气候变化研究进展 ›› 2021, Vol. 17 ›› Issue (3): 268-278.doi: 10.12006/j.issn.1673-1719.2020.206

• 减污降碳协同增效专栏 • 上一篇    下一篇

大气污染物与温室气体减排协同效应评估方法及应用

高庆先1(), 高文欧2, 马占云1(), 唐甲洁3, 付加锋1, 李迎新1, 任佳雪4   

  1. 1 中国环境科学研究院,北京 100012
    2 北京中创碳投教育公司,北京 100007
    3 兰州中心气象台,兰州 730020
    4 首都师范大学资源环境与旅游学院,北京 100048
  • 收稿日期:2020-09-08 修回日期:2020-10-30 出版日期:2021-05-30 发布日期:2021-06-01
  • 通讯作者: 马占云
  • 作者简介:高庆先,男,研究员, gaoqx@craes.org.cn
  • 基金资助:
    国家重点研发计划项目(2018YFC1507701);“碳排放达峰行动”项目编码(14404200000020Z001);“十四五”非二氧化碳温室气体排放管控研(144026000000190006);“一带一路”国家温室气体和污染物协同控制研究(2019-434)

The synergy effect assessment method and its application for air pollutants and greenhouse gases reduction

GAO Qing-Xian1(), GAO Wen-Ou2, MA Zhan-Yun1(), TANG Jia-Jie3, FU Jia-Feng1, LI Ying-Xin1, REN Jia-Xue4   

  1. 1 Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    2 Beijing Zhongchuang Carbon Investment Education Company, Beijing 100007, China
    3 Lanzhou Central Meteorological Observatory, Lanzhou 730020, China
    4 Department of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
  • Received:2020-09-08 Revised:2020-10-30 Online:2021-05-30 Published:2021-06-01
  • Contact: MA Zhan-Yun

摘要:

基于二维四象限图构建了一个量化大气污染控制和温室气体减排协同效应的评估指标,建立了量化评估协同效应方法;针对《大气污染防治行动计划》评估中能源结构调整和产业结构调整措施进行了协同效应量化实施效果评估。结果显示:所有实施的减排污染物的措施均有正的CO2减排协同效应,应该积极鼓励和推荐。实现CO2和SO2减排最大协同效应的措施是减少煤炭消费总量;此外,电力替代煤炭和油品、天然气替代燃煤等也可以实现较大的SO2减排,但其CO2的减排效果相对较小;淘汰小型燃煤锅炉可以实现较高的NO2和CO2减排;淘汰落后产能和化解过剩产能等也有较高的协同效应;SO2和CO2协同效应评估指数最高的是能源消耗下降措施,其次是燃料替代措施;NO2和CO2协同效应评估指数最高的是淘汰燃煤锅炉措施,其次是天然气替代燃煤措施;烟尘和CO2协同效应评估指数最大的是燃煤替代措施,其次是能源消耗下降措施。2013—2017年《大气污染防治行动计划》能源结构调整和产业结构调整部分措施的实施,实现了SO2减排2264.78万t,NO2减排656.1万t,烟尘减排469.18万t,同时实现了CO2减排14.62亿t,具有显著的正向协同效应。

关键词: 大气污染物, 温室气体, 协同效应, 评估方法, 评估指数

Abstract:

This study built an evaluation index to quantify the synergistic effect of air pollution control and greenhouse gas emission reduction based on the two-digit four-quadrant map, and established a method to quantify the synergistic effect, sorting out and giving the calculation methods for the emission of major pollutants such as fuel combustion, cement production, and coal-fired power plants, and determining the emission factors and carbon dioxide emission factors of different fuel types and processes. For the evaluation of the “Air Pollution Prevention Action Plan”, the energy structure adjustment and industrial structure adjustment measures were evaluated for the quantified implementation effect of synergy. The results are as follows. The CO2 emission reduction synergistic effect of all implemented measures to reduce pollutants has a positive synergistic effect, which belongs to pollution emission reduction measures that should be actively encouraged and recommended. The measure to achieve the maximum synergy of CO2 and SO2 is to reduce the total coal consumption. In addition, the replacement of coal and oil by electricity, and the replacement of coal by natural gas can also achieve greater SO2 emission reductions, but their CO2 emission reductions are relatively small. Eliminating small-scale coal-fired boilers can achieve higher NO2 and CO2 emission reduction; eliminating outdated production capacity and dissolving excess capacity also have high synergy effects. The measure of energy consumption reduction has the highest SO2 and CO2 synergy evaluation index, followed by fuel substitution measures; the measure of eliminating coal-fired boilers has the highest NO2 and CO2 synergy evaluation index, followed by natural gas substitution of coal-fired measures; coal-fired alternative measures has the largest soot and CO2 synergy evaluation index, followed by energy consumption reduction measures. The implementation of some measures for energy structure adjustment and industrial structure adjustment in the Air Pollution Prevention Action Plan from 2013 to 2017 achieved a reduction in SO2 emissions of 22.65×106 t, a reduction in NO2 emissions of 6.56×106 t, and soot emission reduction of 4.69×106 t, while achieving CO2 emission reduction of 1.46×109 t, having a significant positive synergistic effect.

Key words: Atmospheric pollutants, Greenhouse gases, Synergistic effects, Assessment methods, Evaluation index

京ICP备11008704号-4
版权所有 © 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn