|
Climate Change Research ›› 2022, Vol. 18 ›› Issue (4): 414-421.doi: 10.12006/j.issn.1673-1719.2022.036
• Special Section on the Sixth Assessment Report of IPCC: WGII • Previous Articles Next Articles
LIU Junguo(), MENG Ying, ZHANG Xue-Jing
Received:
2022-02-24
Revised:
2022-03-29
Online:
2022-07-30
Published:
2022-04-25
LIU Junguo, MENG Ying, ZHANG Xue-Jing. Interpretation of IPCC AR6 report: groundwater[J]. Climate Change Research, 2022, 18(4): 414-421.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2022.036
[1] | Jain M, Fishman R, Mondal P, et al. Groundwater depletion will reduce cropping intensity in India[J]. Science Advances, 2021, 7 (9): eabd2849 |
[2] |
Long D, Yang W T, Scanlom B R, et al. South-to-North Water Diversion stabilizing Beijing’s groundwater levels[J]. Nature Communications, 2020, 11 (1): 3665
doi: 10.1038/s41467-020-17428-6 pmid: 32694568 |
[3] | 孟莹, 刘俊国, 王子丰, 等. 气候变化和人类活动对中国陆地水储量变化的影响研究[J]. 华北水利水电大学学报: 自然科学版, 2021, 42 (4): 47-57. |
Meng Y, Liu J G, Wang Z F, et al. Climate change and human impacts on terrestrial water storage anomalies in China[J]. Journal of North China University of Water Resources and Electric Power: Natural Science Edition, 2021, 42 (4): 47-57 (in Chinese) | |
[4] |
Pokhrel Y, Felfelani F, Satoh Y, et al. Global terrestrial water storage and drought severity under climate change[J]. Nature Climate Change, 2021, 11: 226-233
doi: 10.1038/s41558-020-00972-w URL |
[5] | Robinson S. Climate change adaptation in SIDS: a systematic review of the literature pre and post the IPCC Fifth Assessment Report[J]. WIREs Climate Change, 2020, 11 (4): e653 |
[6] | IPCC. Climate change 2014:impacts, adaptation, and vulnerability[M]. Cambridge: Cambridge University Press, 2014: 1132 |
[7] | IPCC. Climate change 2022: the physical science basis[M]. Cambridge: Cambridge University Press, 2022 |
[8] |
Hanasaki N, Yoshikawa S, Pokhrel Y, et al. A global hydrological simulation to specify the sources of water used by humans[J]. Hydrology and Earth System Sciences, 2018, 22: 789-817
doi: 10.5194/hess-22-789-2018 URL |
[9] | Bierkens M F, Wada Y. Non-renewable groundwater use and groundwater depletion: a review[J]. Environmental Research Letters, 2019, 14 (6): 063002 |
[10] |
Herbert C, Döll P. Global assessment of current and future groundwater stress with a focus on transboundary aquifers[J]. Water Resources Research, 2019, 55 (6): 4760-4784
doi: 10.1029/2018WR023321 URL |
[11] |
Shamsudduha M, Taylor R G. Groundwater storage dynamics in the world’s large aquifer systems from GRACE: uncertainty and role of extreme precipitation[J]. Earth System Dynamics, 2020, 11 (3): 755-774
doi: 10.5194/esd-11-755-2020 URL |
[12] | Wu X, Zhang W, Li H, et al. Analysis of seasonal snowmelt contribution using a distributed energy balance model for a river basin in the Altai Mountains of northwestern China[J]. Hydrological Processes, 2021, 35 (3): e14046 |
[13] |
Vincent A, Violette S, Aðalgeirsdóttir G. Groundwater in catchments headed by temperate glaciers: a review[J]. Earth-Science Reviews, 2019, 188: 59-76
doi: 10.1016/j.earscirev.2018.10.017 |
[14] |
Malard A, Sinreich M, Jeannin Y P. A novel approach for estimating karst groundwater recharge in mountainous regions and its application in Switzerland[J]. Hydrological Processes, 2016, 30 (13): 2153-2166
doi: 10.1002/hyp.10765 URL |
[15] | Ma R, Sun Z Y, Chang Q X, et al. Control of the interactions between stream and groundwater by permafrost and seasonal frost in an Alpine Catchment, Northeastern Tibet Plateau, China[J]. Journal of Geophysical Research: Atmospheres, 2021, 126 (5): e2020JD033689 |
[16] | Lemieux M J, Sudicky A E, Peltier R W, et al. Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation[J]. Journal of Geophysical Research: Earth Surface, 2008, 113: F01011. 1-18 |
[17] | Yao Y Y, Zheng C M, Andrews B C, et al. Role of groundwater in sustaining Northern Himalayan Rivers[J]. Geophysical Research Letters, 2021, 48 (10): e2020GL092354 |
[18] |
Clilverd M H, White M D, TidwellL C A, et al. The sensitivity of northern groundwater recharge to climate change: a case study in Northwest Alaska[J]. Journal of the American Water Resources Association, 2011, 47 (6): 1228-1240
doi: 10.1111/j.1752-1688.2011.00569.x URL |
[19] |
Jasechko S, Wassenaar L I, Mayer B. Isotopic evidence for widespread cold-season-biased groundwater recharge and young streamflow across central Canada[J]. Hydrological Processes, 2017, 31 (12): 2196-2209
doi: 10.1002/hyp.11175 URL |
[20] |
Kløve B, Kvitsand H M L, Pitkänen T, et al. Overview of groundwater sources and water-supply systems, and associated microbial pollution, in Finland, Norway and Iceland[J]. Hydrogeology Journal, 2017, 25 (4): 1033-1044
doi: 10.1007/s10040-017-1552-x URL |
[21] | Nygren M, Giese M, Kløve B, et al. Changes in seasonality of groundwater level fluctuations in a temperate-cold climate transition zone[J]. Journal of Hydrology, 2020, 8: 100062 |
[22] |
Irannezhad M, Ronkanen A K, Kløve B, et al. Wintertime climate factors controlling snow resource decline in Finland[J]. International Journal of Climatology, 2016, 36 (1): 110-131
doi: 10.1002/joc.4332 URL |
[23] |
MacDonald A, Bonsor H C, Ahmed K M. Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations[J]. Nature Geoscience, 2016, 9 (10): 762-766
doi: 10.1038/NGEO2791 |
[24] |
de Graaf I E, Gleeson T, Rens van Beek L P H, et al. Environmental flow limits to global groundwater pumping[J]. Nature, 2019, 574 (7776): 90-94
doi: 10.1038/s41586-019-1594-4 URL |
[25] | Balestrini R, Delconte C, Sacchi E, et al. Groundwater-dependent ecosystems as transfer vectors of nitrogen from the aquifer to surface waters in agricultural basins: the Fontanilla of the Po Plain (Italy)[J]. Science of The Total Environment, 2021, 753: 141995 |
[26] |
Jasechko S, Seybold H, Perrone D. Widespread potential loss of streamflow into underlying aquifers across the USA[J]. Nature, 2021, 591 (7850): 391-395
doi: 10.1038/s41586-021-03311-x URL |
[27] |
Wada Y. Modeling groundwater depletion at regional and global scales: present state and future prospects[J]. Surveys in Geophysics, 2016, 37 (2): 419-451
doi: 10.1007/s10712-015-9347-x URL |
[28] | Amanambu A C, Obarein O A, Mossa J. Groundwater system and climate change: present status and future considerations[J]. Journal of Hydrology, 2020, 589: 125-163 |
[29] |
Reinecke R, Müller Schmied H, Trautmann T, et al. Uncertainty of simulated groundwater recharge at different global warming levels: a global-scale multi-model ensemble study[J]. Hydrology and Earth System Sciences, 2021, 25 (2): 787-810
doi: 10.5194/hess-25-787-2021 URL |
[30] |
Pulido-Velazquez D, Collados-Lara A, Alcalá F. Assessing impacts of future potential climate change scenarios on aquifer recharge in continental Spain[J]. Journal of Hydrology, 2018, 567: 803-819
doi: 10.1016/j.jhydrol.2017.10.077 URL |
[31] |
Sishodia R P, Shukla S, Wani S P, et al. Future irrigation expansion outweigh groundwater recharge gains from climate change in semi-arid India[J]. Science of The Total Environment, 2018, 635: 725-740
doi: 10.1016/j.scitotenv.2018.04.130 URL |
[32] |
Liljedahl A, Gädeke A, O’Neel S, et al. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska[J]. Geophysical Research Letters, 2017, 44 (13): 6876-6885
doi: 10.1002/2017GL073834 URL |
[33] |
Wu W Y, Min-Hui Lo M H, Wada Y, et al. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers[J]. Nature Communications, 2020, 11 (1): 1-9
doi: 10.1038/s41467-019-13993-7 URL |
[34] | Walvoord A M, Voss I C, Wellman P T. Influence of permafrost distribution on groundwater flow in the context of climate-driven permafrost thaw: example from Yukon Flats Basin, Alaska, United States[J]. Water Resources Research, 2012, 48 (7): W07524 |
[35] | 程国栋, 金会军. 青藏高原多年冻土区地下水及其变化[J]. 水文地质工程地质, 2013, 40 (1): 1-11. |
Cheng G D, Jin H J. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes[J]. Hydrogeology & Engineering Geology, 2013, 40 (1): 1-11 (in Chinese) | |
[36] | 叶仁政, 常娟. 中国冻土地下水研究现状与进展综述[J]. 冰川冻土, 2019, 41 (1): 183-196. |
Ye R Z, Chang J. Study of groundwater in permafrost regions of China: status and process[J]. Journal of Glaciology and Geocryology, 2019, 41 (1): 183-196 (in Chinese) | |
[37] | McDonough L K, Isaac R S, Andersen M S, et al. Changes in groundwater dissolved organic matter character in a coastal sand aquifer due to rainfall recharge[J]. Water Research, 2020, 169: 115201 |
[38] |
Michael H A, Russoniello C J, Byron L A. Global assessment of vulnerability to sea-level rise in topography-limited and recharge-limited coastal groundwater systems[J]. Water Resources Research, 2013, 49 (4): 2228-2240
doi: 10.1002/wrcr.20213 URL |
[39] |
Taylor R G, Scanlon B, Doll P, et al. Ground water and climate change[J]. Nature Climate Change, 2013, 3 (4): 322-329
doi: 10.1038/nclimate1744 URL |
[40] |
Famiglietti J S. The global groundwater crisis[J]. Nature Climate Change, 2014, 4 (11): 945-948
doi: 10.1038/nclimate2425 URL |
[41] |
Goderniaux P, Brouyere S, Wildemeersch S, et al. Uncertainty of climate change impact on groundwater reserves: application to a chalk aquifer[J]. Journal of Hydrology, 2015, 528: 108-121
doi: 10.1016/j.jhydrol.2015.06.018 URL |
[42] |
Rodell M, Famiglietti J S, Wiese D N, et al. Emerging trends in global freshwater availability[J]. Nature, 2018, 557 (7707): 651-659
doi: 10.1038/s41586-018-0123-1 URL |
[43] |
Condon L E, Atchley A L, Maxwell R M. Evapotranspiration depletes groundwater under warming over the contiguous United States[J]. Nature Communications, 2020, 11 (1): 1-8
doi: 10.1038/s41467-019-13993-7 URL |
[44] | 刘俊国, 崔文惠, 田展, 等. 渐进式生态修复理论[J]. 科学通报, 2021, 66 (9): 1014-1025. |
Liu J G, Cui W H, Tian Z, et al. Theory of stepwise ecological restoration[J]. Chinese Science Bulletin, 2021, 66 (9): 1014-1025 (in Chinese) |
[1] | LIU Junguo, CHEN He, TIAN Zhan. Interpretation of IPCC AR6: climate change and water security [J]. Climate Change Research, 2022, 18(4): 405-413. |
[2] | DUAN Ju-Qi, YUAN Jia-Shuang, XU Xin-Wu, JU Hui. Interpretation of the IPCC AR6 report on agricultural systems [J]. Climate Change Research, 2022, 18(4): 422-432. |
[3] | ZHANG Bai-Chao, PANG Bo, QIN Yun, HAN Zhen-Yu, LU Bo. Interpretation of Climate Resilient Development in IPCC AR6 WGII [J]. Climate Change Research, 2022, 18(4): 460-467. |
[4] | ZHOU Jian-Qin, HUANG Wei, LI Meng, ZHENG Jian-Meng, LUO Meng, FU Rui. Dry-wet climate evolution feature and projection of future changes based on CMIP6 models in early summer over Yunnan province, China [J]. Climate Change Research, 2022, 18(4): 482-491. |
[5] | WANG Lei, ZHANG Bai-Chao, SHI Ying, HAN Zhen-Yu, LU Bo. Interpretation of the IPCC AR6 on the impacts and risks of climate change [J]. Climate Change Research, 2022, 18(4): 389-394. |
[6] | QIN Yun, XU Xin-Wu, WANG Lei, HAN Zhen-Yu, LU Bo. Interpretation of the IPCC AR6 on adaptation options of climate change [J]. Climate Change Research, 2022, 18(4): 452-459. |
[7] | WANG Jun-Neng, QIN Nian-Xiu, JIANG Tong, SU Bu-Da. Interpretation of IPCC AR6: impacts and adaptations of climate change on cities, settlements and key infrastructure [J]. Climate Change Research, 2022, 18(4): 433-441. |
[8] | HUANG Cunrui, LIU Qiyong. Interpretation of IPCC AR6 on climate change and human health [J]. Climate Change Research, 2022, 18(4): 442-451. |
[9] | XU Yi-Jian, LI Tan-Feng, XU Li-Li. Greenhouse gas inventory model for territorial spatial master plans [J]. Climate Change Research, 2022, 18(3): 355-365. |
[10] | WANG Xia, WANG Ying, LIN Qi-Gen, LI Ning, ZHANG Xin-Ren, ZHOU Xiao-Ying. Projection of China landslide disasters population risk under climate change [J]. Climate Change Research, 2022, 18(2): 166-176. |
[11] | LI Ying, ZHAO Shan-Shan. Floods losses and hazards in China from 2001 to 2020 [J]. Climate Change Research, 2022, 18(2): 154-165. |
[12] | XIAO Cun-De, YANG Jiao, ZHANG Tong, SU Bo, WANG Lei, XU Qian, YAN Zhan, HAO Hai-Rui, HUANG Yi. The predictability, irreversibility and deep uncertainty of cryospheric change [J]. Climate Change Research, 2022, 18(1): 1-11. |
[13] | HUA Li-Juan, YU Yong-Qiang. Long term variation and projection of ocean circulation [J]. Climate Change Research, 2022, 18(1): 19-30. |
[14] | LIAO Hong, XIE Pei-Fu. The roles of short-lived climate forcers in a changing climate [J]. Climate Change Research, 2021, 17(6): 685-690. |
[15] | ZUO Zhi-Yan, XIAO Dong. Linking global to regional climate change [J]. Climate Change Research, 2021, 17(6): 705-712. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|