s Future, 2017, 5 (5): 418-435
doi: 10.1002/2016EF000514 URL |
[28] |
Qin Y, Abatzoglou J T, Siebert S, et al. Agricultural risks from changing snowmelt[J]. Nature Climate Change, 2020, 10 (5): 459-465
doi: 10.1038/s41558-020-0746-8 URL |
[29] |
Mukherji A, Sinisalo A, Nüsser M, et al. Contributions of the cryosphere to mountain communities in the Hindu Kush Himalaya: a review[J]. Regional Environmental Change, 2019, 19 (5): 1311-1326
doi: 10.1007/s10113-019-01484-w |
[30] |
Spekker H, Heskamp J. Flood protection for the city of Beira: an exemplary climate adaptation project in Mozambique[J]. Bautechnik, 2017, 94 (12): 872-874
doi: 10.1002/bate.201710102 URL |
[31] |
Burek P, Satoh Y, Kahil T, et al. Development of the Community Water Model (CWatM v1.04): a high-resolution hydrological model for global and regional assessment of integrated water resources management[J]. Geoscientific Model Development, 2020, 13 (7): 3267-3298
doi: 10.5194/gmd-13-3267-2020 URL |
[32] |
Kimaro A A, Mpanda M, Rious J, et al. Is conservation agriculture “climate-smart” for maize farmers in the highlands of Tanzania?[J]. Nutrient Cycling in Agroecosystems, 2016, 105 (3): 217-228
doi: 10.1007/s10705-015-9711-8 URL |
[33] |
Schipper E L F. Maladaptation: when adaptation to climate change goes very wrong[J]. One Earth, 2020, 3 (4): 409-414
doi: 10.1016/j.oneear.2020.09.014 URL |
[34] | Cook B I, Mcdermid S S, Puma M J, et al. Divergent regional climate consequences of maintaining current irrigation rates in the 21st century[J]. Journal of Geophysical Research: Atmospheres, 2020, 125 (14): e2019JD031814 |
[35] |
de Graaf I E M, Gleeson T, van Beek L P H, et al. Environmental flow limits to global groundwater pumping[J]. Nature, 2019, 574 (7776): 90-94
doi: 10.1038/s41586-019-1594-4 URL |
[36] |
Huss M, Hock R. Global-scale hydrological response to future glacier mass loss[J]. Nature Climate Change, 2018, 8 (2): 135-140
doi: 10.1038/s41558-017-0049-x URL |
[37] |
Gosling S N, Arnell N W. A global assessment of the impact of climate change on water scarcity[J]. Climatic Change, 2016, 134 (3): 371-385
doi: 10.1007/s10584-013-0853-x URL |
[38] |
Asadieh B, Krakauer N Y. Global change in streamflow extremes under climate change over the 21st century[J]. Hydrology and Earth System Sciences, 2017, 21 (11): 5863-5874
doi: 10.5194/hess-21-5863-2017 URL |
[39] |
Viviroli D, Kummu M, Meybeck M, et al. Increasing dependence of lowland populations on mountain water resources[J]. Nature Sustainability, 2020, 3: 917-928
doi: 10.1038/s41893-020-0559-9 URL |
[40] |
Dottori F, Szewczyk W, Cisca J, et al. Increased human and economic losses from river flooding with anthropogenic warming[J]. Nature Climate Change, 2018, 8 (9): 781-786
doi: 10.1038/s41558-018-0257-z URL |
[41] | Koks E E, Thissen M, Alfieri L, et al. The macroeconomic impacts of future river flooding in Europe[J]. Environmental Research Letters, 2019, 14 (8): 084042 |
[42] |
Turner S W D, Ng J Y, Galelli S. Examining global electricity supply vulnerability to climate change using a high-fidelity hydropower dam model[J]. Science of The Total Environment, 2017, 590-591: 663-675
doi: 10.1016/j.scitotenv.2017.03.022 URL |
[43] | Dai C, Qin X S, Lu W T, et al. Assessing adaptation measures on agricultural water productivity under climate change: a case study of Huai River basin, China[J]. Science of The Total Environment, 2020, 721: 137777 |
[44] | 张利平, 夏军, 胡志芳. 中国水资源状况与水资源安全问题分析[J]. 长江流域资源与环境, 2009, 18 (2): 116-120. |
Zhang L P, Xia J, Hu Z F. Situation and problem analysis of water resources security in China[J]. Resources and Environment in The Yangtze Basin, 2009, 18 (2): 116-120 (in Chinese) | |
[45] | 刘俊卿. 全球气候变化对我国水文与水资源的影响[J]. 中国高新科技, 2019, 23: 44-46. |
Liu J Q. Impacts of global climate change on hydrology and water resources of China[J]. Zhong Guo Gao Xin Ke Ji, 2019, 23: 44-46 (in Chinese) | |
[46] | Palmer M A, Liu J G, Mattews J H, et al. Manage water in a green way[J]. Science, 2015, 349 (6248): 584-585 |
[47] | 刘俊国, 崔文惠, 田展, 等. 渐进式生态修复理论[J]. 科学通报, 2021, 66 (9): 1014-1025. |
Liu J G, Cui W H, Tian Z, et al. Theory of stepwise ecological restoration[J]. Chinese Science Bulletin, 2021, 66 (9): 1014-1025 (in Chinese) | |
[48] | 刘俊国, 赵丹丹. “量-质-生”三维水资源短缺评价: 评述及展望[J]. 科学通报, 2020, 65 (36): 4251-4261. |
Liu J G, Zhao D D. Three-dimensional water scarcity assessment by considering water quantity, water quality, and environmental flow requirements: review and prospect[J]. Chinese Science Bulletin, 2020, 65 (36): 4251-4261 (in Chinese) | |
[49] |
Liu J G, Yang H, Cudennec C, et al. Challenges in operationalizing the water-energy-food nexus[J]. Hydrological Sciences Journal, 2017, 62 (11): 1714-1720
doi: 10.1080/02626667.2017.1353695 URL |
[50] | 张宗勇, 刘俊国, 王凯, 等. 水-粮食-能源关联系统述评: 文献计量及解析[J]. 科学通报, 2020, 65 (16): 1569-1580. |
Zhang Z Y, Liu J G, Wang K, et al. A review and discussion on the water-food-energy nexus: bibliometric analysis[J]. Chinese Science Bulletin, 2020, 65 (16): 1569-1580 (in Chinese) | |
[51] |
Mao G Q, Liu J G. WAYS v1: a hydrological model for root zone water storage simulation on a global scale[J]. Geoscientific Model Development, 2019, 12 (12): 5267-5289
doi: 10.5194/gmd-12-5267-2019 URL |
[1] | LIU Junguo, MENG Ying, ZHANG Xue-Jing. Interpretation of IPCC AR6 report: groundwater [J]. Climate Change Research, 2022, 18(4): 414-421. |
[2] | DUAN Ju-Qi, YUAN Jia-Shuang, XU Xin-Wu, JU Hui. Interpretation of the IPCC AR6 report on agricultural systems [J]. Climate Change Research, 2022, 18(4): 422-432. |
[3] | WANG Lei, ZHANG Bai-Chao, SHI Ying, HAN Zhen-Yu, LU Bo. Interpretation of the IPCC AR6 on the impacts and risks of climate change [J]. Climate Change Research, 2022, 18(4): 389-394. |
[4] | WANG Jun-Neng, QIN Nian-Xiu, JIANG Tong, SU Bu-Da. Interpretation of IPCC AR6: impacts and adaptations of climate change on cities, settlements and key infrastructure [J]. Climate Change Research, 2022, 18(4): 433-441. |
[5] | XIAO Cun-De, YANG Jiao, ZHANG Tong, SU Bo, WANG Lei, XU Qian, YAN Zhan, HAO Hai-Rui, HUANG Yi. The predictability, irreversibility and deep uncertainty of cryospheric change [J]. Climate Change Research, 2022, 18(1): 1-11. |
[6] | JIANG Da-Bang, WANG Na. Water cycle changes: interpretation of IPCC AR6 [J]. Climate Change Research, 2021, 17(6): 699-704. |
[7] | ZHOU Bo-Tao, QIAN Jin. Changes of weather and climate extremes in the IPCC AR6 [J]. Climate Change Research, 2021, 17(6): 713-718. |
[8] | CHEN Deliang, LAI Hui-Wen. Interpretation of the IPCC AR6 WGI report in terms of its context, structure, and methods [J]. Climate Change Research, 2021, 17(6): 636-643. |
[9] | ZHOU Tian-Jun, CHEN Zi-Ming, CHEN Xiao-Long, ZUO Meng, JIANG Jie, HU Shuai. Interpreting IPCC AR6: future global climate based on projection under scenarios and on near-term information [J]. Climate Change Research, 2021, 17(6): 652-663. |
[10] | Zhang Jianyun;;Wang Guoqing;;Yang Yang;;He Ruimin;;Liu Jiufu;. Impact of Climate Change on Water Security in China [J]. Climate Change Research, 2009, 5(00): 34-40. |
[11] | Zhang Jianyun;Wang Guo-Qing;Rui-Min He. The Possible Impacts of Climate Change on Water Security in China [J]. Climate Change Research, 2008, 4(005): 290-295. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|