Please wait a minute...
 
气候变化研究进展  2018, Vol. 14 Issue (6): 547-552    DOI: 10.12006/j.issn.1673-1719.2018.100
  气候系统变化 本期目录 | 过刊浏览 | 高级检索 |
2022年北京冬季奥运会人工造雪气象条件初步研究
毛明策,王琦,田亮
陕西省气候中心,西安 710014
The surface meteorological condition of snowmaking for Beijing 2022 Olympic and Paralympic Winter Games
Ming-Ce MAO,Qi WANG,Liang TIAN
Shaanxi climate center, Xi’an 710014, China
下载:  HTML ( 21 )   PDF (1926KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

利用北京和张家口地区气象站建站至2016年历年11月至次年3月气象资料,研究2022年北京冬奥会人工造雪地面气象条件,结果表明:降水相态与地面气温(T)和相对湿度线性组合关系密切,通过计算不同温度对应降水相态频率,发现北京T≤-0.2℃,张家口市T≤-0.8℃时,降水相态为雪的频率≥95%;估算了冬奥会和残奥会举办地区域自动气象站2014—2016年赛事期间可造雪时数,发现冬奥期间造雪时数较为充足,残奥期间造雪时数较少,可以采用造雪和储雪结合保证赛事用雪。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毛明策
王琦
田亮
关键词:  人工造雪  气温  相对湿度  可造雪时数  2022年北京冬季奥运会    
Abstract: 

The meteorological station routine data, including the phase state of precipitation (rain or snow), surface temperature and surface relative humidity in Beijing and Zhangjiakou, were analyzed in order to investigate the proper conditions for snowmaking, and to evaluate the snowmaking hours. The results show that the precipitation phase state is closely dependent on surface relative humidity as well as surface air temperature, the relations of surface relative humidity to surface air temperature can be obtained at each weather stations by using the regression analysis. If considering to classify the precipitation phase state by temperature only, the snow frequency is above 95% among the stations within Zhangjiakou administrative area when the surface temperature is below-0.8℃, under the calculations of the temperature and occurrence frequency of different phase state of precipitation. The snowmaking hours of 2022 Winter Olympic Games were calculated by using the regional automatic weather station temperature near the field from 2014 to 2016. It’s found that the snowmaking hours is sufficient in Winter Olympic Games period, but insufficient in the Paralympic Games period, so the snowmaking and snow-storing are suggested in order to keep enough snow for the race.

Key words:  Snowmaking    Surface air temperature    Relative humidity    Snowmaking hours    Beijing 2022 Olympic and Paralympic Winter Games
收稿日期:  2018-04-24      修回日期:  2018-07-12           出版日期:  2018-11-30      发布日期:  2018-11-30      期的出版日期:  2018-11-30
基金资助: 陕西省科学技术研究发展计划项目自然科学基础研究计划(2012JM5012)
作者简介:  毛明策,男,高级工程师,easeurmind@qq.com
引用本文:    
毛明策,王琦,田亮. 2022年北京冬季奥运会人工造雪气象条件初步研究[J]. 气候变化研究进展, 2018, 14(6): 547-552.
Ming-Ce MAO,Qi WANG,Liang TIAN. The surface meteorological condition of snowmaking for Beijing 2022 Olympic and Paralympic Winter Games. Climate Change Research, 2018, 14(6): 547-552.
链接本文:  
http://www.climatechange.cn/CN/10.12006/j.issn.1673-1719.2018.100  或          http://www.climatechange.cn/CN/Y2018/V14/I6/547
图1  北京市和张家口市行政区域内的奥运场馆及气象站 注:(b)图为(a)图中方框区域的放大图。
Table 1  The frequency of two precipitation types occurring in Beijing with temperature and relative humidity
图2  北京和张家口降水相态频数临界点相对湿度-气温散点图
图3  北京和张家口雪(雨)出现频率曲线
Table 2  Snowmaking hours during 4-20 February from 2014 to 2016 near surface stations
Table 3  Snowmaking hours during 5-15 March from 2014 to 2016 near surface stations
[1] Armstrong R L, Brodzik M J . Recent Northern Hemisphere snow cover extent: a comparison of data derived from visible and microwave satellite sensors[J]. Geophysical Research Letters, 2001,28(19):3673-3676
doi: 10.1029/2000GL012556
[2] IPCC. Summary for policymakers of climate change 2007: the physical science basis [M]. Cambridge: Cambridge University Press, 2007
[3] Doyle C . The impact of weather forecasts of various lead times on snowmaking decisions made for The 2010 Vancouver Olympic Winter Games[J]. Pure and Applied Geophysics, 2014,171(1):87-94
doi: 10.1007/s00024-012-0609-y
[4] International Olympic Committee. Report of The 2022 Evaluation Commission [R]. International Olympic Committtee, 2015: 63
[5] 肖王星, 效存德, 郭晓寅 , 等. 北京–张家口地区冬春季积雪特征分析[J]. 冰川冻土, 2016,38(3):584-595
doi: 10.7522/j.issn.1000-0240.2016.0065
[6] 杨占武 . 北京冬奥会和冬残奥会人工造雪的研究[J]. 冰雪运动, 2017,39(1):1-8
[7] 杨贵名, 孔期, 毛冬艳 , 等. 2008年初“低温雨雪冰冻”灾害天气的持续性原因分析[J]. 气象学报, 2008,66(5):836-849
doi: 10.3321/j.issn:0577-6619.2008.05.016
[8] 姚蓉, 黎祖贤, 戴泽军 , 等. 2008年初持续雨雪灾害过程分析[J]. 气象科学, 2009,29(6):838-843
doi: 10.3969/j.issn.1009-0827.2009.06.021
[9] 漆梁波, 张瑛 . 中国东部地区冬季降水相态的识别判据研究[J]. 气象, 2012,38(1):96-102
doi: 10.7519/j.issn.1000-0526.2012.1.011
[10] 崔锦, 周晓珊, 阎琦 , 等. WRF模式不同微物理过程对东北降水相态预报的影响[J]. 气象与环境学报, 2014,30(5):1-6
[11] 段云霞, 李得勤, 李大为 , 等. 沈阳降水相态特征分析及预报方法[J]. 干旱气象, 2016,34(1):51-57
[12] 刘原峰, 朱国锋, 赵军 . 黄土高原区不同降水相态的时空变化[J]. 地理科学, 2016,36(8):1227-1233
doi: 10.13249/j.cnki.sgs.2016.08.014
[13] 廖晓农, 张琳娜, 何娜 , 等. 2012年3月17日北京降水相态转变的机制讨论[J]. 气象, 2013,39(1):28-38
doi: 10.7519/j.issn.1000-0526.2013.01.004
[14] 孙继松, 梁丰, 陈敏 , 等. 北京地区一次小雪天气过程造成路面交通严重受阻的成因分析[J]. 大气科学, 2003,27(6):1057-1066
doi: 10.3878/j.issn.1006-9895.2003.06.09
[15] 赵思雄, 孙建华, 陈红 , 等. 北京“12·7”降雪过程的分析研究[J]. 气候与环境研究, 2002,7(1):7-21
doi: 10.3969/j.issn.1006-9585.2002.01.002
[16] 尤凤春, 郭丽霞, 史印山 , 等. 北京降水相态判别指标及检验[J]. 气象与环境学报, 2013,29(5):49-54
doi: 10.3969/j.issn.1673-503X.2013.05.008
[17] 张琳娜, 郭锐, 曾剑 , 等. 北京地区冬季降水相态的识别判据研究[J]. 高原气象, 2013,32(6):1780-1786
doi: 10.7522/j.issn.1000-0534.2012.00147
[18] Feiccabrino J, Graff W, Lundberg A , et al. Meteorological knowledge useful for the improvement of snow rain separation in surface based models[J]. Hydrology, 2015,2(4):266-288
doi: 10.3390/hydrology2040266
[19] Matsuo T, Sasyo Y . Melting of snowflakes below freezing level in the atmosphere[J]. Journal of Meteorological Society of Japan, 1981,59(1):10-25
doi: 10.2151/jmsj1965.59.1_10
[20] Matsuo T, Sasyo Y . Non-melting phenomena of snowflakes observed in subsaturated air below freezing level[J]. Journal of the Meteorological Society of Japan, 1980,59(1):26-32
[21] Froidurot S, Zin I, Hingray B . Sensitivity of precipitation phase over the Swiss Alps to different meteorological variables[J]. Journal of Hydrometeorology, 2014,15(2):685-696
doi: 10.1175/JHM-D-13-073.1
[22] Dai A . Temperature and pressure dependence of the rain-snow phase transition over land and ocean[J]. Geophysical Research Letters, 2008,35(12):62-77
doi: 10.1029/2008GL033295
[23] 中国气象局. 地面气象观测规范 [M]. 北京: 气象出版社, 2003
[24] 赵芳, 熊安元, 张小缨 . 全国综合气象信息共享平台架构设计技术特征[J]. 应用气象学报, 2017,28(6):750-758
[1] 陈迪桃,黄法融,李倩,李兰海. 1966—2015年天山南北坡空气湿度差异及其影响因素[J]. 气候变化研究进展, 2018, 14(6): 562-572.
[2] 韩振宇,童尧,高学杰,徐影. 分位数映射法在RegCM4中国气温模拟订正中的应用[J]. 气候变化研究进展, 2018, 14(4): 331-340.
[3] 香薇,程志刚,周波涛,宾昕,冯冬蕾. 1975—2016年秦巴山区极端气温事件的空间差异性分析[J]. 气候变化研究进展, 2018, 14(4): 362-370.
[4] 陈正洪,何飞,崔杨,张雪婷. 近20年来风电场(群)对气候的影响研究进展[J]. 气候变化研究进展, 2018, 14(4): 381-391.
[5] 江晓菲,李伟,游庆龙. 中国未来极端气温变化的概率预估及其不确定性[J]. 气候变化研究进展, 2018, 14(3): 228-236.
[6] 许艳, 唐国利, 张强. 基于均一化格点资料的全球变暖趋缓期中国气温变化特征分析[J]. 气候变化研究进展, 2017, 13(6): 569-577.
[7] 葛非凡, 毛克彪, 蒋跃林, 姜立鹏, 范玉芬, 王一舒, 谭雪兰, 李建军. 三峡大坝运行后长江中下游流域气温与植被变化特征及原因分析[J]. 气候变化研究进展, 2017, 13(6): 578-588.
[8] 金凯, 王飞, 苟娇娇. 城市化对长沙市两气象站气温记录的影响[J]. 气候变化研究进展, 2017, 13(5): 456-464.
[9] 刘苏峡 丁文浩 莫兴国 王盛 刘昌明 罗贤 何大明 Sagar Ratna Bajracharya Arun Bhakta Shrestha Nand Kishor Agrawal. 澜沧江和怒江流域的气候变化及其对径流的影响[J]. 气候变化研究进展, 2017, 13(4): 356-365.
[10] 吴晶 王宝鉴 杨艳芬 常燕 陈林 杨建才 刘新伟. CMIP3与CMIP5模式对中国西北干旱区气温和降水的模拟能力比较[J]. 气候变化研究进展, 2017, 13(3): 198-212.
[11] 司鹏, 郝立生, 罗传军, 曹晓岑, 梁冬坡. 河北保定气象站长序列气温资料缺测记录插补和非均一性订正[J]. 气候变化研究进展, 2017, 13(1): 41-51.
[12] 蒋帅, 江志红, 李伟, 沈雨辰. CMIP5 模式对中国极端气温及其变化趋势的模拟评估[J]. 气候变化研究进展, 2017, 13(1): 11-24.
[13] 吴蓉, 孙怡, 杨元建, 谢五三, 陶寅, 张浩, 石涛. 城市化对安徽省极端气温事件的影响[J]. 气候变化研究进展, 2016, 12(6): 527-537.
[14] 徐经纬,徐 敏,蒋 熹,ArmelleReca C. Remedio,Dmitry V. Sein,Nikolay Koldunov,Daniela Jac. 区域气候模式REMO对中国气温和降水模拟能力的评估[J]. 气候变化研究进展, 2016, 12(4): 286-293.
[15] 张艳武, 张莉, 徐影. CMIP5模式对中国地区气温模拟能力评估与预估[J]. 气候变化研究进展, 2016, 12(1): 10-19.
[1] . A New Method to Construct Anomaly Series of Climatic Energy Consumption for Urban Residential Heating in Jilin Province[J]. Climate Change Research, 2008, 04(001): 32 -36 .
[2] . Analysis of Factors Impacting China's CO2 Emissions During 1971-2005[J]. Climate Change Research, 2008, 04(001): 42 -47 .
[3] Cao Guoliang;Zhang Xiaoye; Wang Yaqiang;et al.. Inventory of Black Carbon Emission from China[J]. Climate Change Research, 2007, 03(00): 75 -81 .
[4] . Dryness/Wetness Changes in Qinghai Province During 1959-2003[J]. Climate Change Research, 2007, 03(06): 356 -361 .
[5] Xu Xiaobin;Lin Weili; Wang Tao;et al.. Long-term Trend of Tropospheric Ozone over the Yangtze Delta Region of China[J]. Climate Change Research, 2007, 03(00): 60 -65 .
[6] Gao Qingxian; Du Wupeng; Lu Shiqing;et al.. Methane Emission from Municipal Solid Waste Treatments in China[J]. Climate Change Research, 2007, 03(00): 70 -74 .
[7] . Guide to Authors[J]. Climate Change Research, 2006, 02(00): 84 .
[8] . Granger Causality Test for Detection and Attribution of Climate Change[J]. Climate Change Research, 2008, 04(001): 37 -41 .
[9] . AIntra-annual Inhomogeneity Characteristics of Precipitation over Northwest China[J]. Climate Change Research, 2007, 03(05): 276 -281 .
[10] . Projection of Future Precipitation Extremes in the Yangtze River Basin for 2001-2050[J]. Climate Change Research, 2007, 03(06): 340 -344 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备10018055-1号
版权所有 © 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn