气候变化研究进展 ›› 2025, Vol. 21 ›› Issue (5): 625-640.doi: 10.12006/j.issn.1673-1719.2025.041
收稿日期:2025-02-27
修回日期:2025-04-22
出版日期:2025-09-30
发布日期:2025-08-21
通讯作者:
史培军,男,教授,作者简介:胡金鹏,男,博士研究生,基金资助:
HU Jin-Peng1,2(
), HE Yan4, SHI Pei-Jun1,2,3(
)
Received:2025-02-27
Revised:2025-04-22
Online:2025-09-30
Published:2025-08-21
摘要:
随着气候变化的持续影响,复合干热事件的发生频率不断增加,影响了全球粮食产量。小麦作为主要粮食作物,对保障全球粮食安全和经济发展至关重要。通过总结当前全球小麦主产区复合干热事件的时空格局变化,梳理了当前复合干热事件对小麦产量的影响程度,明晰了复合干热事件对小麦产量的影响机理与研究方法。结果表明,1960—2020年全球小麦主产区发生复合干热事件的频率和强度均有所增加,已经对小麦产量形成严重威胁,预计未来会进一步增加和强化。陆气系统与作物生理胁迫的相互作用使得复合干热对小麦的影响变得更加复杂。未来研究亟需构建具有农作物生理意义的复合干热事件危险性指标,利用统计模型和作物生长模型深入探究对复合干热事件的响应机制,进一步研究不同维度、方法和模型的融合,以加强对复合干热事件的适应和风险预估,以期为深入理解复合干热事件对小麦产量的影响提供科学依据,为农业生产的可持续发展提供参考。
胡金鹏, 何研, 史培军. 复合干热事件对小麦产量影响的研究进展与展望[J]. 气候变化研究进展, 2025, 21(5): 625-640.
HU Jin-Peng, HE Yan, SHI Pei-Jun. Research progress and prospects on the impacts of compound hot and dry events on wheat yield[J]. Climate Change Research, 2025, 21(5): 625-640.
图1 小麦主产区复合干热事件的时空特征
Fig. 1 Spatial and temporal characteristics of compound hot and dry events in major wheat producing regions 注:图中相关性分析所用的温度与降水数据来自欧洲中期天气预报中心(ECMWF)发布的ERA5再分析数据集;全球小麦生长季时段数据参考文献[63]。高温积温定义为生长季内日最高气温超过30℃部分的累计温度值,累计降水为同期总降水量。各小麦主产区的特征变化总结自文献[46-62]。本图底图基于自然资源部标准地图服务网站下载的审图号为GS(2016)1667号的标准地图制作,底图边界无修改,下同。
| [1] | Rezaei E E, Webber H, Asseng S, et al. Climate change impacts on crop yields[J]. Nature Reviews Earth & Environment, 2023, 4 (12): 831-846 |
| [2] |
Dasgupta S, Robinson E J Z. Attributing changes in food insecurity to a changing climate[J]. Scientific Reports, 2022, 12 (1): 4709
doi: 10.1038/s41598-022-08696-x pmid: 35304565 |
| [3] | 刘苇航, 叶涛, 史培军, 等. 气候变化对粮食生产风险的影响研究进展[J]. 自然灾害学报, 2022, 31 (4): 1-11. |
| Liu W H, Ye T, Shi P J, et al. Advances in the study of climate change impact on crop producing risk[J]. Journal of Natural Disasters, 2022, 31 (4): 1-11 (in Chinese) | |
| [4] | Yin J, Slater L. Understanding heatwave-drought compound hazards and impacts on socio-ecosystems[J]. The Innovation Geoscience, 2023, 1 (3): 100042 |
| [5] | Yao Y, Fu B J, Liu Y X, et al. Compound hot-dry events greatly prolong the recovery time of dryland ecosystems[J]. National Science Review, 2024, 11 (10): nwae274 |
| [6] |
Ebi K L, Vanos J, Baldwin J W, et al. Extreme weather and climate change: population health and health system implications[J]. Annual Review of Public Health, 2021, 42: 293-315
doi: 10.1146/annurev-publhealth-012420-105026 pmid: 33406378 |
| [7] | Lesk C, Rowhani P, Ramankutty N. Influence of extreme weather disasters on global crop production[J]. Nature, 2016, 529 (7584): 84-87 |
| [8] | Cohen I, Zandalinas S I, Huck C, et al. Meta-analysis of drought and heat stress combination impact on crop yield and yield components[J]. Physiologia Plantarum, 2021, 171 (1): 66-76 |
| [9] | Ostmeyer T, Parker N, Jaenisch B, et al. Impacts of heat, drought, and their interaction with nutrients on physiology, grain yield, and quality in field crops[J]. Plant Physiology Reports, 2020, 25 (4): 549-568 |
| [10] | Feng S F, Hao Z C, Zhang X, et al. Changes in climate-crop yield relationships affect risks of crop yield reduction[J]. Agricultural and Forest Meteorology, 2021, 304-305: 108401 |
| [11] | Lesk C, Anderson W. Decadal variability modulates trends in concurrent heat and drought over global croplands[J]. Environmental Research Letters, 2021, 16 (5): 055024 |
| [12] | 郝增超, 陈阳. 地球系统视角下的多圈层复合极端事件研究进展与展望[J]. 中国科学: 地球科学, 2024, 54 (2): 360-393. |
| Hao Z C, Chen Y. Research progresses and prospects of multi-sphere compound extremes from the Earth System perspective[J]. Science China Earth Sciences, 2024, 67 (2): 343-374 (in Chinese) | |
| [13] | 李颖, 刘自颖, 梁继颢. 复合干热事件研究热点分析与展望[J]. 华北水利水电大学学报 (自然科学版), 2024: 1-13. |
| Li Y, Liu Z Y, Liang J H. Research hotspot analysis and future prospects of compound dry-heat events[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2024: 1-13 (in Chinese) | |
| [14] | Afrooz M, Chen G, Anandhi A. Drought- and heatwave-associated compound extremes: a review of hotspots, variables, parameters, drivers, impacts, and analysis frameworks[J]. Frontiers in Earth Science, 2023, 10: 914437 |
| [15] | Shiferaw B, Smale M, Braun H J, et al. Crops that feed the world 10. Past successes and future challenges to the role played by wheat in global food security[J]. Food Security, 2013, 5 (3): 291-317 |
| [16] | Wu H J, Su X L, Zhang G X, et al. Statistical prediction of agricultural drought severity in China based on dry or hot events[J]. Theoretical and Applied Climatology, 2022, 147 (1-2): 159-171 |
| [17] | He Y, Zhao Y X, Sun S, et al. Global warming determines future increase in compound dry and hot days within wheat growing seasons worldwide[J]. Climatic Change, 2024, 177: 70 |
| [18] | Biess B, Gudmundsson L, Windisch M G, et al. Future changes in spatially compounding hot, wet or dry events and their implications for the world’s breadbasket regions[J]. Environmental Research Letters, 2024, 19 (6): 064011 |
| [19] | Monfreda C, Ramankutty N, Foley J A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000[J]. Global Biogeochemical Cycles, 2008, 22 (1): GB1022 |
| [20] | IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation: a special report of working groups I and II of the Intergovernmental Panel on Climate Change[R]. Cambridge: Cambridge University Press, 2012 |
| [21] | Zscheischler J, Westra S, van den Hurk B J J M, et al. Future climate risk from compound events[J]. Nature Climate Change, 2018, 8 (8): 750 |
| [22] | 史培军, 吕丽莉, 汪明, 等. 灾害系统: 灾害群、灾害链、灾害遭遇[J]. 自然灾害学报, 2014, 23 (6): 1-12. |
| Shi P J, Lyu L L, Wang M, et al. Disaster system: disaster cluster, disaster chain and disaster compound[J]. Journal of Natural Disasters, 2014, 23 (6): 1-12 (in Chinese) | |
| [23] | 霍治国, 尚莹, 邬定荣, 等. 中国小麦干热风灾害研究进展[J]. 应用气象学报, 2019, 30 (2): 129-141. |
| Huo Z G, Shang Y, Wu D R, et al. Review on disaster of hot dry wind for wheat in China[J]. Journal of Applied Meteorological Science, 2019, 30 (2): 129-141 (in Chinese) | |
| [24] | Tavakol A, Rahmani V, Harrington J. Probability of compound climate extremes in a changing climate: a copula-based study of hot, dry, and windy events in the central United States[J]. Environmental Research Letters, 2020, 15 (10): 104058 |
| [25] | Feng Y, Sun F. Changes in the severity of compound hot-dry-windy events over global land areas[J]. Ecological Indicators, 2024, 165: 112207 |
| [26] | Zhao M, Geruo A, Liu Y, et al. Evapotranspiration frequently increases during droughts[J]. Nature Climate Change, 2022, 12 (11): 1024 |
| [27] | Mukherjee S, Mishra A K. Increase in compound drought and heatwaves in a warming world[J]. Geophysical Research Letters, 2021, 48 (1): e2020GL090617 |
| [28] | Feng S F, Hao Z C, Wu X Y, et al. A multi-index evaluation of changes in compound dry and hot events of global maize areas[J]. Journal of Hydrology, 2021, 602: 126728 |
| [29] | Hosseinzadehtalaei P, Termonia P, Tabari H. Projected changes in compound hot-dry events depend on the dry indicator considered[J]. Communications Earth & Environment, 2024, 5 (1): 220 |
| [30] | Bernal M A, Lovino M A, Muller G V, et al. Spatiotemporal variability of extreme precipitation events and their impacts on soil moisture and water table depth in Argentina’s core crop region[J]. Hydrological Sciences Journal, 2023, 68 (6): 794-809 |
| [31] | Qin N X, Lu Q Q, Fu G B, et al. Assessing the drought impact on sugarcane yield based on crop water requirements and standardized precipitation evapotranspiration index[J]. Agricultural Water Management, 2023, 275: 108037 |
| [32] | Rashid M A, Andersen M N, Wollenweber B, et al. Acclimation to higher VPD and temperature minimized negative effects on assimilation and grain yield of wheat[J]. Agricultural and Forest Meteorology, 2018, 248: 119-129 |
| [33] |
Grossiord C, Buckley T N, Cernusak L A, et al. Plant responses to rising vapor pressure deficit[J]. New Phytologist, 2020, 226 (6): 1550-1566
doi: 10.1111/nph.16485 pmid: 32064613 |
| [34] | Zhu X F, Liu T T, Xu K, et al. The impact of high temperature and drought stress on the yield of major staple crops in northern China[J]. Journal of Environmental Management, 2022, 314: 115092 |
| [35] | Jiang T, He L, Feng H, et al. Understanding the impacts of extreme temperature and humidity compounds on winter wheat traits in China[J]. Agricultural and Forest Meteorology, 2025, 362: 109876 |
| [36] |
Lesk C, Coffel E, Winter J, et al. Stronger temperature-moisture couplings exacerbate the impact of climate warming on global crop yields[J]. Nature Food, 2021, 2 (9): 683
doi: 10.1038/s43016-021-00341-6 pmid: 37117467 |
| [37] |
Toreti A, Cronie O, Zampieri M. Concurrent climate extremes in the key wheat producing regions of the world[J]. Scientific Reports, 2019, 9: 5493
doi: 10.1038/s41598-019-41932-5 pmid: 30940858 |
| [38] | De L P, Donat M G. Projected changes in hot, dry, and compound hot-dry extremes over global land regions[J]. Geophysical Research Letters, 2023, 50 (13): e2022GL102493 |
| [39] | Zscheischler J, Orth R, Seneviratne S I. Bivariate return periods of temperature and precipitation explain a large fraction of European crop yields[J]. Biogeosciences, 2017, 14 (13): 3309-3320 |
| [40] | Min R Y, Gu X H, Guan Y S, et al. Increasing likelihood of global compound hot-dry extremes from temperature and runoff during the past 120 years[J]. Journal of Hydrology, 2023, 621: 129553 |
| [41] | Li J, Wang Z L, Wu X S, et al. A standardized index for assessing sub-monthly compound dry and hot conditions with application in China[J]. Hydrology and Earth System Sciences, 2021, 25 (3): 1587-1601 |
| [42] | Wu X, Hao Z, Hao F, et al. Dry-hot magnitude index: a joint indicator for compound event analysis[J]. Environmental Research Letters, 2019, 14 (6): 064017 |
| [43] | 李凯伟. 东北大豆旱热复合胁迫综合风险动态评估与区划研究[D]. 吉林: 东北师范大学, 2023. |
| Li K W. Study on dynamic assessment and zoning of comprehensive risk of compound drought and heat stress for soybean in Northeast China[D]. Jilin: Northeast Normal University, 2023 (in Chinese). | |
| [44] | Coffel E D, Lesk C. Recent shift from energy- to moisture-limitation over global croplands[J]. Environmental Research Letters, 2024, 19 (6): 064065 |
| [45] | Denissen J M C, Teuling A J J, Pitman A J J, et al. Widespread shift from ecosystem energy to water limitation with climate change[J]. Nature Climate Change, 2023, 13 (8): 871 |
| [46] | He Y, Hu X K, Xu W, et al. Increased probability and severity of compound dry and hot growing seasons over world’s major croplands[J]. Science of the Total Environment, 2022, 824: 153885 |
| [47] |
Zhao H D, Zhang L N, Kirkham M B, et al. US winter wheat yield loss attributed to compound hot-dry-windy events[J]. Nature Communications, 2022, 13 (1): 7233
doi: 10.1038/s41467-022-34947-6 pmid: 36433980 |
| [48] | Mazdiyasni O, AghaKouchak A. Substantial increase in concurrent droughts and heatwaves in the United States[J]. Proceedings of the National Academy of Sciences, 2015, 112 (37): 11484-11489 |
| [49] | Doshi S C, Lohmann G, Ionita M. Hotspot movement of compound events on the Europe continent[J]. Scientific Reports, 2023, 13 (1): 18100 |
| [50] | Ionita M, Caldarescu D E, Nagavciuc V. Compound hot and dry events in Europe: variability and large-scale drivers[J]. Frontiers in Climate, 2021, 3: 688991 |
| [51] | Manning C, Widmann M, Bevacqua E, et al. Increased probability of compound long-duration dry and hot events in Europe during summer (1950-2013)[J]. Environmental Research Letters, 2019, 14 (9): 094006 |
| [52] | Rajeev A, Mahto S S, Mishra V. Climate warming and summer monsoon breaks drive compound dry and hot extremes in India[J]. iScience, 2022, 25 (11): 105377 |
| [53] | Guntu R K, Merz B, Agarwal A. Increased likelihood of compound dry and hot extremes in India[J]. Atmospheric Research, 2023, 290: 106789 |
| [54] | Muthuvel D, Mahesha A. Spatiotemporal analysis of compound agrometeorological drought and hot events in India using a standardized index[J]. Journal of Hydrologic Engineering, 2021, 26 (7): 04021022 |
| [55] |
Lu Y, Hu H C, Li C, et al. Increasing compound events of extreme hot and dry days during growing seasons of wheat and maize in China[J]. Scientific Reports, 2018, 8: 16700
doi: 10.1038/s41598-018-34215-y pmid: 30420656 |
| [56] | Wu X Y, Hao Z C, Zhang X, et al. Evaluation of severity changes of compound dry and hot events in China based on a multivariate multi-index approach[J]. Journal of Hydrology, 2020, 583: 124580 |
| [57] | Hu Y J, Wang W, Wang P, et al. Spatial-temporal variations and drivers of the compound dry-hot event in China[J]. Atmospheric Research, 2024, 299: 107160 |
| [58] | Röthlisberger M, Martius O. Quantifying the local effect of Northern Hemisphere atmospheric blocks on the persistence of summer hot and dry spells[J]. Geophysical Research Letters, 2019, 46 (16): 10101-10111 |
| [59] | Wei Y C, Yu M, Wei J F, et al. Impacts of extreme climates on vegetation at middle-to-high latitudes in Asia[J]. Remote Sensing, 2023, 15 (5): 1251 |
| [60] | Pascoa P, Gouveia C M, Ribeiro A F S, et al. Compound drought and hot events assessment in Australia using copula functions[J]. Environmental Research Communications, 2024, 6 (3): 031002 |
| [61] | Reddy P J, Perkins-Kirkpatrick S E, Ridder N N, et al. Combined role of ENSO and IOD on compound drought and heatwaves in Australia using two CMIP6 large ensembles[J]. Weather and Climate Extremes, 2022, 37: 100469 |
| [62] |
Ridder N N, Pitman A J, Westra S, et al. Global hotspots for the occurrence of compound events[J]. Nature Communications, 2020, 11 (1): 5956
doi: 10.1038/s41467-020-19639-3 pmid: 33235203 |
| [63] | Sacks W J, Deryng D, Foley J A, et al. Crop planting dates: an analysis of global patterns[J]. Global Ecology and Biogeography, 2010, 19 (5): 607-620 |
| [64] | Zhang Y T, Hao Z C, Jiang Y T, et al. Global warming increases risk from compound dry-hot events to human and agricultural systems[J]. International Journal of Climatology, 2023, 43 (14): 6706-6719 |
| [65] | Li S Y, Wang B, De L L, et al. Can agronomic options alleviate the risk of compound drought-heat events during the wheat flowering period in southeastern Australia?[J]. European Journal of Agronomy, 2024, 153: 127030 |
| [66] | Goulart H M D, van der Wiel K, Folberth C, et al. Increase of simultaneous soybean failures due to climate change[J]. Earth’s Future, 2023, 11 (4): e2022EF003106 |
| [67] | Zhang Y T, Hao Z C, Zhang Y. Agricultural risk assessment of compound dry and hot events in China[J]. Agricultural Water Management, 2023, 277: 108128 |
| [68] | Zscheischler J, Seneviratne S I. Dependence of drivers affects risks associated with compound events[J]. Science Advances, 2017, 3 (6): e1700263 |
| [69] |
Pradhan G P, Prasad P V V, Fritz A K, et al. Effects of drought and high temperature stress on synthetic hexaploid wheat[J]. Functional Plant Biology, 2012, 39 (3): 190-198
doi: 10.1071/FP11245 pmid: 32480773 |
| [70] |
Suzuki N, Rivero R M, Shulaev V, et al. Abiotic and biotic stress combinations[J]. New Phytologist, 2014, 203 (1): 32-43
doi: 10.1111/nph.12797 pmid: 24720847 |
| [71] | Garcia H R, Diaz J, Trigo R M, et al. A review of the European summer heat wave of 2003[J]. Critical Reviews in Environmental Science and Technology, 2010, 40 (4): 267-306 |
| [72] | Hunt E, Femia F, Werrell C, et al. Agricultural and food security impacts from the 2010 Russia flash drought[J]. Weather and Climate Extremes, 2021, 34: 100383 |
| [73] | Zscheischler J, Fischer E M. The record-breaking compound hot and dry 2018 growing season in Germany[J]. Weather and Climate Extremes, 2020, 29: 100270 |
| [74] |
Heino M, Kinnunen P, Anderson W, et al. Increased probability of hot and dry weather extremes during the growing season threatens global crop yields[J]. Scientific Reports, 2023, 13 (1): 3583
doi: 10.1038/s41598-023-29378-2 pmid: 36869041 |
| [75] | Asseng S, Ewert F, Rosenzweig C, et al. Uncertainty in simulating wheat yields under climate change[J]. Nature Climate Change, 2013, 3 (9): 827-832 |
| [76] | Mishra V, Thirumalai K, Singh D, et al. Future exacerbation of hot and dry summer monsoon extremes in India[J]. npj Climate and Atmospheric Science, 2020, 3 (1): 10 |
| [77] |
Collins B. Frequency of compound hot-dry weather extremes has significantly increased in Australia since 1889[J]. Journal of Agronomy and Crop Science, 2022, 208 (6): 941-955
doi: 10.1111/jac.12545 |
| [78] | Ribeiro A F S, Russo A, Gouveia C M, et al. Risk of crop failure due to compound dry and hot extremes estimated with nested copulas[J]. Biogeosciences, 2020, 17 (19): 4815-4830 |
| [79] | He Y, Fang J Y, Xu W, et al. Substantial increase of compound droughts and heatwaves in wheat growing seasons worldwide[J]. International Journal of Climatology, 2022, 42 (10): 5038-5054 |
| [80] | Vogel E, Donat M G, Alexander L, et al. The effects of climate extremes on global agricultural yields[J]. Environmental Research Letters, 2019, 14 (5): 054010 |
| [81] |
Wang X H, Mueller C, Elliot J, et al. Global irrigation contribution to wheat and maize yield[J]. Nature Communications, 2021, 12 (1): 1235
doi: 10.1038/s41467-021-21498-5 pmid: 33623028 |
| [82] |
Zaveri E, Lobell D B. The role of irrigation in changing wheat yields and heat sensitivity in India[J]. Nature Communications, 2019, 10: 4144
doi: 10.1038/s41467-019-12183-9 pmid: 31515485 |
| [83] |
吕丽华, 韩江伟, 张经廷, 等. 抗逆广适小麦品种共性特征分析[J]. 中国农业科学, 2023, 56 (11): 2064-2077.
doi: 10.3864/j.issn.0578-1752.2023.11.003 |
| Lyu L H, Han J W, Zhang J T, et al. Analysis of common characteristics of widely adaptive wheat cultivars[J]. Scientia Agricultura Sinica, 2023, 56 (11): 2064-2077 (in Chinese) | |
| [84] | 张鑫琪, 王迎宾, 郝兴宇, 等. 不同耕作方式对旱地小麦生长发育、生理代谢及产量的影响[J]. 激光生物学报, 2022, 31 (3): 278-288. |
| Zhang X Q, Wang Y B, Hao X Y, et al. Effects of different tillage methods on growth, physiological metabolism, and yield of wheat in dryland[J]. Acta Laser Biology Sinica, 2022, 31 (3): 278-288 (in Chinese) | |
| [85] | Lesk C, Anderson W, Rigden A, et al. Compound heat and moisture extreme impacts on global crop yields under climate change[J]. Nature Reviews Earth & Environment, 2022, 3 (12): 872-889 |
| [86] | Zeng J, Zhang S, Zhou S, et al. Comparison of the risks and drivers of compound hot-dry and hot-wet extremes in a warming world[J]. Environmental Research Letters, 2024, 19 (11): 114001 |
| [87] | Tian Y, Giaquinto D, Di Capua G, et al. Historical changes in the causal effect networks of compound hot and dry extremes in central Europe[J]. Communications Earth & Environment, 2024, 5 (1): 123 |
| [88] | Ha K, Seo Y, Yeo J, et al. Dynamics and characteristics of dry and moist heatwaves over East Asia[J]. npj Climate and Atmospheric Science, 2022, 5 (1): 45 |
| [89] | Yang Y, Tang J. Process-oriented compound long-duration dry and hot events in China: atmospheric conditions, moisture, and heat budget analyses[J]. Journal of Climate, 2024, 37 (19): 5131-5151 |
| [90] | Wang J, Sun J, Hong H, et al. Dominant modes of interannual variability in spring compound dry and hot events over Northern Asia and the possible mechanisms[J]. Atmospheric Research, 2024, 311: 107654 |
| [91] | 丑洁明, 徐源, 徐洪. 气候变化背景下中国主要粮食作物生长期界定的研究综述[J]. 北京师范大学学报 (自然科学版), 2022, 58 (6): 945-949. |
| Chou J M, Xu Y, Xu H. Definition of growing period for major grain crops in China: a review[J]. Journal of Beijing Normal University (Natural Science), 2022, 58 (6): 945-949 (in Chinese) | |
| [92] | Reynolds M P, Gutiérrez R M, Larqué S A. Photosynthesis of wheat in a warm, irrigated environment: I: genetic diversity and crop productivity[J]. Field Crops Research, 2000, 66 (1): 37-50 |
| [93] | Akram M. Growth and yield components of wheat under water stress of different growth stages[J]. Bangladesh Journal of Agricultural Research, 2011, 36 (3): 455-468 |
| [94] |
汝晨, 胡笑涛, 吕梦薇, 等. 花后高温干旱胁迫下氮素对冬小麦氮积累与代谢酶、蛋白质含量及水氮利用效率的影响[J]. 中国农业科学, 2022, 55 (17): 3303-3320.
doi: 10.3864/j.issn.0578-1752.2022.17.004 |
|
Ru C, Hu X T, Lv M W, et al. Effects of nitrogen on nitrogen accumulation and distribution, nitrogen metabolizing enzymes, protein content, and water and nitrogen use efficiency in winter wheat under heat and drought stress after anthesis[J]. Scientia Agricultura Sinica, 2022, 55 (17): 3303-3320 (in Chinese)
doi: 10.3864/j.issn.0578-1752.2022.17.004 |
|
| [95] |
Mittler R. Abiotic stress, the field environment and stress combination[J]. Trends in Plant Science, 2006, 11 (1): 15-19
doi: 10.1016/j.tplants.2005.11.002 pmid: 16359910 |
| [96] | 胡阳阳, 卢红芳, 刘卫星, 等. 灌浆期高温与干旱胁迫对小麦籽粒淀粉合成关键酶活性及淀粉积累的影响[J]. 作物学报, 2018, 44 (4): 591-600. |
| Hu Y Y, Lu H F, Liu W X, et al. Effects of high temperature and water deficiency during grain filling on activities of key starch synthesis enzymes and starch accumulation in wheat[J]. Acta Agronomica Sinica, 2018, 44 (4): 591-600 (in Chinese) | |
| [97] | Osborne T, Slingo J, Lawrence D, et al. Examining the interaction of growing crops with local climate using a coupled crop-climate model[J]. Journal of Climate, 2009, 22 (6): 1393-1411 |
| [98] | Coffel E D, Lesk C, Winter J M, et al. Crop-climate feedbacks boost US maize and soy yields[J]. Environmental Research Letters, 2022, 17 (2): 024012 |
| [99] | Ramankutty N, Delire C, Snyder P. Feedbacks between agriculture and climate: an illustration of the potential unintended consequences of human land use activities[J]. Global and Planetary Change, 2006, 54 (1-2): 79-93 |
| [100] | Mueller N D, Rhines A, Butler E E, et al. Global relationships between cropland intensification and summer temperature extremes over the last 50 years[J]. Journal of Climate, 2017, 30 (18): 7505-7528 |
| [101] | Luan X Y, Vico G. Canopy temperature and heat stress are increased by compound high air temperature and water stress and reduced by irrigation: a modeling analysis[J]. Hydrology and Earth System Sciences, 2021, 25 (3): 1411-1423 |
| [102] | Piao S L, Wang X H, Park T J, et al. Characteristics, drivers and feedbacks of global greening[J]. Nature Reviews Earth & Environment, 2020, 1 (1): 14-27 |
| [103] | 杨虓, 陈德来, 刘自成, 等. 干旱胁迫对旱地冬小麦产量及其抗旱相关基因表达的影响[J]. 干旱地区农业研究, 2025, 43 (1): 69-75. |
| Yang X, Chen D L, Liu Z C, et al. Effects of drought stress on yield and expression of drought-resistant genes in dryland winter wheat[J]. Agricultural Research in the Arid Areas, 2025, 43 (1): 69-75 (in Chinese) | |
| [104] | Liu X R, Zhao Y Q, Zhang J W, et al. Analysis of dynamic changes and correlation between microbial community and flavor quality during Fagopyrum tataricum baijiu fermentation[J]. Food Science and Biotechnology, 2025, 73 (11): 7003-7018 |
| [105] |
Garcia G A, Dreccer M F, Miralles D J, et al. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study[J]. Global Change Biology, 2015, 21 (11): 4153-4164
doi: 10.1111/gcb.13009 pmid: 26111197 |
| [106] | 王超, 李萌, 褚荣浩, 等. 高温干旱复合胁迫下冬小麦叶片和冠层尺度SIF与光合作用的关联变化特征研究[J]. 麦类作物学报, 2024, 44 (8): 1029-1040. |
| Wang C, Li M, Chu R H, et al. Correlation change feature of leaf and canopy scale SIF and photosynthesis in impacts of combined heat and drought stress on winter wheat[J]. Journal of Triticeae Crops, 2024, 44 (8): 1029-1040 (in Chinese) | |
| [107] | 刘希伟, 王德梅, 王艳杰, 等. 小麦生育中后期干旱高温对籽粒产量形成过程的影响机制及缓解措施[J]. 作物杂志, 2023 (6): 17-25. |
| Liu X W, Wang D M, Wang Y J, et al. Impacts mechanism of drought and heat stress in the middle and late growing period on wheat grain yield formation process and mitigation measure[J]. Crops, 2023 (6): 17-25 (in Chinese) | |
| [108] | Kamatchi K A M, Anitha K, Kumar K A, et al. Impacts of combined drought and high-temperature stress on growth, physiology, and yield of crops[J]. Plant Physiology Reports, 2024, 29 (1): 28-36 |
| [109] | 卢红芳, 石向军, 胡阳阳, 等. 灌浆期高温与干旱对小麦籽粒淀粉合成相关酶基因表达的影响[J]. 麦类作物学报, 2020, 40 (5): 517-525. |
| Lu H F, Shi X J, Hu Y Y, et al. Response of enzymes involved in starch biosynthesis to high temperature and drought stress during the grain filling stage[J]. Journal of Triticeae Crops, 2020, 40 (5): 517-525 (in Chinese) | |
| [110] | 汪阳洁, 仇焕广, 陈晓红. 气候变化对农业影响的经济学方法研究进展[J]. 中国农村经济, 2015 (9): 4-16. |
| Wang Y J, Qiu H G, Chen X H. Research progress on economic methods of climate change impacts on agriculture[J]. Chinese Rural Economy, 2015 (9): 4-16 (in Chinese) | |
| [111] | Feng S F, Hao Z C. Quantifying likelihoods of extreme occurrences causing maize yield reduction at the global scale[J]. Science of the Total Environment, 2020, 704: 135250 |
| [112] | Chen G, Li K, Gu H T, et al. Climatic challenges in the growth cycle of winter wheat in the Huang-Huai-Hai plain: new perspectives on high-temperature-drought and low-temperature-drought compound events[J]. Atmosphere, 2024, 15 (7): 747 |
| [113] | Zhao R K, Ma Y J, Wu S R. A review of the research status and prospects of regional crop yield simulations[J]. Agronomy-Basel, 2024, 14 (7): 1397 |
| [114] | 蒙继华, 王亚楠, 林圳鑫, 等. 作物生长模型研究现状与展望[J]. 农业机械学报, 2024, 55 (2): 1-15, 27. |
| Meng J H, Wang Y N, Lin Z X, et al. Progress and perspective of crop growth models[J]. Transactions of the Chinese Society for Agricultural Machinery, 2024, 55 (2): 1-15, 27 (in Chinese) | |
| [115] | Jägermeyr J, Müller C, Ruane A C, et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models[J]. Nature Food, 2021, 2 (11): 875 |
| [116] | Deihimfard R, Rahimi M S, Eyni N H, et al. An optimal combination of sowing date and cultivar could mitigate the impact of simultaneous heat and drought on rainfed wheat in arid regions[J]. European Journal of Agronomy, 2023, 147: 126848 |
| [117] | Hussain J, Khaliq T, Ahmad A, et al. Performance of four crop models for simulations of wheat phenology, leaf growth, biomass and yield across planting dates[J]. PLOS One, 2018, 13 (6): e0197546 |
| [118] | Mueller C, Jägermeyr J, Franke J A, et al. Substantial differences in crop yield sensitivities between models call for functionality-based model evaluation[J]. Earth’s Future, 2024, 12 (3): e2023EF003773 |
| [1] | 张馨月, 李阔, 赵明月, 许吟隆. 中国农业适应气候变化能力建设进展回顾与展望[J]. 气候变化研究进展, 2025, 21(5): 613-624. |
| [2] | 何昊, 李曼, 刘淼, 陈铭杰, 李琪, 胡正华. 气候变化对水稻病害影响的研究进展与展望[J]. 气候变化研究进展, 2025, 21(5): 641-658. |
| [3] | 樊星, 梁启迪, 吴承霖, 高翔. 巴库气候大会成果盘点及全球气候治理形势展望[J]. 气候变化研究进展, 2025, 21(4): 583-592. |
| [4] | 孙若水, 梁媚聪. 从巴黎到贝伦——《巴黎协定》十周年进展与展望[J]. 气候变化研究进展, 2025, 21(4): 574-582. |
| [5] | 谭显春, 程永龙, 闫洪硕, 幸绣程, 朱开伟, 王晨旭. IPCC第七次评估报告第三工作组减缓气候变化概要解读及启示[J]. 气候变化研究进展, 2025, 21(4): 494-501. |
| [6] | 陈显尧, 毕瀚文, 郝潇洁, 马天骄, 郭凌瑞. 大西洋经向翻转环流及其对全球气候的影响[J]. 气候变化研究进展, 2025, 21(4): 469-476. |
| [7] | 朱松丽. 联合国气候公约体系下的国家分类演变[J]. 气候变化研究进展, 2025, 21(4): 565-573. |
| [8] | 丁杰, 曹左男, 胡国铮, 干珠扎布, 赵芬, 王海锋, 高清竹. IPCC第七次评估报告第二工作组气候变化影响、适应与脆弱性大纲解读及启示[J]. 气候变化研究进展, 2025, 21(4): 484-493. |
| [9] | 王博文, 贺一, 滕飞. 我国极端天气气候事件直接和间接经济损失的评估及归因[J]. 气候变化研究进展, 2025, 21(4): 502-518. |
| [10] | 崔鹏, 王岩, 张国涛, 张正涛, 雷雨, 王昊, 王姣, 郝建盛, 朱宏. 气候变化灾害风险防范:现状、挑战与科学问题[J]. 气候变化研究进展, 2025, 21(4): 449-460. |
| [11] | 姜克隽. 综合评估模型在全球应对气候变化中的角色和未来研究转型[J]. 气候变化研究进展, 2025, 21(4): 461-468. |
| [12] | 陈思达, 刘凯, 李博浩, 汪明. 中国脱贫县破纪录极端天气事件研究[J]. 气候变化研究进展, 2025, 21(3): 327-339. |
| [13] | 张琴, 张利平, 李意, 刘丽娜, 佘敦先, 周芷菱, 袁喆. 气候水文预估不确定性量化及约束方法研究进展[J]. 气候变化研究进展, 2025, 21(3): 317-326. |
| [14] | 李慧慧, 齐明, 孙仁金. 气候转型金融标准的国际实践及中国路径[J]. 气候变化研究进展, 2025, 21(3): 428-439. |
| [15] | 石英, 徐影, 巢清尘, 张梦然, 韩振宇, 王荣. 基于CMIP6多模式的南水北调西线工程区未来气候变化预估[J]. 气候变化研究进展, 2025, 21(3): 340-352. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|