Please wait a minute...
 
气候变化研究进展  2019, Vol. 15 Issue (4): 385-394    DOI: 10.12006/j.issn.1673-1719.2019.061
  气候系统变化 本期目录 | 过刊浏览 | 高级检索 |
2008年以来青藏高原春季大气温度逆转趋势及其与臭氧总量变化之间的可能联系
王晴1,2,黄富祥2,3(),夏学齐1
1 中国地质大学(北京)地球科学与资源学院,北京 100083
2 中国气象局国家卫星气象中心,北京 100081
3 中国气象局中国遥感卫星辐射测量和定标重点开放实验室,北京 100081
Reversal trends of atmospheric temperature in spring over the Tibetan Plateau after 2008 and possible links with total ozone trends
Qing WANG1,2,Fu-Xiang HUANG2,3(),Xue-Qi XIA1
1 School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
2 National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China
3 Key Laboratory of Radiometric Calibration and Validation for Environmental Satellites, China Meteorological Administration, Beijing 100081, China;
下载:  HTML ( 5 )   PDF (3127KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

利用ERA-Interim和MERRA-2再分析资料,考察1980—2017年青藏高原大气温度变化趋势和规律,年、季、月不同时间尺度分析结果均揭示2008年以来青藏高原春季大气温度变化呈现逆转趋势:高原上空平流层下部150~50 hPa呈现明显的增温趋势(1.0~2.7℃/10a),对流层上部300~175 hPa呈现明显的降温趋势(-3.1~-1.0℃/10a),这与此前的大气温度变化趋势完全相反。利用TOMS和OMI卫星臭氧遥感资料,考察同期青藏高原臭氧总量变化特征,表明2008年以来青藏高原臭氧总量也表现出逆转的增加趋势,与大气温度逆转趋势吻合,从冬末至春季各月均有显著增加趋势,尤以5月臭氧总量增加速率最大,达13.7 DU/10a。青藏高原春季大气温度变化趋势与同期臭氧总量变化特征紧密相关,2008年后臭氧总量的快速恢复可能是引起大气温度逆转趋势的一个重要影响因素。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晴
黄富祥
夏学齐
关键词:  再分析资料  卫星遥感  大气温度  臭氧总量  变化趋势    
Abstract: 

Trends of atmospheric temperature during 1980-2007 over the Tibetan Plateau were evaluated using the ERA-Interim and MERRA-2 reanalysis data sets. Analyses of different time scales from annual to seasonal and monthly show that remarkable reversal trends of atmospheric temperature after 2008: temperatures at the lower stratosphere (150-50 hPa) are increasing with rates of 1.0-2.7℃/10a, while in the upper troposphere (300-175 hPa), temperatures are decreasing with rates of -3.1- -1.0℃/10a. Trends of atmospheric temperature in spring after 2008 over the Tibetan Plateau are reversal with those of 1980-2007. Analysis of total ozone trends over the Tibetan Plateau during 1980-2017 were carried out and results show significant increasing trends of monthly total ozone from end of winter to spring, especially in May with the highest increasing rate of 13.7 DU/10a. Analysis results show that variations of atmospheric temperature are closely linked with variation of total ozone, and the reversal trends of atmospheric temperature in spring maybe the results of total ozone recovery after 2008 over the Tibetan Plateau.

Key words:  Reanalysis data    Satellite data    Air temperature    Total ozone    Changing trend
收稿日期:  2019-03-21      修回日期:  2019-04-15           出版日期:  2019-07-30      发布日期:  2019-07-30      期的出版日期:  2019-07-30
基金资助: 国家自然科学基金(41675031);国家自然科学基金(41275035);国家重点研发计划(2016YFB0502501)
通讯作者:  黄富祥    E-mail:  huangfx@cma.gov.cn
作者简介:  王晴,女,硕士研究生
引用本文:    
王晴,黄富祥,夏学齐. 2008年以来青藏高原春季大气温度逆转趋势及其与臭氧总量变化之间的可能联系[J]. 气候变化研究进展, 2019, 15(4): 385-394.
Qing WANG,Fu-Xiang HUANG,Xue-Qi XIA. Reversal trends of atmospheric temperature in spring over the Tibetan Plateau after 2008 and possible links with total ozone trends. Climate Change Research, 2019, 15(4): 385-394.
链接本文:  
http://www.climatechange.cn/CN/10.12006/j.issn.1673-1719.2019.061  或          http://www.climatechange.cn/CN/Y2019/V15/I4/385
图1  青藏高原地区TOMS和OMI臭氧总量数据差异对比
图2  青藏高原年平均大气温度变化趋势
图3  青藏高原四季大气温度变化趋势 注:图中阴影表示通过0.05的显著性检验;变化趋势单位为℃/10a。
图4  青藏高原大气温度逐月变化趋势(单位:℃/10a)
图5  青藏高原5月250~200 hPa高度处平均大气温度变化 注:两个时间段的变化趋势均通过0.1的显著性检验。
图6  青藏高原臭氧总量年变化趋势
图7  青藏高原臭氧总量四季变化趋势
图8  青藏高原臭氧总量月变化趋势
图9  青藏高原臭氧总量与大气温度相关系数分布 注:浅色和深色阴影分别代表通过0.1和0.01的显著性检验。
图10  1980—2017年5月青藏高原臭氧总量与大气温度相关系数空间分布 注:区域均通过0.01的显著性检验。
[1] You Q L, Kang S C, Aguilar E , et al. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961-2005[J]. Journal of Geophysical Research Atmospheres, 2008,113, D07101
[2] You Q L, Fraedrich K, Ren G Y , et al. Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data[J]. International Journal of Climatology, 2013,33:1337-1347
[3] Kang S C, Xu Y W, You Q L , et al. Review of climate and cryospheric change in the Tibetan Plateau[J]. Environmental Research Letters, 2010,5(1):015101
[4] Liu Z C, Yang M X, Wan G N , et al. The spatial and temporal variation of temperature in the Qinghai-Xizang (Tibetan) Plateau during 1971-2015[J]. Atmosphere, 2017,8(11):214
[5] Zhang R H, Zhou S W . Air temperature changes over the Tibetan Plateau and other regions in the same latitudes and the role of ozone depletion[J]. Acta Meteorologica Sinica, 2009,23(3):290-299
[6] 郭艳君 . 高空大气温度变化趋势不确定性的研究进展[J]. 地球科学进展, 2008,23(1):24-30.
Guo Y J . Advances in uncertainties in upper air temperature trends[J]. Advances in Earth Science, 2008,23(1):24-30 (in Chinese)
[7] Liu X D, Chen B D . Climatic warming in the Tibetan Plateau during recent decades[J]. International Journal of Climatology, 2000,20:1729-1742
[8] Zou H, Zhu J H, Zhou L B , et al. Validation and application of reanalysis temperature data over the Tibetan Plateau[J]. Journal of Meteorological Research, 2014,28(1):139-149
[9] 廖蜜, 张鹏, 吴雪宝 , 等. 利用MSU序列研究高空大气温度变化的进展[J]. 气象, 2011,37(9):1151-1157.
Liao M, Zhang P, Wu X B , et al. Research advance of the temperature changes in the upper air using MSU time series[J]. Meteorological Monthly, 2011,37(9):1151-1157 (in Chinese)
[10] 周秀骥, 罗超, 李维亮 . 中国地区臭氧总量变化与青藏高原低值中心[J]. 科学通报, 1995,40(15):1396-1398.
Zhou X J, Luo C, Li W L . Changes of the total ozone in China and the low-value centers in the Tibet Plateau[J]. Chinese Science Bulletin, 1995,40(15):1396-1398 (in Chinese)
[11] Zhou X J, Li W L, Chen L X , et al. study on ozone change over the Tibetan Plateau[J]. Acta Meteorologica Sinica, 2006,20(2):129-143
[12] Zou H . Seasonal variation and trends of TOMS ozone over Tibet[J]. Geophysical Research Letters, 1996,23(9):1029-1032
[13] Chen S B, Zhao L, Tao Y L . Stratospheric ozone change over the Tibetan Plateau[J]. Atmospheric Pollution Research, 2017,8:528-534
[14] Tzanis C . On the relationship between total ozone and temperature in the troposphere and the lower stratosphere[J]. International Journal of Remote Sensing, 2009,30(23):6075-6084
[15] Zhang J K, Tian W S, Xie F , et al. Climate warming and decreasing total column ozone over the Tibetan Plateau during winter and spring[J]. Tellus B: Chemical and Physical Meteorology, 2014,66:23415. DOI: 10.3402/tellusb.v66.23415
doi: 10.3402/tellusb.v66.23415
[16] Zhou S W, Zhang R H . Decadal variations of temperature and geopotential height over the Tibetan Plateau and their relations with Tibet ozone depletion[J]. Geophysical Research Letters, 2005,32, L18705
[17] 黄富祥, 刘年庆, 赵明现 , 等. 风云三号卫星紫外臭氧垂直廓线产品反演试验[J]. 科学通报, 2009,54:2556-2561.
Huang F X, Liu N Q, Zhao M X , et al. Vertical ozone profiles deduced from measurements of SBUS on FY-3 satellite[J]. Chinese Science Bulletin, 2009,54:2556-2561 (in Chinese)
[18] 周顺武, 张人禾 . 青藏高原地区上空NCEP/NCAR再分析温度和位势高度资料与观测资料的比较分析[J]. 气候与环境研究, 2009,14(2):284-292.
Zhou S W, Zhang R H . Comparison of NCEP/NCAR reanalysis data and radiosonde data about temperature and geopotential height of upper air over the Tibetan Plateau[J]. Climatic and Environmental Research, 2009,14(2):284-292 (in Chinese)
[19] 何冬燕, 田红, 邓伟涛 . 三种再分析地表温度资料在青藏高原区域的适用性分析[J]. 大气科学学报, 2013,36(4):458-465.
He D Y, Tian H, Deng W T . Applicability analysis of three reanalysis surface temperature data over the Tibetan Plateau[J]. Transactions of Atmospheric Science, 2013,36(4):458-465 (in Chinese)
[20] Gao L, Hao L, Chen X W . Evaluation of ERA-Interim monthly temperature data over the Tibetan Plateau[J]. Journal of Mountain Science, 2014,11(5):1154-1168
[21] Hurrell J W, Trenberth K E . An evaluation of monthly mean MSU and ECMWF global atmospheric temperatures for monitoring climate[J]. Journal of Climate, 1991,5:1424-1440
[22] Huang F X, Ren S L, Han S S, et al. Spatiotemporal variations of correlation between the Arctic atmospheric ozone and temperature[C]. Valencia, Spain: 2018 IEEE IGARS, 2018: 6548-6551
[23] Humlum O, Stordahl K, Solheim J . The phase relation between atmospheric carbon dioxide and global temperature[J]. Global and Planetary Chang, 2013,100:51-59
[24] Cubasch U, Voss R, Hegerl G C , et al. Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model[J]. Climate Dynamics, 1997,13:757-767
[25] Dai A, Trenberth K E . Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range[J]. Journal of Climate, 1999,12:2451-2473
[1] 周建琴, 黄玮, 朱勇, 李蒙, 周波涛. 云南气候舒适度分布和变化特征及未来变化趋势预估[J]. 气候变化研究进展, 2018, 14(2): 144-154.
[2] 卞韬, 任国玉, 张立霞. 城市化对石家庄站近地面风速趋势的影响[J]. 气候变化研究进展, 2018, 14(1): 21-30.
[3] 毕鑫鑫, 陈光华, 周伟灿, 沈新勇, 曹西. 西北太平洋热带气旋达到不同强度时所处位置的变化趋势研究[J]. 气候变化研究进展, 2017, 13(1): 31-40.
[4] 吴蓉, 孙怡, 杨元建, 谢五三, 陶寅, 张浩, 石涛. 城市化对安徽省极端气温事件的影响[J]. 气候变化研究进展, 2016, 12(6): 527-537.
[5] 张淼,张兴赢,刘瑞霞. 卫星高光谱大气CO2遥感反演精度地基验证研究[J]. 气候变化研究进展, 2014, 10(6): 427-432.
[6] 柳春 王守荣 梁有叶 Ruby L. Leung. 1961—2010年黄河流域蒸发皿蒸发量变化及影响因子分析[J]. 气候变化研究进展, 2013, 9(5): 327-334.
[7] 成晓裕 王艳华 李国春 李庆祥. 三套再分析降水资料在中国区域的对比评估[J]. 气候变化研究进展, 2013, 9(4): 258-265.
[8] 张婷婷 章新平 吴华武 申林 郭丽香. 湘江流域蒸发皿蒸发量的变化趋势及原因分析[J]. 气候变化研究进展, 2013, 9(1): 35-42.
[9] 吴志勇 陆桂华 刘志雨 王金星 肖恒. 气候变化背景下珠江流域极端洪水事件的变化趋势[J]. 气候变化研究进展, 2012, 8(6): 403-408.
[10] 涂钢 李尚锋 孙力 姚耀显. 松花江、辽河流域实测径流的变化趋势及其与降水的关系[J]. 气候变化研究进展, 2012, 8(6): 456-461.
[11] 张焕 翟盘茂 唐红玉. 1961—2000年西南地区小时降水变化特征[J]. 气候变化研究进展, 2011, 7(1): 8-13.
[12] 高松影 刘天伟 李慧琳 薛金艳 齐杰. 1951—2009年丹东地区暴雨变化[J]. 气候变化研究进展, 2011, 7(1): 14-17.
[13] 张春花;吴胜安;林建兴;许向春;郭冬艳. 1969-2008年海南省雾的气候特征与变化趋势[J]. 气候变化研究进展, 2010, 6(05): 349-355.
[14] 徐晓斌;林伟立. 卫星观测的中国地区1979—2005年对流层臭氧变化趋势[J]. 气候变化研究进展, 2010, 6(02): 100-105.
[15] 王小玲 宋文玲. 近30a我国5级以上风日数的时空变化特征[J]. 气候变化研究进展, 2008, 4(006): 347-351.
[1] . A New Method to Construct Anomaly Series of Climatic Energy Consumption for Urban Residential Heating in Jilin Province[J]. Climate Change Research, 2008, 04(001): 32 -36 .
[2] . Analysis of Factors Impacting China's CO2 Emissions During 1971-2005[J]. Climate Change Research, 2008, 04(001): 42 -47 .
[3] Cao Guoliang;Zhang Xiaoye; Wang Yaqiang;et al.. Inventory of Black Carbon Emission from China[J]. Climate Change Research, 2007, 03(00): 75 -81 .
[4] . Dryness/Wetness Changes in Qinghai Province During 1959-2003[J]. Climate Change Research, 2007, 03(06): 356 -361 .
[5] Xu Xiaobin;Lin Weili; Wang Tao;et al.. Long-term Trend of Tropospheric Ozone over the Yangtze Delta Region of China[J]. Climate Change Research, 2007, 03(00): 60 -65 .
[6] Gao Qingxian; Du Wupeng; Lu Shiqing;et al.. Methane Emission from Municipal Solid Waste Treatments in China[J]. Climate Change Research, 2007, 03(00): 70 -74 .
[7] . Guide to Authors[J]. Climate Change Research, 2006, 02(00): 84 .
[8] . Granger Causality Test for Detection and Attribution of Climate Change[J]. Climate Change Research, 2008, 04(001): 37 -41 .
[9] . AIntra-annual Inhomogeneity Characteristics of Precipitation over Northwest China[J]. Climate Change Research, 2007, 03(05): 276 -281 .
[10] . Projection of Future Precipitation Extremes in the Yangtze River Basin for 2001-2050[J]. Climate Change Research, 2007, 03(06): 340 -344 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备11008704号-4
版权所有 © 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn