气候变化研究进展 ›› 2021, Vol. 17 ›› Issue (3): 255-267.doi: 10.12006/j.issn.1673-1719.2020.285
毛显强1(), 曾桉2, 邢有凯1, 高玉冰1,3, 何峰1,3
收稿日期:
2020-12-09
修回日期:
2021-02-18
出版日期:
2021-05-30
发布日期:
2021-06-01
作者简介:
毛显强,男,教授, 基金资助:
MAO Xian-Qiang1(), ZENG An2, XING You-Kai1, GAO Yu-Bing1,3, HE Feng1,3
Received:
2020-12-09
Revised:
2021-02-18
Online:
2021-05-30
Published:
2021-06-01
摘要:
自20世纪90年代IPCC提出协同效益概念以来,大量研究充分证实了温室气体减排政策、措施能产生可观的局地生态环境质量和健康效益。相应地,既有研究也证实局地大气污染物减排政策、措施对温室气体减排同样具有协同效益。中国进入工业化成熟期不久,局地大气污染压力即达到峰值,又迎头遭遇国际应对气候变化浪潮,同时面临空气污染物与温室气体双重减排压力。因此,国内研究不仅关注“由碳及污”或“由污及碳”的单向协同效益评估,更加重视对综合减排措施的协同效益评价。21世纪初,美国国家环保局提出的温室气体与局地大气污染物协同控制概念在中国得到更为广泛的欢迎和接受,并由中国学者首先定义了协同控制的内涵,认为协同控制是实现最大化协同效益的手段和途径。这一进展将人们对协同效益的认识提升到“全球视野、局地行动”的新高度,推动人们从被动地接受“协同效益”,转而主动寻求“协同控制”温室气体和局地大气污染物,为统筹全球和国内(局地)两个减排战场,提供了从认识论、方法论到实践论的全方位支持。中国学者在国内外协同效益、协同控制研究基础上,构建协同控制效应评价和协同控制路径规划方法,并通过多个行业、城市、区域的案例研究证实了该方法体系的科学性和可行性。“协同控制”也已上升成为国家应对气候变化和持续改善大气环境质量的重要策略。在中国推进美丽中国建设、实现碳达峰目标和碳中和愿景的过程中,协同控制的理念、措施、政策将发挥愈加重要的作用。未来,协同控制研究需要将所关注的对象要素,从仅局限于大气扩展至整个生态环境系统;而对建立协同控制的治理体系的研究,将成为实现宏观层面气候变化与生态环境治理协同的关键。
毛显强, 曾桉, 邢有凯, 高玉冰, 何峰. 从理念到行动:温室气体与局地污染物减排的协同效益与协同控制研究综述[J]. 气候变化研究进展, 2021, 17(3): 255-267.
MAO Xian-Qiang, ZENG An, XING You-Kai, GAO Yu-Bing, HE Feng. From concept to action: a review of research on co-benefits and co-control of greenhouse gases and local air pollutants reductions[J]. Climate Change Research, 2021, 17(3): 255-267.
[1] |
Ekins P. The secondary benefits of CO2 abatement: how much emission reduction do they justify?[J]. Ecological Economics, 1996,16(1):13-24
doi: 10.1016/0921-8009(95)00054-2 URL |
[2] | Nemet G F, Holloway T, Meier P. Implications of incorporating air-quality co-benefits into climate change policymaking[J]. Environmental Research Letters, 2010,5(1):1-10 |
[3] |
Deng H M, Liang Q M, Liu L J, et al. Co-benefits of greenhouse gas mitigation: a review and classification by type, mitigation sector, and geography[J]. Environmental Research Letter, 2018,12:123001
doi: 10.1088/1748-9326/aa98d2 URL |
[4] | 谭琦璐, 温宗国, 杨宏伟. 控制温室气体和大气污染物的协同效应研究评述及建议[J]. 环境保护, 2018,46(24):51-57. |
Tan Q L, Wen Z G, Yang H W. Review and recommendations on the co-benefit effects of controlling greenhouse gases and atmospheric pollutants[J]. Environmental Protection, 2018,46(24):51-57 (in Chinese) | |
[5] |
Ayres R U, Walter J. The greenhouse effect: damages, costs and abatement[J]. Environmental and Resource Economics, 1991,1(3):237-270
doi: 10.1007/BF00367920 URL |
[6] | Pearce D W. The secondary benefits of greenhouse gas control [R/OL]. 1992 [2020-12-01]. http://cserge.ac.uk/sites/default/files/gec_1992_12.pdf |
[7] | Barker T. Secondary benefits of greenhouse gas abatement: the effects of a UK carbon-energy tax on air pollution [R]. Energy-Environment-Economy Modelling Discussion Paper No.4, Department of Applied Economics,University of Cambridge, 1993 |
[8] | IPCC. Climate change 1995: economic and social dimensions of climate change [M]. Cambridge: Cambridge University Press, 1995 |
[9] | IPCC. Climate change 2001: mitigation [M]. Cambridge: Cambridge University Press, 2001 |
[10] | IPCC. Climate change 2014: synthesis report [M]. Cambridge: Cambridge University Press, 2014: 151 |
[11] |
van Vuuren D P, Cofala J, Eerens H E, et al. Exploring the ancillary benefits of the Kyoto Protocol for air pollution in Europe[J]. Energy Policy, 2006,34(4):444-460
doi: 10.1016/j.enpol.2004.06.012 URL |
[12] |
Pittel K, Ruebbelke D T G. Climate policy and ancillary benefits: a survey and integration into the modelling of international negotiations on climate change[J]. Ecological Economics, 2008,68(1-2):210-220
doi: 10.1016/j.ecolecon.2008.02.020 URL |
[13] |
Cifuentes L, Borja-Aburto V H, Gouveia N, et al. Climate change: hidden health benefits of greenhouse gas mitigation[J]. Science, 2001,293(5533):1257-1259
doi: 10.1126/science.1063357 URL |
[14] |
Aunan K, Fang J, Hu T, et al. Climate change and air quality: measures with co-benefits in China[J]. Environmental Science & Technology, 2006,40(16):4822-4829
doi: 10.1021/es062994k URL |
[15] |
Syri S, Karvosenoja N, Lehtila A, et al. Modeling the impacts of the Finnish climate strategy on air pollution[J]. Atmospheric Environment, 2002,36(19):3059-3069
doi: 10.1016/S1352-2310(02)00263-7 URL |
[16] |
Rypdal K, Rive N, Astrom S, et al. Nordic air quality co-benefits from European post-2012 climate policies[J]. Energy Policy, 2007,35(12):6309-6322
doi: 10.1016/j.enpol.2007.07.022 URL |
[17] |
Shrestha R M, Pradhan S. Co-benefits of CO2 emission reduction in a developing country[J]. Energy Policy, 2010,38(5):2586-2597
doi: 10.1016/j.enpol.2010.01.003 URL |
[18] |
Barker T, Anger A, Dessens O, et al. Integrated modelling of climate control and air pollution: methodology and results from one-way coupling of an energy-environment-economy (E3MG) and atmospheric chemistry model (p-TOMCAT) in decarbonising scenarios for Mexico to 2050[J]. Environmental Science and Policy, 2010,13(8):661-670
doi: 10.1016/j.envsci.2010.09.008 URL |
[19] |
Boyd R, Krutilla K, Viscusi W K. Energy taxation as a policy instrument to reduce CO2 emissions: a net benefit analysis[J]. Journal of Environmental Economics and Management, 1995,29(1):1-24
doi: 10.1006/jeem.1995.1028 URL |
[20] |
Shakya S R, Kumar S, Shrestha R M. Co-benefits of a carbon tax in Nepal[J]. Mitigation and Adaptation Strategies for Global Change, 2012,17(1):77-101
doi: 10.1007/s11027-011-9310-1 URL |
[21] |
Jakob M. Marginal costs and co-benefits of energy efficiency investments: the case of the Swiss residential sector[J]. Energy Policy, 2006,34(2):172-187
doi: 10.1016/j.enpol.2004.08.039 URL |
[22] |
Aaheim H A, Kristin A, Seip H M. Climate change and local pollution effects: an integrated approach[J]. Mitigation and Adaptation Strategies for Global Change, 1999,4(1):61-81
doi: 10.1023/A:1009693719474 URL |
[23] |
Aunan K, Fang J H, Vennemo H, et al. Co-benefits of climate policy: lessons learned from a study in Shanxi, China[J]. Energy Policy, 2004,32(4):567-581
doi: 10.1016/S0301-4215(03)00156-3 URL |
[24] |
Plachinski S D, Holloway T, Meier P J, et al. Quantifying the emissions and air quality co-benefits of lower-carbon electricity production[J]. Atmospheric Environment, 2014,94:180-191
doi: 10.1016/j.atmosenv.2014.03.028 URL |
[25] |
Beevers S, Carslaw D. The impact of congestion charging on vehicle emissions in London[J]. Atmospheric Environment, 2005,39(1):1-5
doi: 10.1016/j.atmosenv.2004.10.001 URL |
[26] |
Tollefsen P, Rypdal K, Torvanger A, et al. Air pollution policies in Europe: efficiency gains from integrating climate effects with damage costs to health and crops[J]. Environmental Science and Policy, 2009,12(7):870-881
doi: 10.1016/j.envsci.2009.08.006 URL |
[27] | IGES. Asian co-benefits partnership white paper 2016, putting co-benefits into practice: case studies from Asia[EB/OL]. 2016 [2020-10-01]. https://www.iges.or.jp/en/pub/asian-co-benefits-partnership-white-paper-2016/en |
[28] | UNEP. Science of the Total Environment[EB/OL]. 2019 [2020-10-01]. https://www.iges.or.jp/en/pub/air-pollution-asia-and-pacific-science-based/en |
[29] |
Chen C, Chen B, Wang B, et al. Low-carbon energy policy and ambient air pollution in Shanghai, China: a health-based economic assessment[J]. Science of the Total Environment, 2007,373(1):13-21
doi: 10.1016/j.scitotenv.2006.11.030 URL |
[30] |
Gan L, Yu J. Bioenergy transition in rural China: policy options and co-benefits[J]. Energy Policy, 2008,36(2):531-540
doi: 10.1016/j.enpol.2007.10.005 URL |
[31] |
Vennemo H, Aunan K, He J, et al. Benefits and costs to China of three different climate treaties[J]. Resource and Energy Economics, 2009,31(3):139-160
doi: 10.1016/j.reseneeco.2009.03.003 URL |
[32] |
He K, Lei Y, Pan X, et al. Co-benefits from energy policies in China[J]. Energy, 2010,35:4265-4272
doi: 10.1016/j.energy.2008.07.021 URL |
[33] |
Lv Y, Huang C, Ma X, et al. Co-benefit research on energy efficiency reforming project of district heating system[J]. Energy Procedia, 2011,5:598-603
doi: 10.1016/j.egypro.2011.03.105 URL |
[34] | 薛文博, 王金南, 杨金田, 等. 电力行业多污染物协同控制的环境效益模拟[J]. 环境科学研究, 2012,25(11):1304-1310. |
Xue W B, Wang J N, Yang J T, et al. Simulation of environmental of multi-pollutants from the electric power industry[J]. Research of Environmental Sciences, 2012,25(11):1304-1310 (in Chinese) | |
[35] |
Gielen D, Chen C H. The CO2 emission reduction benefits of Chinese energy policies and environmental policies: a case study for Shanghai, period 1995-2020[J]. Ecological Economics, 2001,39(2):257-270
doi: 10.1016/S0921-8009(01)00206-3 URL |
[36] | Morgenstern R, Krupnick A, Zhang X. The ancillary carbon benefits of SO2 reductions from a small-boiler policy in Taiyuan, PRC[J]. The Journal of Environment & Development, 2004,13(2):140-155 |
[37] |
Mestl H E S, Aunan K, Fang J, et al. Cleaner production as climate investment-integrated assessment in Taiyuan city, China[J]. Journal of Cleaner Production, 2005,13(1):57-70
doi: 10.1016/j.jclepro.2003.08.005 URL |
[38] |
Xu Y, Masui T. Local air pollutant emission reduction and ancillary carbon benefits of SO2 control policies: application of AIM/CGE model to China[J]. European Journal of Operational Research, 2009,198(1):315-325
doi: 10.1016/j.ejor.2008.07.048 URL |
[39] | 李丽平, 周国梅, 季浩宇. 污染减排的协同效应评价研究: 以攀枝花市为例[J]. 中国人口?资源与环境, 2010,20(5):91-95. |
Li L P, Zhou G M, Ji H Y. Study of co-benefits assessment of pollution reduction: a case study in Panzhihua[J]. China Population, Resources and Environment, 2010,20(5):91-95 (in Chinese) | |
[40] |
Wu D, Zhang S, Xu J, et al. The CO2 reduction effects and climate benefit of Beijing 2008 summer Olympics green practice[J]. Energy Procedia, 2011,5:280-296
doi: 10.1016/j.egypro.2011.03.050 URL |
[41] |
Liu F, Klimont Z, Zhang Q, et al. Integrating mitigation of air pollutants and greenhouse gases in Chinese cities: development of GAINS-City model for Beijing[J]. Journal of Cleaner Production, 2013,58:25-33
doi: 10.1016/j.jclepro.2013.03.024 URL |
[42] | 顾阿伦, 滕飞, 冯相昭. 主要部门污染物控制政策的温室气体协同效果分析与评价[J]. 中国人口?资源与环境, 2016,26(2):10-17. |
Gu A L, Teng F, Feng X Z. Assessment and analysis on co-benefits of pollution control and greenhouse gases emission reduction in key sectors[J]. China Population, Resources and Environment, 2016,26(2):10-17 (in Chinese) | |
[43] | 胡涛, 田春秀, 李丽平. 协同效应对中国气候变化的政策影响[J]. 环境保护, 2004 (9):56-58. |
Hu T, Tian C X, Li L P. Influence of co-benefit on policy in China[J]. Environmental Protection, 2004 (9):56-58 (in Chinese) | |
[44] | 覃小玲. 温室气体与大气污染控制的协同减排效益研究: 以深圳市为例[D]. 广州: 华南理工大学, 2012. |
Qin X L. Co-benefit analysis of greenhouse gas reduction and air pollution control: a case study in Shenzhen[D]. Guangzhou: South China University of Technology, 2012 (in Chinese) | |
[45] | Mao X Q, Yang S Q, Liu Q, et al. Achieving CO2 emission reduction and the co-benefits of local air pollution abatement in the transportation sector of China[J]. Environmental Science & Policy, 2012,21:1-13 |
[46] | Liu Z Y, Mao X Q, Tu J J, et al. A comparative assessment of economic-incentive and command-and-control instruments for air pollution and CO2 control in China’s iron and steel sector[J]. Journal of Environmental Management, 2014 (144):135-142 |
[47] |
Mao X Q, Zhou J, Corsetti G. How well have China’s recent five-year plans been implemented for energy conservation and air pollution control?[J]. Environmental Science & Technology, 2014,48(17):10036-10044
doi: 10.1021/es501729d URL |
[48] | Peng W, Yang J, Lu X, et al. Potential co-benefits of electrification for air quality, health, and CO2 mitigation in 2030 China[J]. Applied Energy, 2018 (218):511-519 |
[49] | The National Renewable Energy Laboratory. Developing country case-studies: integrated strategies for air pollution and greenhouse gas mitigation [R]. USA: EPA, 2000 |
[50] | Environmental Protection Agency. The integrated environmental strategies program handbook[R/OL]. 2004 [2020-10-01]. https://unfccc.int/resource/cd_roms/na1/mitigation/Resource_materials/Integrated_Environmental_Strategies_Handbook_US_EPA/ies_comp_screen. pdf |
[51] |
West J J, Osnaya P, Laguna I, et al. Co-control of urban air pollutants and greenhouse gases in Mexico city[J]. Environmental Science & Technology, 2004,38(13):3474-3481
doi: 10.1021/es034716g URL |
[52] | Chae Y. Co-benefit analysis of an air quality management plan and greenhouse gas reduction strategies in the Seoul metropolitan area[J]. Environmental Science & Policy, 2010,13(3):205-216 |
[53] |
Bollen J, van der Zwaan B, Brink C, et al. Local air pollution and global climate change: a combined cost-benefit analysis[J]. Resource and Energy Economics, 2009,31(3):161-181
doi: 10.1016/j.reseneeco.2009.03.001 URL |
[54] |
Bjarne S, Alena B. Co-benefit and co-control studies in Norway[J]. Chemical Industry and Chemical Engineering Quarterly, 2010,16(3):281-286
doi: 10.2298/CICEQ091214046S URL |
[55] |
Thambiran T, Diab R D. Air quality and climate change co-benefits for the industrial sector in Durban, South Africa[J]. Energy Policy, 2011,39(10):6658-6666
doi: 10.1016/j.enpol.2011.08.027 URL |
[56] | Hu T, He J W, Vennomo H, et al. USEPA IES China country study phase IV report: China’s co-control policy study [R]. Policy Research Center of SEPA, Development Research Center of State Council,ECON Center for Economic Analysis, 2007 |
[57] | 田春秀, 李丽平, 胡涛, 等. 气候变化与环保政策的协同效应[J]. 环境保护, 2009 (12):67-68. |
Tian C X, Li L P, Hu T, et al. Co-benefits of climate change and environmental protection policies[J]. Environmental Protect, 2009 (12):67-68 (in Chinese) | |
[58] | 王金南, 宁淼, 严刚, 等. 实施气候友好的大气污染防治战略[J]. 中国软科学, 2010 (10):28-36. |
Wang J N, Ning M, Yan G, et al. Imple-menting climate-friendly strategy for air pollution prevention and control[J]. China Soft Science Magazine, 2010 (10):28-36 (in Chinese) | |
[59] | 胡涛, 毛显强, 钱翌, 等. 协同控制空气污染物与温室气体: 以乌鲁木齐市为案例 [M]. 北京: 中国环境出版社, 2016. |
[60] | Hu T, Mao X Q, Qian Y, et al. Co-control effects for air pollutants and green house gases: a case study in Urumqi [M]. Beijing: China Environment Press, 2016 ( in Chinese) |
[61] | 毛显强, 曾桉, 胡涛, 等. 技术减排措施协同控制效应评价研究[J]. 中国人口?资源与环境, 2011,21(12):1-7. |
Mao X Q, Zeng A, Hu T, et al. Study of coordinate control effect assessment of technological measures for emissions reduction[J]. China Population, Resources and Environment, 2011,21(12):1-7 (in Chinese) | |
[62] |
Mao X Q, Zeng A, Hu T, et al. Co-control of local air pollutants and CO2 in the Chinese iron and steel industry[J]. Environmental Science & Technology, 2013,47(21):12002-12010
doi: 10.1021/es4021316 URL |
[63] | Mckinsey & Company. Pathways to a low-carbon economy: version 2 of the global greenhouse gas abatement cost curve [R/OL]. 2009 [2020-10-01]. https://www.mckinsey.com/business-functions/sustainability/our-insights/pathways-to-a-low-carbon-economy |
[64] |
Mao X Q, Zeng A, Hu T, et al. Co-control of local air pollutants and CO2 from the Chinese coal-fired power industry[J]. Journal of Cleaner Production, 2014,67:220-227
doi: 10.1016/j.jclepro.2013.12.017 URL |
[65] | 刘胜强, 毛显强, 胡涛, 等. 中国钢铁行业大气污染与温室气体协同控制路径研究[J]. 环境科学与技术, 2012,35(7):168-174. |
Liu S Q, Mao X Q, Hu T, et al. Roadmap of co-control of air pollutants and GHGs in iron and steel industry in China[J]. Environmental Science & Technology, 2012,35(7):168-174 (in Chinese) | |
[66] | 毛显强, 邢有凯, 胡涛, 等. 中国电力行业硫、氮、碳协同减排的环境经济路径分析[J]. 中国环境科学, 2012,32(4):748-756. |
Mao X Q, Xing Y K, Hu T, et al. An environmental-economic analysis of carbon, sulfur and nitrogen co-reduction path for China’s power industry[J]. China Environmental Science, 2012,32(4):748-756 (in Chinese) | |
[67] | 高玉冰, 毛显强, Gabriel C, 等. 城市交通大气污染物与温室气体协同控制效应评价: 以乌鲁木齐市为例[J]. 中国环境科学, 2014 (11):2985-2992. |
Gao Y B, Mao X Q, Gabriel C, et al. Assessment of co-control effects for air pollutants and green house gases in urban transport: a case study in Urumqi[J]. China Environmental Science, 2014 (11):2985-2992 (in Chinese) | |
[68] | 毛显强, 曾桉, 刘胜强, 等. 钢铁行业技术减排措施硫、氮、碳协同控制效应评价研究[J]. 环境科学学报, 2012 (5):1253-1260. |
Mao X Q, Zeng A, Liu S Q, et al. Assessment of SO2, NOx and CO2 co-control effects by technological reduction measures in iron & steel industry[J]. Acta Scientiae Circumstantiae, 2012 (5):1253-1260 (in Chinese) | |
[69] |
Zeng A, Mao X Q, Tao H, et al. Regional co-control plan for local air pollutants and CO2 reduction: method and practice[J]. Journal of Cleaner Production, 2017,140:1226-1235
doi: 10.1016/j.jclepro.2016.10.037 URL |
[70] | 邢有凯, 毛显强, 冯相昭, 等. 城市蓝天保卫战行动协同控制局地大气污染物和温室气体效果评估: 以唐山市为例[J]. 中国环境管理, 2020,12(4):20-28. |
Xing Y K, Mao X Q, Feng X Z, et al. Assessment of co-control effectiveness of implementing blue sky defense action plan at city level: a case study of Tangshan city[J]. China Environmental Management, 2020,12(4):20-28 (in Chinese) | |
[71] | 宇恒可持续交通研究中心, 世界资源研究所, 绿色创新发展中心, 等. 城市交通大气污染物与温室气体协同控制技术指南1.0 [R/OL]. 2019 [2020-10-01]. https://www.efchina.org/Reports-zh/report-lccp-20191212-zh. |
The China Sustainable Transportation Center, World Resources Institute, Innovative Green Development Program. Technical guide for coordinated control of urban traffic air pollutants and greenhouse gases, 2019 [2020-10-01].[R/OL]. 2019 [2020-10-01]. https://www.efchina.org/Reports-zh/report-lccp-20191212-zh(in Chinese). | |
[72] | 王慧慧, 曾维华, 吴开亚. 上海市机动车尾气排放协同控制效应研究[J]. 中国环境科学, 2016,36(5):1345-1352. |
Wang H H, Zeng W H, Wu K Y. Co-control effects of motor vehicle pollutant emission in Shanghai[J]. China Environmental Science, 2016,36(5):1345-1352 (in Chinese) | |
[73] | 许光清, 温敏露, 冯相昭, 等. 城市道路车辆排放控制的协同效应评价[J]. 北京社会科学, 2014,7:82-90. |
Xu G Q, Wen M L, Feng X Z, et al. Co-benefits of road transport policy in reducing air pollutants and greenhouse gas emissions in China[J]. Beijing Social Sciences, 2014,7:82-90 (in Chinese) | |
[74] | 唐伟, 郑思伟, 何平, 等. 基于情景分析的杭州市机动车尾气排放控制协同效应研究[J]. 环境科学学报, 2019,39(6):2033-2042. |
Tang W, Zheng S W, He P, et al. Study on the co-benefit of motor vehicle emission control based on scenario analysis in Hangzhou[J]. Acta Scientiae Circumstantiae, 2019,39(6):2033-2042 (in Chinese) | |
[75] | 程晓梅, 刘永红, 陈泳钊, 等. 珠江三角洲机动车排放控制措施协同效应分析[J]. 中国环境科学, 2014,34(6):1599-1606. |
Cheng X M, Liu Y H, Chen Y Z, et al. A comparative co-benefit analysis of the implements of vehicle emissions control policy in Pearl River delta[J]. China Environmental Science, 2014,34(6):1599-1606 (in Chinese) | |
[76] | 马丁, 陈文颖. 中国钢铁行业技术减排的协同效益分析[J]. 中国环境科学, 2015,35(1):298-303. |
Ma D, Chen W Y. Analysis of the co-benefit of emission reduction measures in China’s iron and steel industry[J]. China Environmental Science, 2015,35(1):298-303 (in Chinese) | |
[77] | 冯相昭, 毛显强. 我国城市大气污染防治政策协同减排温室气体效果评价: 以重庆为案例 [M]//谢伏瞻, 刘雅鸣. 气候变化绿皮书应对气候变化报告(2018). 北京: 社会科学文献出版社, 2018: 181-191. |
Feng X Z, Mao X Q. Climate change green paper report on climate change (2018). Beijing: Social Science Literature Press, 2018: 181-191(in Chinese) | |
[78] | 生态环境部环境规划院气候变化与环境政策研究中心. 中国城市二氧化碳和大气污染协同管理评估报告 [R/OL]. 2020 [2020-12-01]. http://www.caep.org.cn/sy/dqhj/zxtw_24134/202011/t20201106_806672.shtml. |
Center for Climate Change and Environmental Policy, Chinese Academy of Environmental Planning. Evaluation report on co-management of carbon dioxide and air pollution in Chinese cities[R/OL]. 2020 [2020-12-01]. http://www.caep.org.cn/sy/dqhj/zxtw_24134/202011/t20201106_806672.shtml.(in Chinese) | |
[79] | 田春秀, 冯相昭, 张曦. 高度重视协同效应与协同控制, 建立大气污染物与温室气体减排统一监管体制 [R/OL]. 2013 [2020-10-01]. http://www.prcee.org/yjcg/zlzb/201805/t20180510_439006.html. |
Tian C X, Feng X Z, Zhang X. Attach great importance to synergy effect and control, and establish a unified regulatory system for emission reduction of air pollutants and greenhouse gases [R/OL]. 2013 [2020-10-01]. http://www.prcee.org/yjcg/zlzb/201805/t20180510_439006.html(in Chinese) | |
[80] | 冯相昭, 王敏, 梁启迪. 机构改革新形势下加强污染物与温室气体协同控制的对策研究[J]. 环境与可持续发展, 2020,1:146-149. |
Feng X Z, Wang M, Liang Q D. Study on countermeasures to enhance the co-control of air pollutants and greenhouse gases in the new context of national institutional reform[J]. Environment and Sustainable Development, 2020,1:146-149 (in Chinese) | |
[81] | Wang A, Shen S Y, Pettit D. 空气污染与气候变化的协同治理: 加州经验的启示[R/OL]. 2020 [2020-10-01]. https://www.law.ucla.edu/news/kongqiwuranyuqihoubianhuadexietongzhilijiazhoujingyandeqishi. |
Wang A, Shen S Y, Pettit D. Collaborative governance of air pollution and climate change: inspiration from California experience [R/OL]. 2020 [2020-10-01]. https://www.law.uclaedu/news/kongqiwuranyuqihoubianhuadexietongzhilijiazhoujingyandeqishi(in Chinese) | |
[82] | 中国清洁空气政策伙伴关系. 中国空气质量改善的协同路径(2020): 气候变化与空气污染协同治理 [R/OL]. 2020 [2020-12-20]. http://www.ccapp.org.cn/dist/reportInfo/225. |
China Green Air Policy Partnership. Collaborative approaches to air quality improvement in China (2020): collaborative governance of climate change and air pollution [R/OL]. 2020 [2020-12-20]. http://www.ccapp.org.cn/dist/reportInfo/225(in Chinese) | |
[83] | 习近平. 习近平在第七十五届联合国大会一般性辩论上的讲话[N]. 人民日报, [2020-09-23](01). |
Xi J P. Speech at the general debate of the seventy-fifth United Nations general assembly[J]. The People's Daily, 2020 [2020-09-23](01). (in Chinese) |
[1] | 高庆先, 高文欧, 马占云, 唐甲洁, 付加锋, 李迎新, 任佳雪. 大气污染物与温室气体减排协同效应评估方法及应用[J]. 气候变化研究进展, 2021, 17(3): 268-278. |
[2] | 冯相昭, 赵梦雪, 王敏, 杜晓林, 田春秀, 高霁. 中国交通部门污染物与温室气体协同控制模拟研究[J]. 气候变化研究进展, 2021, 17(3): 279-288. |
[3] | 王敏, 冯相昭, 杜晓林, 吴莉萍, 赵梦雪, 王鹏, 安祺. 工业部门污染物治理协同控制温室气体效应评价——基于重庆市的实证分析[J]. 气候变化研究进展, 2021, 17(3): 296-304. |
[4] | 张孟蓉, 陈莎, 李素梅. 基于生命周期的北京风味餐厅食物消费温室气体排放与减排案例分析[J]. 气候变化研究进展, 2021, 17(2): 140-150. |
[5] | 张爽, 赵颖磊, 张琨琨, 李路. 全球气候治理背景下的船舶营运能效评级方法[J]. 气候变化研究进展, 2021, 17(2): 236-244. |
[6] | 马翠梅,王田. 国家温室气体清单时间序列一致性和2005年清单重算研究[J]. 气候变化研究进展, 2019, 15(6): 641-648. |
[7] | 陈怡,刘强,田川,李晓梅. 部分国家长期温室气体低排放发展战略比较分析[J]. 气候变化研究进展, 2019, 15(6): 633-640. |
[8] | 薛明,翁艺斌,刘光全,李兴春,李湘,于胜民,崔翔宇,宋磊. 石油与天然气生产过程甲烷逃逸排放检测与核算研究现状及建议[J]. 气候变化研究进展, 2019, 15(2): 187-196. |
[9] | 苏鑫,滕飞. 美国退出《巴黎协定》对全球温室气体排放的影响[J]. 气候变化研究进展, 2019, 15(1): 74-83. |
[10] | 张滨,吕洁华. 温室气体排放的环境库兹涅茨曲线检验与减排路径的冲击动态——基于黑龙江省统计核算数据[J]. 气候变化研究进展, 2019, 15(1): 84-94. |
[11] | 朱松丽, 蔡博峰, 朱建华, 高庆先, 张称意, 于胜民, 方双喜, 潘学标. IPCC国家温室气体清单指南精细化的主要内容和启示[J]. 气候变化研究进展, 2018, 14(1): 86-94. |
[12] | 黄威, 高庆先, 曹国良, 马占云, 张维鼎, 巢清尘. 中国城市矿产开发对温室气体减排的影响分析[J]. 气候变化研究进展, 2017, 13(1): 76-82. |
[13] | 苏明山. 温室气体排放空间使用比率及计算实例[J]. 气候变化研究进展, 2017, 13(1): 69-75. |
[14] | 陈健华, 孙亮, 陈亮, 林翎, 刘玫, 鲍威, 郭慧婷. 国内外企业温室气体排放核算标准的比较分析[J]. 气候变化研究进展, 2016, 12(6): 545-553. |
[15] | 程琨, 潘根兴. “千分之四全球土壤增碳计划”对中国的挑战与应对策略[J]. 气候变化研究进展, 2016, 12(5): 457-464. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
|