气候变化研究进展 ›› 2025, Vol. 21 ›› Issue (4): 449-460.doi: 10.12006/j.issn.1673-1719.2025.015
崔鹏1,2(
), 王岩1, 张国涛1, 张正涛3, 雷雨2, 王昊2, 王姣2, 郝建盛1, 朱宏1
收稿日期:2025-02-25
修回日期:2025-04-27
出版日期:2025-07-30
发布日期:2025-07-10
作者简介:崔鹏,男,研究员,pengcui@imde.ac.cn
基金资助:
CUI Peng1,2(
), WANG Yan1, ZHANG Guo-Tao1, ZHANG Zheng-Tao3, LEI Yu2, WANG Hao2, WANG Jiao2, HAO Jian-Sheng1, ZHU Hong1
Received:2025-02-25
Revised:2025-04-27
Online:2025-07-30
Published:2025-07-10
摘要:
气候变化对自然灾害的影响日益加剧,灾害活动出现新特点和新趋势,灾害风险急剧增加,防灾减灾面临新的挑战。文中从气候驱动因子跨圈层致灾特征、灾害活动的海-陆时空联动特性等角度分析了气候驱动下自然灾害的发生机制与活动特征,阐述了气候变化灾害风险出现的新常态与新挑战,探讨了自然灾害风险管理的成效与局限。面对灾害风险的新态势与新挑战,为了加强灾害风险防范的科技支撑能力,提出了5个关键科学问题:气候变化对圈层过程的影响及致灾机制、极端天气驱动的巨灾预测与风险演化、巨灾对社会经济系统影响机制与风险评估、基于人工智能的自适应灾害风险动态防控体系、适应气候变化的韧性社会建设理论。
崔鹏, 王岩, 张国涛, 张正涛, 雷雨, 王昊, 王姣, 郝建盛, 朱宏. 气候变化灾害风险防范:现状、挑战与科学问题[J]. 气候变化研究进展, 2025, 21(4): 449-460.
CUI Peng, WANG Yan, ZHANG Guo-Tao, ZHANG Zheng-Tao, LEI Yu, WANG Hao, WANG Jiao, HAO Jian-Sheng, ZHU Hong. Disaster risk prevention under climate change: current status, challenges, and scientific issues[J]. Climate Change Research, 2025, 21(4): 449-460.
| [1] | Masson-Delmotte V, Zhai P, Pirani A, et al. Climate change 2021: the physical science basis[M]. Cambridge: Cambridge University Press, 2021 |
| [2] | WMO. Atlas of mortality and economic losses from weather, climate and water-related hazards[R/OL]. 2023 [2025-01-05]. https://public.wmo.int/en/resources/atlas-of-mortality |
| [3] | Bhatia K T, Vecchi G A, Knutson T R, et al. Recent increases in tropical cyclone intensification rates[J]. Nature Communications, 2019, 10 (1): 635. DOI: https://doi.org/10.1038/s41467-019-08471-z |
| [4] | Myhre G, Alterskjær K, Stjern C W, et al. Frequency of extreme precipitation increases extensively with event rareness under global warming[J]. Scientific Reports, 2019, 9 (1): 16063. DOI: 10.1038/s41598-019-52277-4 |
| [5] | Wang H, Wang B, Cui P, et al. Disaster effects of climate change in High Mountain Asia: state of art and scientific challenges[J]. Advances in Climate Change Research, 2024, 15 (3): 367-389 |
| [6] | Jolly W, Cochrane M, Freeborn P, et al. Climate-induced variations in global wildfire danger from 1979 to 2013[J]. Nature Communications, 2015 (6): 7537 |
| [7] | Ciais P, Reichstein M, Viovy N, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003[J]. Nature, 2005, 437 (7058): 529-533 |
| [8] | Huggel C, Carey M, Emmer A, et al. Anthropogenic climate change and glacier lake outburst flood risk: local and global drivers and responsibilities for the case of Lake Palcacocha, Peru[J]. Natural Hazards and Earth System Sciences, 2020, 20 (8): 2175-2193 |
| [9] | Huggel C, Clague J, Korup O. Is climate change responsible for changing landslide activity in high mountains?[J]. Earth Surface Processes and Landforms, 2012, 37 (1): 77-91 |
| [10] | Wang Y, Cui P, Zhang C, et al. Antecedent snowmelt and orographic precipitation contributions to water supply of Pakistan disastrous floods, 2022[J]. Advances in Climate Change Research, 2024, 15 (3): 419-430 |
| [11] | IPCC. Climate change 2022: impacts, adaptation and vulnerability[M]. Cambridge: Cambridge University Press, 2022 |
| [12] | Barnes E. Revisiting the evidence linking Arctic amplification to extreme weather in midlatitudes[J]. Geophysical Research Letters, 2013, 40 (17): 4734-4739 |
| [13] |
Webster P, Holland G, Curry J, et al. Changes in tropical cyclone number, duration, and intensity in a warming environment[J]. Science, 2005, 309 (5742): 1844-1846
doi: 10.1126/science.1116448 pmid: 16166514 |
| [14] | Wang Z, Duan A, Yang S, et al. Atmospheric moisture budget and its regulation on the variability of summer precipitation over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2017, 122 (2): 614-630 |
| [15] | Trenberth K, Cheng L, Jacobs P, et al. Hurricane harvey links to ocean heat content and climate change adaptation[J]. Earth’s Future, 2018, 6 (5): 730-744 |
| [16] | Hao Z, Hao F, Xia Y, et al. Compound droughts and hot extremes: characteristics, drivers, changes, and impacts[J]. Earth-Science Reviews, 2022, 235: 104241 |
| [17] | Ni Y, Qiu B, Miao X, et al. Shift of soil moisture-temperature coupling exacerbated 2022 compound hot-dry event in eastern China[J]. Environmental Research Letters, 2024, 19 (1): 014059 |
| [18] | 王岩, 王昊, 崔鹏, 等. 气候变化的灾害效应与科学挑战[J]. 科学通报, 2024, 69 (2): 286-300. |
| Wang Y, Wang H, Cui P, et al. Disaster effects of climate change and the associated scientific challenges[J]. Science Bulletin, 2024, 69 (2): 286-300 (in Chinese) | |
| [19] | Cui P, Jia Y. Mountain hazards in the Tibetan Plateau: research status and prospects[J]. National Science Review, 2015, 2 (4): 397-399 |
| [20] | Li Z, Feng Q, Wang X, et al. Accelerated multiphase water transformation in global mountain regions since 1990[J]. The Innovation Geoscience, 2023, 1 (3): 100033 |
| [21] | AghaKouchak A, Mirchi A, Madani K, et al. Anthropogenic drought: definition, challenges, and opportunities[J]. Reviews of Geophysics, 2021, 59 (2). DOI: 10.1029/2019rg000683 |
| [22] | 崔鹏, 郭晓军, 姜天海, 等. “亚洲水塔”变化的灾害效应与减灾对策[J]. 科学通报, 2019, 34 (11): 1313-1321. |
| Cui P, Guo X J, Jiang T H, et al. Disaster effects and mitigation strategies of the “Asian Water Tower” changes[J]. Bulletin of Chinese Academy of Sciences, 2019, 34 (11): 1313-1321 (in Chinese) | |
| [23] | 贾洋, 崔鹏. 西藏冰湖溃决灾害事件极端气候特征[J]. 气候变化研究进展, 2020, 16 (4): 395-404. |
| Jia Y, Cui P. The extreme climate background for glacial lakes outburst flood events in Tibet[J]. Climate Change Research, 2020, 16 (4): 395-404 (in Chinese) | |
| [24] | Zhang T, Li D, East A, et al. Warming-driven erosion and sediment transport in cold regions[J]. Nature Reviews Earth & Environment, 2022, 3 (12): 832-851 |
| [25] | 崔鹏, 胡凯衡, 陈华勇, 等. 丝绸之路经济带自然灾害与重大工程风险[J]. 科学通报, 2018, 63 (11): 989-997. |
| Cui P, Hu K H, Chen H Y, et al. Natural disasters and major engineering risks in the Silk Road Economic Belt[J]. Science Bulletin, 2018, 63 (11): 989-997 (in Chinese) | |
| [26] | Chand S, Walsh K, Camargo S. Declining tropical cyclone frequency under global warming[J]. Nature Climate Change, 2022, 12 (7): 655-661 |
| [27] | Wang G, Wu L, Mei W, et al. Ocean currents show global intensification of weak tropical cyclones[J]. Nature, 2022, 611 (7936): 496-500 |
| [28] | Cao X, Watanabe M, Wu R, et al. The projected poleward shift of tropical cyclogenesis at a global scale under climate change in MRI-AGCM3.2H[J]. Geophysical Research Letters, 2024, 51 (3): e2023GL107189 |
| [29] | Studholme J, Fedorov A, Gulev S, et al. Poleward expansion of tropical cyclone latitudes in warming climates[J]. Nature Geoscience, 2022, 15 (1): 14-28 |
| [30] | Zhao H, Zhao K, Klotzbach P, et al. Interannual and interdecadal drivers of meridional migration of western North Pacific tropical cyclone lifetime maximum intensity location[J]. Journal of Climate, 2022, 35 (9): 2709-2722 |
| [31] |
Li Y, Tang Y, Wang S, et al. Recent increases in tropical cyclone rapid intensification events in global offshore regions[J]. Nature Communications, 2023, 14 (1): 5167
doi: 10.1038/s41467-023-40605-2 pmid: 37620321 |
| [32] | Shan K, Lin Y, Chu P, et al. Seasonal advance of intense tropical cyclones in a warming climate[J]. Nature, 2023, 623 (7985): 83-89 |
| [33] | Greve P, Orlowsky B, Mueller B, et al. Global assessment of trends in wetting and drying over land[J]. Nature Geoscience, 2014, 7 (10): 716-721 |
| [34] | Wang G, Wang D, Trenberth K, et al. The peak structure and future changes of the relationships between extreme precipitation and temperature[J]. Nature Climate Change, 2017, 7 (1): 268-274 |
| [35] | Chi H, Wu Y, Zheng H, et al. Spatial patterns of climate change and associated climate hazards in Northwest China[J]. Science Reports, 2023, 13: 10418 |
| [36] | Zhou P, Liu Z. Likelihood of concurrent climate extremes and variations over China[J]. Environmental Research Letters, 2018, 13 (9): 094023 |
| [37] | Pepin N, Bradley R, Diaz H, et al. Elevation-dependent warming in mountain regions of the world[J]. Nature Climate Change, 2015, 5 (5): 424-430 |
| [38] | 崔鹏, 贾洋, 苏凤环, 等. 青藏高原自然灾害发育现状与未来关注的科学问题[J]. 中国科学院院刊, 2017, 32 (9): 985-992. |
| Cui P, Jia Y, Su F H, et al. Natural hazards in Tibetan Plateau and key issue for feature research[J]. Bulletin of Chinese Academy of Sciences, 2017, 32 (9): 985-992 (in Chinese) | |
| [39] | Cui P, Ge Y, Li S, et al. Scientific challenges in disaster risk reduction for the Sichuan-Tibet Railway[J]. Engineering Geology, 2022 (309): 106837 |
| [40] | Hao J, Cui P, Zhang X. The triggering mechanisms for different types of snow avalanches in the continental snow climate of the central Tianshan Mountains[J]. Science China Earth Sciences, 2022. DOI: 10.1007/s11430-021-9983-0 |
| [41] | Hao J, Wang Y, Li L. Snowpack variations and their hazardous effects under climate warming in the central Tianshan Mountains[J]. Advances in Climate Change Research, 2024, 15 (2024): 442-451 |
| [42] | Zong X, Yin Y, Yin M. Climate change unevenly affects the dependence of multiple climate-related hazards in China[J]. npj Climate and Atmospheric Science, 2024, 7 (1). DOI: 10.1038/s41612-024-00614-4 |
| [43] | Fu Z, Zhou W, Xie S, et al. Dynamic pathway linking Pakistan flooding to East Asian heatwaves[J]. Science Advances, 2024, 10 (17): eadk9250 |
| [44] | Ebel B, Martin D. Meta-analysis of field-saturated hydraulic conductivity recovery following wildland fire: applications for hydrologic model parameterization and resilience assessment[J]. Hydrological Processes, 2017, 31 (21): 3682-3696 |
| [45] | Touma D, Stevenson S, Swain D, et al. Climate change increases risk of extreme rainfall following wildfire in the western United States[J]. Science Advances, 2022, 8 (13): 1-11 |
| [46] | Immerzeel W, Lutz A, Andrade M, et al. Importance and vulnerability of the world’s water towers[J]. Nature, 2020, 577 (7790): 364-369 |
| [47] | Pritchard H. Asia’s glaciers are a regionally important buffer against drought[J]. Nature, 2017, 545 (7653): 169-174 |
| [48] |
Li D, Lu X, Overeem I, et al. Exceptional increases in fluvial sediment fluxes in a warmer and wetter High Mountain Asia[J]. Science, 2021, 374 (6567): 599-603
doi: 10.1126/science.abi9649 pmid: 34709922 |
| [49] | Dai K, Li Z, Xu Q, et al. Entering the era of earth observation-based landslide warning systems: a novel and exciting framework[J]. IEEE Geoscience and Remote Sensing Magazine, 2020, 8 (1): 136-153 |
| [50] | IPCC. Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems[M]. Cambridge: Cambridge University Press, 2019 |
| [51] | IPCC. Climate change 2022: mitigation of climate change[M]. Cambridge: Cambridge University Press, 2022 |
| [52] | 崔鹏, 邹强, 欧阳朝军. 一种山地灾害全过程数值模拟与险情预报方法(CN113553792A)[P]. 2021-09-18. |
| Cui P, Zou Q, Ouyang C J.A method for numerical simulation and risk prediction of mountain hazards (CN113553792A)[P]. 2021-09-18 (in Chinese) | |
| [53] | Bi K, Xie L, Zhang H, et al. Pangu-weather: a 3D high-resolution model for fast and accurate global weather forecast[J]. Nature, 2023, 619 (7970): 533-538 |
| [54] | Chen X, Wang Y, Li Q, et al. Fuxi: a deep learning system for subseasonal extreme precipitation prediction[J]. Science Advances, 2023, 9 (24): eadj5137 |
| [55] | Chi H, Wu Y, Zheng H, et al. Spatial patterns of climate change and associated climate hazards in Northwest China[J]. Science Reports, 2023, 13 (1): 10418 |
| [56] | 宫清华, 叶玉瑶, 王钧, 等. 粤港澳大湾区防灾韧性空间规划策略研究[J]. 规划师, 2021, 37 (3): 6, 22-27. |
| Gong Q H, Ye Y Y, Wang J, et al. Resilient disaster prevention space planning of Guangdong-Hong Kong-Macao Great Bay area[J]. Planners, 2021, 37 (3): 6, 22-27 (in Chinese) | |
| [57] | 张薰予. 基于自然的解决方案在深圳城中村的应用实践: 以“冈厦1980”改造项目为例[J]. 大自然保护协会, 2022 (14): 56-62. |
| Zhang X Y. Application of Nature-Based Solutions in Shenzhen urban villages: a case study of the “Gangxia 1980” reconstruction project[J]. The Nature Conservancy (China), 2022 (14): 56-62 (in Chinese) | |
| [58] | 李明, 刘勤, 王玉宽, 等. 构建山区综合减灾与特色产业协同模式, 助力我国山区高质量发展[J]. 中国科学院院刊, 2023, 38 (12): 1818-1832. |
| Li M, Liu Q, Wang Y K, et al. Synthetical solution of disaster risk reduction and green development: a novel mode promoting high-quality development in mountain areas of China[J]. Bulletin of Chinese Academy of Sciences, 2023, 38 (12): 1818-1832 (in Chinese) | |
| [59] | 祁生文, 刘方翠, 徐梦珍, 等. 小流域生态-岩土协同减灾原理与方法初探[J]. 水力发电学报, 2024, 43 (2): 1-14. |
| Qi S W, Liu F C, Xu M Z, et al. Preliminary study on principles and methods of ecological-geotechnical engineering coordinated disaster reduction for small watersheds[J]. Journal of Hydroelectric Engineering, 2024, 43 (2): 1-14 (in Chinese) | |
| [60] | Dottori F, Szewczyk W, Ciscar J, et al. Increased human and economic losses from river flooding with anthropogenic warming[J]. Nature Climate Change, 2018, 8: 781-786 |
| [61] | Cammalleri C, Naumann G, Mentaschi L, et al. Global warming and drought impacts in the EU[J]. Publications Office of the European Union, 2020. DOI: 10.2760/597045 |
| [62] |
Abatzoglou J, Williams A, Barbero R. Global emergence of anthropogenic climate change in fire weather indices[J]. Geophysical Research Letters, 2019, 46: 326-336
doi: 10.1029/2018GL080959 |
| [63] | Goss M, Swain D, Abatzoglou J, et al. Climate change is increasing the likelihood of extreme autumn wildfire conditions across California[J]. Environmental Research Letters, 2020, 15 (9): 094016 |
| [64] | Swain D, Langenbrunner B, Neelin J, et al. Climate change is narrowing and shifting precipitation seasonality in the North American West[J]. Science Advances, 2021, 7 (6): eabc5921 |
| [65] | Liu K, Wang Q, Wang M, et al. Global transportation infrastructure exposure to the change of precipitation in a warmer world[J]. Nature Communications, 2023, 14 (2541): 1-9 |
| [66] | United Nations Office for Disaster Risk Reduction (UNDRR). Sendai framework for disaster risk reduction 2015-2030[R/OL]. 2015 [2025-01-05]. https://www.undrr.org/publication/sendai-framework-disaster-risk-reduction-2015-2030 |
| [67] | Formetta G, Feyen L. Empirical evidence of declining global vulnerability to climate-related hazards[J]. Global Environmental Change, 2019, 57: 101920 |
| [68] | United Nations Office for Disaster Risk Reduction (UNDRR). Global status report on disaster risk reduction[R/OL]. 2023 [2025-01-05]. https://www.undrr.org/gar2023 |
| [69] | Kreibich H, Schröter K, Baldassarre D, et al. The challenge of unprecedented floods and droughts in risk management[J]. Nature, 2022, 608 (7921): 80-86 |
| [70] | Tellman B & Eakin H. Governancing the ungovernable: practicing adaptation to climate change in the Anthropocene[J]. Global Environmental Change, 2022, 72: 102423 |
| [71] |
Cui P, Peng J, Shi P, et al. Scientific challenges of research on natural hazards and disaster risk[J]. Geography and Sustainability, 2021, 2 (3): 216-223
doi: 10.1016/j.geosus.2021.09.001 |
| [72] | 崔鹏, 王姣, 王昊, 等. 如何科学防控与预警巨灾风险?[J]. 地球科学, 2022, 47 (10): 3897-3899. |
| Cui P, Wang J, Wang H, et al. How to scientifically prevent and warn of catastrophic risks?[J]. Earth Science, 2022, 47 (10): 3897-3899 (in Chinese) | |
| [73] | Yang Y, Tatano H, Huang Q, et al. Evaluating the societal impact of disaster-driven infrastructure disruptions: a water analysis perspective[J]. International Journal of Disaster Risk Reduction, 2021, 52: 101988 |
| [74] | Zhang Z, Cui P, Hao J, et al. Analysis of the impact of dynamic economic resilience on post-disaster recovery “secondary shock” and sustainable improvement of system performance[J]. Safety Science, 2021, 144: 1-10 |
| [75] | 佟彬, 殷跃平, 李昺, 等. 地质灾害人工智能大语言模型研究展望[J]. 中国地质灾害与防治学报, 2025, 36: 1-12. |
| Tong B, Yin Y P, Li B, et al. Review on artificial intelligence-based large language models for geological hazards[J]. The Chinese Journal of Geological Hazard and Control, 2025, 36: 1-12 (in Chinese) | |
| [76] | Xu C, Xue Z. Applications and challenges of artificial intelligence in the field of disaster prevention, reduction, and relief[J]. Natural Hazards Research, 2024, 4 (1): 169-172 |
| [77] | Xie L, Zhang H, Chen X, et al. Accurate medium-range global weather forecasting with 3D neural networks[J]. Nature, 2023, 619: 533-538 |
| [78] | 张茂省, 贾俊, 王毅, 等. 基于人工智能(AI)的地质灾害防控体系建设[J]. 西北地质, 2019, 52 (2): 103-116. |
| Zhang M X, Jia J, Wang Y, et al. Construction of geological disaster prevention and control system based on AI[J]. Northwestern Geology, 2019, 52 (2): 103-116 (in Chinese) | |
| [79] | Ghaffarian S, Taghikhah F, Maier H. Explainable artificial intelligence in disaster risk management: achievements and prospective futures[J]. International Journal of Disaster Risk Reduction, 2023, 98: 104123 |
| [80] |
Adger W, Hughes T, Folke C, et al. Social-ecological resilience to coastal disasters[J]. Science, 2005, 309 (5737): 1036-1039
pmid: 16099974 |
| [1] | 樊星, 梁启迪, 吴承霖, 高翔. 巴库气候大会成果盘点及全球气候治理形势展望[J]. 气候变化研究进展, 2025, 21(4): 583-592. |
| [2] | 孙若水, 梁媚聪. 从巴黎到贝伦——《巴黎协定》十周年进展与展望[J]. 气候变化研究进展, 2025, 21(4): 574-582. |
| [3] | 谭显春, 程永龙, 闫洪硕, 幸绣程, 朱开伟, 王晨旭. IPCC第七次评估报告第三工作组减缓气候变化概要解读及启示[J]. 气候变化研究进展, 2025, 21(4): 494-501. |
| [4] | 陈显尧, 毕瀚文, 郝潇洁, 马天骄, 郭凌瑞. 大西洋经向翻转环流及其对全球气候的影响[J]. 气候变化研究进展, 2025, 21(4): 469-476. |
| [5] | 朱松丽. 联合国气候公约体系下的国家分类演变[J]. 气候变化研究进展, 2025, 21(4): 565-573. |
| [6] | 丁杰, 曹左男, 胡国铮, 干珠扎布, 赵芬, 王海锋, 高清竹. IPCC第七次评估报告第二工作组气候变化影响、适应与脆弱性大纲解读及启示[J]. 气候变化研究进展, 2025, 21(4): 484-493. |
| [7] | 王博文, 贺一, 滕飞. 我国极端天气气候事件直接和间接经济损失的评估及归因[J]. 气候变化研究进展, 2025, 21(4): 502-518. |
| [8] | 姜克隽. 综合评估模型在全球应对气候变化中的角色和未来研究转型[J]. 气候变化研究进展, 2025, 21(4): 461-468. |
| [9] | 陈思达, 刘凯, 李博浩, 汪明. 中国脱贫县破纪录极端天气事件研究[J]. 气候变化研究进展, 2025, 21(3): 327-339. |
| [10] | 张琴, 张利平, 李意, 刘丽娜, 佘敦先, 周芷菱, 袁喆. 气候水文预估不确定性量化及约束方法研究进展[J]. 气候变化研究进展, 2025, 21(3): 317-326. |
| [11] | 李慧慧, 齐明, 孙仁金. 气候转型金融标准的国际实践及中国路径[J]. 气候变化研究进展, 2025, 21(3): 428-439. |
| [12] | 石英, 徐影, 巢清尘, 张梦然, 韩振宇, 王荣. 基于CMIP6多模式的南水北调西线工程区未来气候变化预估[J]. 气候变化研究进展, 2025, 21(3): 340-352. |
| [13] | 曲洋, 王铭铭, 周方卓, 黄俊灵, 常世彦. 基于气候因子框架的气候变化对能源系统的影响评估[J]. 气候变化研究进展, 2025, 21(3): 353-363. |
| [14] | 王英珊, 孙维君, 丁明虎, 刘伟刚, 杜文涛, 秦翔, 张东启. 青藏高原冰川物质平衡变化特征及其对气候变化响应的研究进展[J]. 气候变化研究进展, 2025, 21(2): 208-220. |
| [15] | 孙颖, 王东阡, 张学斌. 中国气候变化检测归因研究进展[J]. 气候变化研究进展, 2025, 21(2): 153-168. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|