气候变化研究进展 ›› 2021, Vol. 17 ›› Issue (4): 430-443.doi: 10.12006/j.issn.1673-1719.2020.114
收稿日期:
2020-06-08
修回日期:
2020-07-07
出版日期:
2021-07-30
发布日期:
2021-08-11
作者简介:
祁莉,女,教授, 基金资助:
Received:
2020-06-08
Revised:
2020-07-07
Online:
2021-07-30
Published:
2021-08-11
摘要:
青藏高原东南侧存在一个特殊区域,它常年维持南风,与东亚季风紧密联系,强度变异也将对下游天气气候造成明显影响。该区域南风对全球变暖背景下青藏高原的快速增暖十分敏感。文中利用国际耦合模式比较计划第5阶段(CMIP5)中13个模式的多情景预估结果,分析了全球变暖1.5℃、2℃和3℃下常年南风区南风强度的变异特征。结果表明,13个模式中仅BCC-CSM1.1、GFDL-CM3和MIROC5模式能够较好地模拟常年南风区的范围,以及其独特的“双峰型”季节演变特征。然而,对南风的预估,模式间存在较大差异。MIROC5模式预估南风将明显加强,尤其6月之后,并持续至12月,但BCC-CSM1.1和GFDL-CM3模式预估南风在秋季后将明显减弱。进一步分析发现,各模式预估的差异主要源于它们对青藏高原及东亚地区之间温差的模拟存在显著差异。MIROC5模式模拟的青藏高原升温幅度高于周边区域,其与东亚平原之间的温度梯度将使常年南风区南风增强。因此,模式未来改进中应特别关注对青藏高原与其周边热力梯度的合理模拟,这对青藏高原区及东亚季风气候的正确模拟至关重要。
祁莉, 杨睿婷. 全球变暖下青藏高原东南侧常年南风强度的多模式结果比较分析[J]. 气候变化研究进展, 2021, 17(4): 430-443.
QI Li, YANG Rui-Ting. Variation of southerly wind on the southeast side of Tibetan Plateau under global warming: comparison among CMIP5 simulations[J]. Climate Change Research, 2021, 17(4): 430-443.
图1 1980—2016年平均850 hPa经向风在全年72候中南风的概率 注:图中灰色阴影为南风概率超过0.9的区域,红色方框为文中定义的常年南风区(22.5°~30°N,102.5°~107.5°E)。
Fig. 1 The probability of southerly wind in 850 hPa in 1980-2016 (The shade indicates the region whose probability greater than 0.9. Red rectangle shows the study region over 22.5°-30°N, 102.5°-107.5°E)
图2 1980—2005年再分析资料及13个CMIP5模式历史模拟资料的22.5˚~30˚N平均850 hPa经向风逐候时间-经度剖面图(单位:m/s) 注:阴影区表示经向风为正值,等值线间隔为2 m/s。
Fig. 2 Time-longtitude cross section of 850 hPa meridional wind (m/s) over 22.5˚-30˚N in 1980-2005 from reanalysis data and historical simulation of 13 CMIP5 models (The shade marks the southerly wind)
图3 1980—2005年再分析资料及13个CMIP5模式历史模拟资料的常年南风区区域平均850 hPa经向风的逐候演变 注:黑色实线为逐候结果,粗实线为5候平滑结果。
Fig. 3 Average meridional wind (black line) (thick line indicates the moving average of 5 pentad) over the study region in 1980-2005 from reanalysis data and historical simulation of 13 CMIP5 models
图4 3个模式在历史时期和未来不同排放情景下全球平均地表气温变化曲线 注:相对于1986—2005年平均,虚线是年际变化曲线,实线为9 a平滑后的结果,灰色阴影为历史时期。
Fig. 4 Time series of global mean surface temperature (relative to 1986-2005) in (a) RCP 2.6, (b) RCP 4.5, (c) RCP 6.0 and (d) RCP 8.5 scenarios (Solid lines are the 9 years running average)
图5 3个模式在不同排放情景下常年南风区年平均经向风异常的变化曲线 注:相对于1986—2005年平均,虚线是年际变化曲线,实线为9点平滑后的结果。
Fig. 5 Southerly wind anomaly (dashed lines) over the study region relative to 1985-2005 in RCP 2.6 (a), RCP 4.5 (b), RCP 6.0 (c) and RCP 8.5 (d) scenarios (Solid lines are the 9 years running average)
图6 BCC-CSM1.1模式在不同排放情景下升温阈值分别达到1.5℃、2℃和3℃时22.5˚~30˚N平均850 hPa经向风异常的时间-经度剖面图 注:相对于1986—2005年平均,图中为进行了3候平滑后的结果,黑点表示达到90%的信度检验。空白图表明该模式在该种情景下21世纪末之前未达到该增温阈值。
Fig. 6 The time-longtitude cross section of the future change of 850 hPa meridional wind over 22.5˚-30˚N relative to 1986-2005 when the global warming reaches 1.5℃, 2℃ and 3℃ in RCP2.6, RCP4.5, RCP6.0, and RCP8.5 in BCC-CSM1.1 simulation (The dots marks the region reaching 90% confidence level)
图8 BCC-CSM1.1和MIROC5模式在不同排放情景下全球气温升高1.5℃时秋季30˚N的气温异常垂直剖面图
Fig. 8 Anomaly air temperature along 30˚N in autumn when global warming reaches 1.5℃ in RCP2.6, RCP4.5, RCP6.0 and RCP8.5 in BCC-CSM1.1 and MIROC5 simulation (The dots marks the region reaching 90% confidence level)
图9 BCC-CSM1.1和MIROC5模式中4个排放情景下全球气温升高1.5℃时秋季地表气温的增幅 注:图中打点区通过了90%的信度检验。
Fig. 9 The future change of autumn air temperature relative to 1986-2005 when the global warming reaches 1.5℃ in BCC-CSM1.1 and MIROC5 simulations (The dots mark the region reaching 90% confidence level)
图10 BCC-CSM1.1和MIROC5在不同排放情景下全球气温升高1.5℃时,青藏高原与东亚平原间地表增温温差的逐候演变 注:实线为7候滑动平均曲线,灰色阴影为8—10月。
Fig. 10 The time series of surface thermal contrast between the Tibetan Plateau and East Asian plain when the global warming reaches 1.5℃ (Gray shade marks the autumn season)
[1] | 祁莉, 何金海. 青藏高原东南侧南风的季节演变特征分析[J]. 高原气象, 2011, 30(5):1139-1147. DOI: 1000-0534(2011)05-1139-09. |
Qi L, He J H. Seasonal evolution features of the southerly wind on the southeast side of Tibetan Plateau[J]. Plateau Meteorology, 2011, 30(5):1139-1147. DOI: 1000-0534(2011)05-1139-09 (in Chinese) | |
[2] | 韦晋, 何金海, 苏志重, 等. 青藏高原东南侧南风演变特征及其与中国东部春季降水的关系分析[J]. 气象, 2013, 39(2):129-136. DOI: 10.7519/j.issn.1000-0526.2013.02.001. |
Wei J, He J H, Su Z Z, et al. Characteristics of south wind in east southern Tibetan Plateau and its relationship with eastern China spring rain[J]. Meteorological Monthly, 2013, 39(2):129-136. DOI: 10.7519/j.issn.1000-0526.2013.02.001 (in Chinese) | |
[3] |
Qi L, He J H, Zhang Z Q, et al. Seasonal cycle of the zonal land-sea thermal contrast and East Asian subtropical monsoon circulation[J]. Chinese Science Bulletin, 2008, 53(1):131-136
doi: 10.1007/s11434-007-0518-0 URL |
[4] | 陶诗言. 冬季由印缅来的低槽对于华南天气的影响[J]. 气象学报, 1953, 23(3):172-192. |
Tao S Y. The influence of the trough from Indo-Burma on the weather of southern China in winter[J]. Acta Meteorologica Sinica, 1953, 23(3):172-192 (in Chinese) | |
[5] | 郁淑华, 何光碧, 滕家谟. 南风气流对四川盆地西部突发性暴雨影响的数值试验[J]. 成都气象学院学报, 1997, 12(4):292-297. |
Yu S H, He G B, Teng J M. Numerical experiment of the influence of southern flow on torrential rain in west Sichuan Basin[J]. Journal of Chengdu Institute of Meteorology, 1997, 12(4):292-297 (in Chinese) | |
[6] | 陈艺敏, 钱永甫. 长江中下游梅雨期降水与环流关系分析及模拟[J]. 热带气象学报, 2006, 22(1):26-33. DOI: 1004-4965(2006)01-0026-08. |
Chen Y M, Qian Y F. The analysis and numerical simulation of atmospheric circulation of Meiyu rainfall in the mid-lower reaches of the Changjiang River[J]. Journal of Tropical Meteorology, 2006, 22(1):26-33. DOI: 1004-4965(2006)01-0026-08 (in Chinese) | |
[7] | 张庆云, 吕俊梅, 杨莲梅, 等. 夏季中国降水型的年代际变化与大气内部动力过程及外强迫因子关系[J]. 大气科学, 2007, 31(6):1290-1300. DOI: 1006-9895(2007)06-1290-11. |
Zhang Q Y, Lv J M, Yang L M, et al. The interdecadal variation of precipitation pattern over China during summer and its relationship with the atmospheric internal dynamic processes and extra-forcing factors[J]. Chinese Journal of Atmospheric Sciences, 2007, 31(6):1290-1300. DOI: 1006-9895(2007)06-1290-11 (in Chinese) | |
[8] |
Feng L, Zhang Y C. Impacts of the thermal effects of sub-grid orography on the heavy rainfall events along the Yangtze River valley in 1991[J]. Advances in Atmospheric Sciences, 2007, 24(5):881-892
doi: 10.1007/s00376-007-0881-4 URL |
[9] | 丁一汇, 王遵娅, 宋亚芳, 等. 中国南方2008 年1 月罕见低温雨雪冰冻灾害发生的原因及其与气候变暖的关系[J]. 气象学报, 2008, 66(5):808-825. DOI: 0577-6619/2008/66(5)-0808-25. |
Ding Y H, Wang Z Y, Song Y F, et al. Causes of the unprecedented freezing disaster in January 2008 and its possible association with the global warming[J]. Acta Meteorologica Sinica, 2008, 66(5):808-825. DOI: 0577-6619/2008/66(5)-0808-25 (in Chinese) | |
[10] | 王东海, 柳崇健, 刘英, 等. 2008年1月中国南方低温雨雪冰冻天气特征及其天气动力学成因的初步分析[J]. 气象学报, 2008, 66(3):405-422. DOI: 0577-6619/2008/66(3)-0405-22. |
Wang D H, Liu C J, Liu Y, et al. A preliminary analysis of features and causes of the snow storm event over the southern China in January 2008[J]. Acta Meteorologica Sinica, 2008, 66(3):405-422. DOI: 0577-6619/2008/66(3)-0405-22 (in Chinese) | |
[11] | 彭世球, 徐祥德, 施晓辉, 等. “世界屋脊”大地形坡面探测同化信息对下游天气的预警效应[J]. 科学通报, 2008, 53(24):3134-3138. |
Peng S Q, Xu X D, Shi X H, et al. The role of observations used data assimilation from Tibetan Plateau slope[J]. Chinese Science Bulletin, 2008, 53(24):3134-3138 (in Chinese) | |
[12] |
Kang S C, Zhang Q G, Qian Y, et al. Linking atmospheric pollution to cryospheric change in the Third Pole region: current progresses and future prospects[J]. National Science Review, 2019, 6(4):796-809
doi: 10.1093/nsr/nwz031 URL |
[13] | Kang S C, Cong Z Y, Wang X P, et al. The transboundary transport of air pollutants and their environmental impacts on Tibetan Plateau[J]. Chinese Science Bulletin, 2019, 64(27):2876-2884 |
[14] | IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013 |
[15] |
Meinshausen M, Meinshausen N, Hare W, et al. Greenhouse-gas emission targets for limiting global warming to 2℃[J]. Nature, 2009, 458(7242):1158-1162
doi: 10.1038/nature08017 URL |
[16] | 胡婷, 孙颖, 张学斌. 全球1.5和2℃温升时的气温和降水变化预估[J]. 科学通报, 2017, 62(26):3098-3111. DOI: 10.1360/N972016-01234. |
Hu T, Sun Y, Zhang X B. Temperature and precipitation projection at 1.5 and 2℃ increase in global mean temperature[J]. Chinese Science Bulletin, 2017, 62(26):3098-3111. DOI: 10.1360/N972016-01234 (in Chinese) | |
[17] | 翟盘茂, 余荣, 周佰铨, 等. 1.5℃增暖对全球和区域影响的研究进展[J]. 气候变化研究进展, 2017, 13(5):465-472. DOI: 10.12006/j.issn.1673-1719.2017.159. |
Zhai P M, Yu R, Zhou B Q, et al. Research progress in impact of 1.5℃ global warming on global and regional scales[J]. Climate Change Research, 2017, 13(5):465-472. DOI: 10.12006/j.issn.1673-1719.2017.159 (in Chinese) | |
[18] | 李红梅, 李林. 2℃全球变暖背景下青藏高原平均气候和极端气候事件变化[J]. 气候变化研究进展, 2015, 11(3):157-164. DOI: 10.3969/j.issn.1673-1719.2015.03.001. |
Li H M, Li L. Mean and extreme climate change on the Qinghai-Tibetan Plateau with a 2℃ global warming[J]. Climate Change Research, 2015, 11(3):157-164. DOI: 10.3969/j.issn.1673-1719.2015.03.001 (in Chinese) | |
[19] | 吴芳营, 游庆龙, 谢文欣, 等. 全球变暖1.5℃和2℃阈值时青藏高原气温的变化特征[J]. 气候变化研究进展, 2019, 15(2):130-139. DOI: 10.12006/j.issn.1673-1719.2018.175. |
Wu F Y, You Q L, Xie W X, et al. Temperature change on the Tibetan Plateau under global warming of 1.5℃ and 2℃[J]. Climate Change Research, 2019, 15(2):130-139. DOI: 10.12006/j.issn.1673-1719.2018.175 (in Chinese) | |
[20] | 丁凯熙, 张利平, 佘敦先, 等. 全球升温1.5℃和2.0℃情景下澜沧江流域极端降水的变化特征[J]. 气候变化研究进展, 2020, 16(4):466-479. |
Ding K X, Zhang L P, She D X, et al. Variation of extreme precipitation in Lancang River basin under global warming of 1.5℃ and 2.0℃[J]. Climate Change Research, 2020, 16(4):466-479 (in Chinese) | |
[21] | Qi L, He J H, Wang Y Q. The terraced thermal contrast among the Tibetan Plateau, the East Asian plain, and the western North Pacific and its impacts on the seasonal transition of East Asian climate[J]. Chinese Science Bulletin, 2014, 58(2):212-221 |
[1] | 吴青柏, 徐晓明, 贺建桥, 姚晓军, 张中琼. 青藏高原冰冻圈变化对工程的影响[J]. 气候变化研究进展, 2025, 21(1): 22-31. |
[2] | 仕仁睿, 蒋兴文, 王遵娅. 青藏高原雨季建立进程及其环流因子分析[J]. 气候变化研究进展, 2025, 21(1): 91-101. |
[3] | 欧阳志云, 张观石, 应凌霄. 气候变化对青藏高原生态系统分布范围和生态功能的影响研究进展[J]. 气候变化研究进展, 2024, 20(6): 699-710. |
[4] | 车彦军, 陈丽花, 吴佳康, 谷来磊, 武荣, 张东启, 丁明虎. 青藏高原冰前湖与冰川相互作用研究进展[J]. 气候变化研究进展, 2024, 20(5): 519-533. |
[5] | 牛振国, 景雨航, 张东启, 张波. 气候变化背景下青藏高原湿地生态系统响应特征:回顾与展望[J]. 气候变化研究进展, 2024, 20(5): 509-518. |
[6] | 马安静, 张明礼, 周志雄, 王永斌, 王成福. 近地表水汽密度对多年冻土区地表辐射的影响研究——以北麓河地区为例[J]. 气候变化研究进展, 2024, 20(3): 304-315. |
[7] | 包文, 段安民, 游庆龙, 胡蝶. 青藏高原气候变化及其对水资源影响的研究进展[J]. 气候变化研究进展, 2024, 20(2): 158-169. |
[8] | 胡佳怡, 赵林, 王翀, 胡国杰, 邹德富, 幸赞品, 焦梦迪, 乔永平, 刘广岳, 杜二计. CLDAS地表温度产品在青藏高原多年冻土区的适用性评估与校正[J]. 气候变化研究进展, 2024, 20(1): 10-25. |
[9] | 栾澜, 翟盘茂. 基于多源数据的青藏高原雨季降水特征变化分析[J]. 气候变化研究进展, 2023, 19(2): 173-190. |
[10] | 张歆然, 陈昊明. CMIP6模式对青藏高原东坡暖季降水的模拟评估[J]. 气候变化研究进展, 2022, 18(2): 129-141. |
[11] | 吴芳营,游庆龙,谢文欣,张玲. 全球变暖1.5℃和2℃阈值时青藏高原气温的变化特征[J]. 气候变化研究进展, 2019, 15(2): 130-139. |
[12] | 方一平,朱付彪,宜树华,邱孝枰,丁永建. 多年冻土对青藏高原草地生态承载力的贡献研究[J]. 气候变化研究进展, 2019, 15(2): 150-157. |
[13] | 罗小青,徐建军. 青藏高原大气热源及其估算的不确定性因素[J]. 气候变化研究进展, 2019, 15(1): 33-40. |
[14] | 乔德京, 王念秦, 李震, 周建民, 符喜优. 1980—2009水文年青藏高原积雪物候时空变化遥感分析[J]. 气候变化研究进展, 2018, 14(2): 137-143. |
[15] | 孔莹 王澄海. 全球升温1.5℃时北半球多年冻土及雪水当量的响应及其变化[J]. 气候变化研究进展, 2017, 13(4): 316-326. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|