|
Climate Change Research ›› 2022, Vol. 18 ›› Issue (4): 442-451.doi: 10.12006/j.issn.1673-1719.2022.143
• Special Section on the Sixth Assessment Report of IPCC: WGII • Previous Articles Next Articles
Received:
2022-06-06
Revised:
2022-07-07
Online:
2022-07-30
Published:
2022-07-13
HUANG Cunrui, LIU Qiyong. Interpretation of IPCC AR6 on climate change and human health[J]. Climate Change Research, 2022, 18(4): 442-451.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2022.143
[1] | IPCC. Climate change 2022: impacts, adaptation and vulnerability[M]. Cambridge: Cambridge University Press, 2022 |
[2] | IPCC. Climate change 2014:impacts, adaptation, and vulnerability[M]. Cambridge: Cambridge University Press, 2014 |
[3] |
Wu Y, Huang C. Climate change and vector-borne diseases in China: a review of evidence and implications for risk management[J]. Biology, 2022, 11 (3): 370
doi: 10.3390/biology11030370 URL |
[4] |
Phung D, Huang C, Rutherford S, et al. Climate change, water quality, and water-related diseases in the Mekong Delta basin: a systematic review[J]. Asia-Pacific Journal of Public Health, 2015, 27 (3): 265-276
doi: 10.1177/1010539514565448 pmid: 25563349 |
[5] |
Ogden N H, Radojevic M, Wu X, et al. Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector ixodes scapularis[J]. Environmental Health Perspectives, 2014, 122 (6): 631-638
doi: 10.1289/ehp.1307799 URL |
[6] | Cai W, Zhang C, Suen H P, et al. The 2020 China report of the Lancet Countdown on health and climate change[J]. The Lancet Public Health, 2021, 6 (1): 64-81 |
[7] |
Zhang N, Song D, Zhang J, et al. The impact of the 2016 flood event in Anhui province, China on infectious diarrhea disease: an interrupted time-series study[J]. Environment International, 2019, 127: 801-809
doi: S0160-4120(19)30040-6 pmid: 31051323 |
[8] |
Semenza J C. Cascading risks of waterborne diseases from climate change[J]. Nature Immunology, 2020, 21 (5): 484-487
doi: 10.1038/s41590-020-0631-7 pmid: 32313241 |
[9] | Zuo S, Yang L, Dou P, et al. The direct and interactive impacts of hydrological factors on bacillary dysentery across different geographical regions in Central China[J]. Science of The Total Environment, 2021, 764: 144609 |
[10] |
Wang P, Goggins W B, Chan E Y Y. Associations of Salmonella hospitalizations with ambient temperature, humidity and rainfall in Hong Kong[J]. Environment International, 2018, 120: 223-230
doi: S0160-4120(18)30949-8 pmid: 30103121 |
[11] |
Lam E, Morris D H, Hurt A C, et al. The impact of climate and antigenic evolution on seasonal influenza virus epidemics in Australia[J]. Nature Communications, 2020, 11 (1): 2741
doi: 10.1038/s41467-020-16545-6 URL |
[12] |
Giorgini P, Di Giosia P, Petrarca M, et al. Climate changes and human health: a review of the effect of environmental stressors on cardiovascular diseases across epidemiology and biological mechanisms[J]. Current Pharmaceutical Design, 2017, 23 (22): 3247-3261
doi: 10.2174/1381612823666170317143248 pmid: 28317479 |
[13] |
Navarro K M, Kleinman M T, Mackay C E, et al. Wildland firefighter smoke exposure and risk of lung cancer and cardiovascular disease mortality[J]. Environmental Research, 2019, 173: 462-468
doi: 10.1016/j.envres.2019.03.060 URL |
[14] |
Deng S Z, Bjalaludin B, Manto J, et al. Climate change, air pollution, and allergic respiratory diseases: a call to action for health professionals[J]. Chinese Medical Journal, 2020, 133 (13): 1552-1560
doi: 10.1097/CM9.0000000000000861 URL |
[15] | Mulli Ns J, White C. Temperature and mental health: evidence from the spectrum of mental health outcomes[J]. IZA Discussion Papers, 2019, 68: 102240 |
[16] |
Obradovich N, Migliorini R, Paulus M P, et al. Empirical evidence of mental health risks posed by climate change[J]. Proceedings of The National Academy of Sciences, 2018, 115 (43): 10953-10958
doi: 10.1073/pnas.1801528115 URL |
[17] |
Burke M, González F, Baylis P, et al. Higher temperatures increase suicide rates in the United States and Mexico[J]. Nature Climate Change, 2018, 8 (8): 723-729
doi: 10.1038/s41558-018-0222-x URL |
[18] |
Zhong S, Yang L, Toloo S, et al. The long-term physical and psychological health impacts of flooding: a systematic mapping[J]. Science of The Total Environment, 2018, 626: 165-194
doi: 10.1016/j.scitotenv.2018.01.041 URL |
[19] |
Schwartz R, Sison C, Kerath S, et al. The impact of Hurricane Sandy on the mental health of New York area residents[J]. American Journal of Disaster Medicine, 2015, 10: 339-346
doi: 10.5055/ajdm.2015.0216 pmid: 27149315 |
[20] | Cunsolo A, Harper S L, Minor K, et al. Ecological grief and anxiety: the start of a healthy response to climate change?[J]. The Lancet Planetary Health, 2020, 4 (7): 261-263 |
[21] |
Noelke C, McGovern M, Corsi D J, et al. Increasing ambient temperature reduces emotional well-being[J]. Environmental Research, 2016, 151: 124-129
doi: 10.1016/j.envres.2016.06.045 URL |
[22] |
Wang J, Obradovich N, Zheng S. A 43-million-person investigation into weather and expressed sentiment in a changing climate[J]. One Earth, 2020, 2 (6): 568-577
doi: 10.1016/j.oneear.2020.05.016 URL |
[23] | Pecl G T, Araújo M B, Bell J D, et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being[J]. Science, 2017, 355 (6332): i9214 |
[24] | Eckstein D, Künzel V, Schäfer L. Global climate risk index 2018 [R]. Germanwatch eV: Bonn, Germany, 2017 |
[25] |
Ma R, Zhong S, Morabito M, et al. Estimation of work-related injury and economic burden attributable to heat stress in Guangzhou, China[J]. Science of The Total Environment, 2019, 666: 147-154
doi: 10.1016/j.scitotenv.2019.02.201 URL |
[26] |
Watts N, Amann M, Arnell N, et al. The 2019 report of The Lancet Countdown on health and climate change: ensuring that the health of a child born today is not defined by a changing climate[J]. The Lancet, 2019, 394 (10211): 1836-1878
doi: 10.1016/S0140-6736(19)32596-6 URL |
[27] |
Wang Q, Li B, Benmarhnia T, et al. Independent and combined effects of heatwaves and PM2.5 on preterm birth in Guangzhou, China: a survival analysis[J]. Environmental Health Perspectives, 2020, 128: 17006
doi: 10.1289/EHP5117 URL |
[28] |
Swinburn B A, Kraak V I, Allender S, et al. The global syndemic of obesity, undernutrition, and climate change: the Lancet commission report[J]. The Lancet, 2019, 393 (10173): 791-846
doi: 10.1016/S0140-6736(18)32822-8 URL |
[29] |
Alava J J, Cheung W W L, Ross P S, et al. Climate change-contaminant interactions in marine food webs: toward a conceptual framework[J]. Global Change Biology, 2017, 23 (10): 3984-4001
doi: 10.1111/gcb.13667 pmid: 28212462 |
[30] |
Kraemer M U G, Reiner R C, Brady O J, et al. Past and future spread of the arbovirus vectors Aedes Aegypti and Aedes Albopictus[J]. Nature Microbiology, 2019, 4 (5): 854-863
doi: 10.1038/s41564-019-0376-y pmid: 30833735 |
[31] |
Messina J P, Brady O J, Golding N, et al. The current and future global distribution and population at risk of Dengue[J]. Nature Microbiology, 2019, 4 (9): 1508-1515
doi: 10.1038/s41564-019-0476-8 pmid: 31182801 |
[32] | McCreesh N, Nikulin G, Booth M. Predicting the effects of climate change on Schistosoma Mansoni transmission in eastern Africa[J]. Parasites & Vectors, 2015, 8 (1): 4 |
[33] | Brubacher J, Allen D M, Déry S J, et al. Associations of five food- and water-borne diseases with ecological zone, land use and aquifer type in a changing climate[J]. Science of The Total Environment, 2020, 728: 138808 |
[34] |
Lake I R. Food-borne disease and climate change in the United Kingdom[J]. Environmental Health, 2017, 16 (1): 117
doi: 10.1186/s12940-017-0327-0 URL |
[35] |
Zhang B, Li G, Ma Y, et al. Projection of temperature-related mortality due to cardiovascular disease in Beijing under different climate change, population, and adaptation scenarios[J]. Environmental Research, 2018, 162: 152-159
doi: S0013-9351(17)31770-X pmid: 29306663 |
[36] | Ma F, Yuan X. Impact of climate and population changes on the increasing exposure to summertime compound hot extremes[J]. Science of The Total Environment, 2021, 772: 145004 |
[37] |
He Y, Deng S, Ho H C, et al. The half-degree matters for heat-related health impacts under the 1.5℃ and 2℃warming scenarios: evidence from ambulance data in Shenzhen, China[J]. Advances in Climate Change Research, 2021, 12 (5): 628-637
doi: 10.1016/j.accre.2021.09.001 URL |
[38] |
Atkinson H G, Bruce J. Adolescent girls, human rights and the expanding climate emergency[J]. Annals of Global Health, 2015, 81 (3): 323-330
doi: 10.1016/j.aogh.2015.08.003 pmid: 26615066 |
[39] |
Liu X. Reductions in labor capacity from intensified heat stress in China under future climate change[J]. International Journal of Environmental Research and Public Health, 2020, 17: 1278
doi: 10.3390/ijerph17041278 URL |
[40] |
Jones B, Tebaldi C, O′Neill B C, et al. Avoiding population exposure to heat-related extremes: demographic change vs climate change[J]. Climatic Change, 2018, 146 (3): 423-437
doi: 10.1007/s10584-017-2133-7 URL |
[41] |
Lloyd S, Bangalore M, Chalabi Z, et al. A global-level model of the potential impacts of climate change on child stunting via income and food price in 2030[J]. Environmental Health Perspectives, 2018, 126: 97007
doi: 10.1289/EHP2916 URL |
[42] |
Springmann M, Mason-D′Croz D, Robinson S, et al. Global and regional health effects of future food production under climate change: a modelling study[J]. The Lancet, 2016, 387 (10031): 1937-1946
doi: 10.1016/S0140-6736(15)01156-3 URL |
[43] |
Ebi K L, Boyer C, Ogden N, et al. Burning embers: synthesis of the health risks of climate change[J]. Environmental Research Letters, 2021, 16 (4): 44042
doi: 10.1088/1748-9326/abeadd URL |
[44] |
Jay O, Capon A, Berry P, et al. Reducing the health effects of hot weather and heat extremes: from personal cooling strategies to green cities[J]. The Lancet, 2021, 398 (10301): 709-724
doi: 10.1016/S0140-6736(21)01209-5 URL |
[45] |
Willett W, Rockström J, Loken B, et al. Food in the Anthropocene: the EAT-Lancet commission on healthy diets from sustainable food systems[J]. The Lancet, 2019, 393 (10170): 447-492
doi: 10.1016/S0140-6736(18)31788-4 URL |
[46] | Schucht S, Colette A, Rao S, et al. Moving towards ambitious climate policies: monetised health benefits from improved air quality could offset mitigation costs in Europe[J]. Environmental Science & Policy, 2015, 50: 252-269 |
[47] |
Campagnolo L, Davide M. Can the Paris deal boost SDGs achievement? An assessment of climate mitigation co-benefits or side-effects on poverty and inequality[J]. World Development, 2019, 122: 96-109
doi: 10.1016/j.worlddev.2019.05.015 |
[48] |
Charlesworth K E, Jamieson M. Healthcare in a carbon-constrained world[J]. Australian Health Review: A Publication of The Australian Hospital Association, 2019, 43 (3): 241-245
doi: 10.1071/AH17184 URL |
[49] | Charlesworth K, Stewart G, Sainsbury P. Addressing the carbon footprint of health organisations: eight lessons for implementation[J]. Public Health Research & Practice, 2018, 28 (4): e2841830 |
[50] | Frumkin H. The US health care sector’s carbon footprint: stomping or treading lightly?[J]. American Journal of Public Health, 2017, 108 (S2): S56-S57 |
[51] | 钟爽, 黄存瑞. 气候变化的健康风险与卫生应对[J]. 科学通报, 2019, 64 (19): 2002-2010. |
Zhong S, Huang C. Climate change and human health: risks and responses[J]. Chinese Science Bulletin, 2019, 64 (19): 2002-2010 (in Chinese) |
[1] | LIU Junguo, MENG Ying, ZHANG Xue-Jing. Interpretation of IPCC AR6 report: groundwater [J]. Climate Change Research, 2022, 18(4): 414-421. |
[2] | DUAN Ju-Qi, YUAN Jia-Shuang, XU Xin-Wu, JU Hui. Interpretation of the IPCC AR6 report on agricultural systems [J]. Climate Change Research, 2022, 18(4): 422-432. |
[3] | ZHANG Bai-Chao, PANG Bo, QIN Yun, HAN Zhen-Yu, LU Bo. Interpretation of Climate Resilient Development in IPCC AR6 WGII [J]. Climate Change Research, 2022, 18(4): 460-467. |
[4] | ZHOU Jian-Qin, HUANG Wei, LI Meng, ZHENG Jian-Meng, LUO Meng, FU Rui. Dry-wet climate evolution feature and projection of future changes based on CMIP6 models in early summer over Yunnan province, China [J]. Climate Change Research, 2022, 18(4): 482-491. |
[5] | WANG Lei, ZHANG Bai-Chao, SHI Ying, HAN Zhen-Yu, LU Bo. Interpretation of the IPCC AR6 on the impacts and risks of climate change [J]. Climate Change Research, 2022, 18(4): 389-394. |
[6] | QIN Yun, XU Xin-Wu, WANG Lei, HAN Zhen-Yu, LU Bo. Interpretation of the IPCC AR6 on adaptation options of climate change [J]. Climate Change Research, 2022, 18(4): 452-459. |
[7] | WANG Jun-Neng, QIN Nian-Xiu, JIANG Tong, SU Bu-Da. Interpretation of IPCC AR6: impacts and adaptations of climate change on cities, settlements and key infrastructure [J]. Climate Change Research, 2022, 18(4): 433-441. |
[8] | XU Yi-Jian, LI Tan-Feng, XU Li-Li. Greenhouse gas inventory model for territorial spatial master plans [J]. Climate Change Research, 2022, 18(3): 355-365. |
[9] | WANG Xia, WANG Ying, LIN Qi-Gen, LI Ning, ZHANG Xin-Ren, ZHOU Xiao-Ying. Projection of China landslide disasters population risk under climate change [J]. Climate Change Research, 2022, 18(2): 166-176. |
[10] | LI Ying, ZHAO Shan-Shan. Floods losses and hazards in China from 2001 to 2020 [J]. Climate Change Research, 2022, 18(2): 154-165. |
[11] | HUA Li-Juan, YU Yong-Qiang. Long term variation and projection of ocean circulation [J]. Climate Change Research, 2022, 18(1): 19-30. |
[12] | LIAO Hong, XIE Pei-Fu. The roles of short-lived climate forcers in a changing climate [J]. Climate Change Research, 2021, 17(6): 685-690. |
[13] | ZUO Zhi-Yan, XIAO Dong. Linking global to regional climate change [J]. Climate Change Research, 2021, 17(6): 705-712. |
[14] | CAO Long. Climate system response to carbon dioxide removal [J]. Climate Change Research, 2021, 17(6): 664-670. |
[15] | WANG Wen, FU Wen-Rui. The Climatic Impact-Driver framework [J]. Climate Change Research, 2021, 17(6): 719-725. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|