|
Climate Change Research ›› 2022, Vol. 18 ›› Issue (6): 743-755.doi: 10.12006/j.issn.1673-1719.2022.019
• Adaptation to Climate Change • Previous Articles Next Articles
Received:
2022-01-24
Revised:
2022-03-21
Online:
2022-11-30
Published:
2022-07-11
WANG Yu-Jie, LIN Xin. A review of climate change and its impact and adaptation in Beijing-Tianjin-Hebei urban agglomeration[J]. Climate Change Research, 2022, 18(6): 743-755.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2022.019
[1] | IPCC. Climate change 2021: the physical science basis[M]. 2021 [2021-12-16]. https://www.ipcc.ch/report/ar6/wg1/#FullReport |
[2] |
Dona M G, Alexander L V, Yang H, et al. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: the HadEX2 dataset[J]. Journal of Geophysical Research: Atmospheres, 2013, 118: 1-16. DOI: 10.1002/jgrd.50150
doi: 10.1002/jgrd.50150 URL |
[3] |
Bai X, Dawson R J, Rgevorsatz D, et al. Six research priorities for cities and climate change[J]. Nature, 2018, 555: 23-25. DOI: 10.1038/d41586-018-02409-z
doi: 10.1038/d41586-018-02409-z URL |
[4] | 翟盘茂, 袁宇锋, 余荣, 等. 气候变化和城市可持续发展[J]. 科学通报, 2018, 19: 1-7. |
Zhai P M, Yuan Y F, Yu R, et al. Climate change and sustainable development for cities[J]. Chinese Science Bulletin, 2018, 19: 1-7 (in Chinese) | |
[5] | 秦大河, 丁永建, 翟盘茂, 等. 中国气候与生态环境演变: 2021[M]. 北京: 科学出版社, 2021 (2). |
Qin D H, Ding Y J, Zhai P M, et al. Climate and ecological environment evolution in China: 2021[M]. Beijing: Science Press, 2021 (2) (in Chinese) | |
[6] |
Wang Y J, Ren Y Y, Song L C, et al. Responses of extreme high temperatures to urbanization in the Beijing-Tianjin-Hebei urban agglomeration in the context of a changing climate[J]. Meteorological Applications, 2021, 28 (5): e2024. DOI: 10.1002/met.2024
doi: 10.1002/met.2024 |
[7] |
Wang Y J, Zhai J Q, Song L C. Waterlogging risk assessment of the Beijing-Tianjin-Hebei urban agglomeration in the past 60 years[J]. Theoretical and Applied Climatology, 2021, 145: 1039-1051. DOI: 10.1007/s00704-021-03670-5
doi: 10.1007/s00704-021-03670-5 URL |
[8] | 李鹏飞, 刘文军, 赵昕奕. 京津冀地区近50年气温、降水与潜在蒸散量变化分析[J]. 干旱区资源与环境, 2015, 29 (3): 137-143. |
Li P F, Liu W J, Zhao X Y. The changes of atmospheric temperature, precipitation and potential evapotranspiration in Beijing-Tianjin-Hebei region in recent 50 years[J]. Journal of Arid Land Resources and Environment, 2015, 29 (3): 137-143 (in Chinese) | |
[9] |
余灏哲, 李丽娟, 李九一. 基于量-质-域-流的京津冀水资源承载力综合评价[J]. 资源科学, 2020, 42 (2): 358-371.
doi: 10.18402/resci.2020.02.14 |
Yu H Z, Li L J, Li J Y. Evaluation of water resources carrying capacity in the Beijing-Tianjin-Hebei Region based on quantity-qualitywater bodies-flow[J]. Resources Science, 2020, 42 (2): 358-371 (in Chinese) | |
[10] | 李柔珂, 韩振宇, 徐影, 等. 高分辨率区域气候变化降尺度数据对京津冀地区高温GDP 和人口暴露度的集合预估[J]. 气候变化研究进展, 2020, 16 (4): 491-504. |
Li R K, Han Z Y, Xu Y, et al. An ensemble projection of GDP and population exposure to high temperature events over Jing-Jin-Ji district based on high resolution combined dynamical and statistical downscaling datasets[J]. Climate Change Research, 2020, 16 (4): 491-504 (in Chinese) | |
[11] |
Miao S G, Jiang W M, Liang P, et al. Advances in urban meteorological research in China[J]. Journal of Meteorological Research, 2020, 34: 218-242. DOI: 10.1007/s13351-020-9858-3
doi: 10.1007/s13351-020-9858-3 URL |
[12] |
Seto K C, Shephered J M. Global urban land-use trends and climate impacts[J]. Current Opinion in Environmental Sustainability, 2009, 1 (1): 89-95. DOI: 10.1016/j.cosust.2009.07.012
doi: 10.1016/j.cosust.2009.07.012 URL |
[13] |
Grafakos S, Trigg K, Landauer M, et al. Analytical framework to evaluate the level of integration of climate adaptation and mitigation in cities[J]. Climatic Change, 2019, 154 (1): 87-106
doi: 10.1007/s10584-019-02394-w URL |
[14] | 者萌, 张雪芹, 沈鹏珂, 等. 京津冀地区1957—2017年气温变化时空格局[J]. 水土保持研究, 2020, 27 (5): 194-201. |
Zhe M, Zhang X Q, Shen P K, et al. Spatial-temporal pattern of temperature variation in Beijing-Tianjin-Hebei region over the period 1957-2017[J]. Research of Soil and Water Conservation, 2020, 27 (5): 194-201 (in Chinese) | |
[15] | 苗正伟, 徐利岗, 韩会玲. 京津冀地区近55年气候演变特征分析[J]. 南水北调与水利科技, 2018, 16 (3): 125-134. |
Miao Z W, Xu L G, Han H L. Climate evolution characteristics of Beijing-Tianjin-Hebei region for the last 55 years[J]. South to North Water Transfers and Water Science &Technology, 2018, 16 (3): 125-134 (in Chinese) | |
[16] |
Zhao N, Jiao Y, Ma T, et al. Estimating the effect of urbanization on extreme climate events in the Beijing-Tianjin-Hebei region, China[J]. Science of The Total Environment, 2019, 688: 1005-1015. DOI: 10.1016/j.scitotenv.2019.06.374
doi: 10.1016/j.scitotenv.2019.06.374 |
[17] | 苗正伟, 李娜, 路梅, 等. 1961—2017年京津冀地区极端气温指数时空变化分析[J]. 北京师范大学学报:自然科学版, 2019, 55 (3): 369-380. |
Miao Z W, Li N, Lu M, et al. Temoral and spatial variations of extreme temperature in Beijing-Tianjin-Hebei region from 1961-2017[J]. Journal of Beijing Normal University: Natural Science, 2019, 55 (3): 369-380 (in Chinese) | |
[18] |
Tong R Z, Sun W C, Han Q, et al. Spatial and temporal variations in extreme precipitation and temperature events in the Beijing-Tianjin-Hebei region of China over the past six decades[J]. Sustainability, 2020, 12: 1415. DOI: 10.3390/su12041415
doi: 10.3390/su12041415 URL |
[19] | 刘伟东, 尤焕苓, 孙丹. 1971—2010年京津冀大城市热岛效应多时间尺度分析[J]. 气象, 2016, 42 (5): 598-606. |
Liu W D, You H L, Sun D. Multi-time scale analysis of megacities heat island effect in Beijing-Tianjin-Hebei region from 1971-2010[J]. Meteorological Monthly, 2016, 42 (5): 598-606 (in Chinese) | |
[20] | 于占江, 金钊, 张艳品. 近56年京津冀区域降水量变化特征分析[J]. 安徽农业科学, 2019, 47 (2): 215-221. |
Yu Z J, Jin Z, Zhang Y P. Analysis on the change characteristics of precipitation in Beijing-Tianjin-Hebei region in recent 56 years[J]. Journal of Anhui Agricultural Sciences, 2019, 47 (2): 215-221 (in Chinese) | |
[21] | 刘金平, 韩军彩, 向亮, 等. 1961—2012年京津冀地区不同等级降水日数时空演变特征[J]. 气象与环境学报, 2015, 31 (1): 43-50. |
Liu J P, Han J C, Xiang L, et al. Temporal-spatial characteristics of precipitation days in different levels in Beijing-Tianjin-Hebei from 1961 to 2012[J]. Journal of Meteorology and Environment, 2015, 31 (1): 43-50 (in Chinese) | |
[22] |
Jiang R G, Yu X, Xie J C, et al. Recent changes in daily climate extremes in a serious water shortage metropolitan region, a case study in Jing-Jin-Ji of China[J]. Theoretical and Applied Climatology, 2018, 134: 565-584. DOI: 10.1007/s00704-017-2293-4
doi: 10.1007/s00704-017-2293-4 URL |
[23] | 苗正伟, 李娜, 路梅, 等. 1961—2017年京津冀地区极端降水事件变化特征[J]. 水利水电技术, 2019, 50 (3): 34-44. |
Miao Z W, Li N, Lu M, et al. Variation characteris of extreme precipitation event in Beijing-Tianjin-Hebei region during 1961-2017[J]. Water Resources and Hydropower Engineering, 2019, 50 (3): 34-44 (in Chinese) | |
[24] |
Yan Z W, Ding Y H, Zhai P M, et al. Re-assessing climatic warming in China since 1900[J]. Journal of Meteorological Research, 2020, 34 (2): 243-251. DOI: 10.1007/s13351-020-9839-6
doi: 10.1007/s13351-020-9839-6 URL |
[25] | 司鹏, 梁冬坡, 陈凯华, 等. 城市化对天津近60年平均温度和极端温度事件的增暖影响[J]. 气候与环境研究, 2021, 26 (2): 142-154. |
Si P, Liang D P, Chen K H, et al. Urbanization effect on average and extreme temperature warming in Tianjin during the last 60 Years[J]. Climatic and Environmental Research, 2021, 26 (2): 142-154 (in Chinese) | |
[26] |
Han Z Y, Shi J W, Xu Y. Combined dynamical and statistical downscaling for high-resolution projections of multiple climate variables in the Beijing-Tianjin-Hebei region of China[J]. Journal of Applied Meteorology and Climatology, 2019, 58: 2387-2403. DOI: 10.1175/JAMC-D-19-0050.1
doi: 10.1175/JAMC-D-19-0050.1 URL |
[27] | 吴婕, 高学杰, 徐影. RegCM4模式对雄安及周边区域气候变化的集合预估[J]. 大气科学, 2018, 42 (3): 696-705. |
Wu J, Gao X J, Xu Y. Climate change projection over Xiong’an District and its adjacent areas: an ensemble of RegCM4 simulations[J]. Chinese Journal of Atmospheric Sciences, 2018, 42 (3): 696-705 (in Chinese) | |
[28] | 张国华, 张江涛, 金晓青, 等. 京津冀城市高温的气候特征及城市化效应[J]. 生态环境学报, 2012, 21 (3): 455-463. |
Zhang G H, Zhang J T, Jin X Q, et al. Climate characteristics and effects of urbanization of the urban high temperature of Beijing, Tianjin and Hebei, China[J]. Ecology and Environmental Sciences, 2012, 21 (3): 455-463 (in Chinese) | |
[29] |
Xing P, Yang R, Du W, et al. Spatiotemporal variation of high temperature day and heat wave in North China during 1961-2017[J]. Scientia Geographica Sinica, 2020, 40 (8): 1365-1376. DOI: 10.13249/j.cnki.sgs.2020.08.016
doi: 10.13249/j.cnki.sgs.2020.08.016 |
[30] |
李双双, 杨赛霓. 1960—2014年北京极端气温事件变化特征[J]. 地理科学, 2015, 35 (12): 1640-1647.
doi: 10.13249/j.cnki.sgs.2015.012.1640 |
Li S S, Yang S N. Changes of extreme temperature events in Beijing during 1960-2014[J]. Scientia Geographica Sinica, 2015, 35 (12): 1640-1647 (in Chinese) | |
[31] | 崔耀平, 刘纪远, 张学珍, 等. 京津唐城市群土地利用变化的区域增温效应模拟[J]. 生态学报, 2015, 35 (4): 993-1003. |
Cui Y P, Liu J Y, Zhang X Z, et al. Modeling urban sprawl effects on regional warming in Beijing-Tianjing-Tangshan urban agglomeration[J]. Acta Ecologica Sinica, 2015, 35 (4): 993-1003 (in Chinese) | |
[32] | 石英, 韩振宇, 徐影, 等. 6.25 km高分辨率降尺度数据对雄安新区及整个京津冀地区未来极端气候事件的预估[J]. 气候变化研究进展, 2019, 15 (2): 140-149. |
Shi Y, Han Z Y, Xu Y, et al. Future changes of climate extremes in Xiongan New Area and Jing-Jin-Ji district based on high resolution (6.25 km) combined statistical and dynamical downscaling datasets[J]. Climate Change Research, 2019, 15 (2): 140-149 (in Chinese) | |
[33] |
Yu R, Zhai P M, Lu Y Y. Implications of differential effects between 1.5 and 2℃ global warming on temperature and precipitation extremes in China’s urban agglomerations[J]. International Journal of Climatology, 2018, 38: 2374-2385. DOI: 10.1002/joc.5340
doi: 10.1002/joc.5340 URL |
[34] | 许成成, 陆垂裕, 王建华. 京津冀地区近60年来气候变化特征分析[J]. 水利水电技术, 2021, 52 (6): 12-20. |
Xu C C, Lu C Y, Wang J H. Characteristics of climate change in Beijing-Tianjin-Hebei region in recent 60 years[J]. Water Resources and Hydropower Engineering, 2021, 52 (6): 12-20 (in Chinese) | |
[35] |
Song X, Zhang J, AghaKouchak A, et al. Rapid urbanization and changes in spatiotemporal characteristics of precipitation in Beijing metropolitan area[J]. Journal of Geophysical Research Atmospheres, 2014, 119: 11250-11271. DOI: 10.1002/2014JD022084
doi: 10.1002/2014JD022084 URL |
[36] |
李东欢, 邹立维, 周天军. 全球1.5℃温升背景下中国极端事件变化的区域模式预估[J]. 地球科学进展, 2017, 32 (4): 446-457.
doi: 10.11867/j.issn.1001-8166.2017.04.0446 |
Li D H, Zou L W, Zhou T J. Changes of extreme indices over China in response to 1.5 ℃ global warming projected by a regional climate model[J]. Advances in Earth Science, 2017, 32 (4): 446-457 (in Chinese)
doi: 10.11867/j.issn.1001-8166.2017.04.0446 |
|
[37] |
Sun Y, Zhang X B, Ren G Y, et al. Contribution of urbanization to warming in China[J]. Nature Climate Change, 2016, 6: 1-6. DOI: 10.1038/nclimate2956
doi: 10.1038/nclimate2956 |
[38] |
Sun Y, Zhang X B, Zwiers F W, et al. Rapid increase in the risk of extreme summer heat in Eastern China[J]. Nature Climate Change, 2014, 4 (12): 1082-1085. DOI: 10.1038/NCLIMATE2410
doi: 10.1038/NCLIMATE2410 URL |
[39] |
Lin S, Feng J, Wang J, et al. Modeling the contribution of long-term urbanization to temperature increase in three extensive urban agglomerations in China[J]. Journal of Geophysical Research Atmospheres, 2016, 121: 1683-1697. DOI: 10.1002/2015JD024227
doi: 10.1002/2015JD024227 URL |
[40] | 郑祚芳. 北京极端气温变化特征及其对城市化的响应[J]. 地理科学, 2011, 31 (4): 459-463. |
Zheng Z F. Characteristics of extreme temperature change in Beijing and their response to urbanization in Beijing[J]. Scientia Geographica Sinica, 2011, 31 (4): 459-463 (in Chinese) | |
[41] | 孙玫玲, 樊文雁, 司鹏, 等. 天津城市气候趋势和变化特征的研究1961—2017[J]. 气候变化研究快报, 2019, 8 (5): 636-647. |
Sun M L, Fan W Y, Si P, et al. Urban climate trends and changing trend in the Tianjin 1961-2017[J]. Climate Change Research Letters, 2019, 8 (5): 636-647 (in Chinese)
doi: 10.12677/CCRL.2019.85070 URL |
|
[42] |
Li D, Bou-Zeid E. Synergistic interactions between urban heat islands and heat waves: the impact in cities is larger than the sum of its parts[J]. Journal of Applied Meteorology and Climatology, 2013, 52 (9): 2051-2064. DOI: 10.1175/JAMC-D-13-02.1
doi: 10.1175/JAMC-D-13-02.1 URL |
[43] |
Zhou D, Zhang L, Hao L. Spatiotemporal trends of urban heat island effect along the urban development intensity gradient in China[J]. Science of The Total Environment, 2016, 544: 617-626. DOI: 10.1016/j.scitotenv.2015.11.168
doi: 10.1016/j.scitotenv.2015.11.168 URL |
[44] | 郑祚芳, 高华, 王在文, 等. 城市化对北京夏季极端高温影响的数值研究[J]. 生态环境学报, 2012, 21 (10): 1689-1694. |
Zheng Z F, Gao H, Wang Z W, et al. Numerical simulation for the urbanization effects on a heat wave event around Beijing city[J]. Ecology and Environmental Sciences, 2012, 21 (10): 1689-1694 (in Chinese) | |
[45] | 杨萍, 刘伟东, 侯威. 北京地区城郊极端温度事件的变化趋势及差异分析[J]. 气候与环境研究, 2013, 18 (1): 80-86. |
Yang P, Liu W D, Hou W. The trend and inter-decadal evolution of extreme temperature events in Beijing area[J]. Climatic and Environmental Research, 2013, 18 (1): 80-86 (in Chinese) | |
[46] | 王君, 严中伟, 李珍, 等. 近30年城市化对北京极端温度的影响[J]. 科学通报, 2013, 58: 3464-3470. |
Wang J, Yan Z W, Li Z, et al. Impact of urbanization on changes in temperature extremes in Beijing during 1978-2008[J]. Chinese Science Bulletin, 2013, 58: 3464-3470 (in Chinese) | |
[47] | 张珊, 黄刚, 王君, 等. 城市地表特征对京津冀地区夏季降水的影响研究[J]. 大气科学, 2015, 39 (5): 911-925. |
Zhang S, Huang G, Wang J, et al. Impact of urban surface characteristics on summer rainfall in the Beijing-Tianjin-Hebei area[J]. Chinese Journal of Atmospheric Sciences, 2015, 39 (5): 911-925 (in Chinese) | |
[48] |
朱秀迪, 张强, 孙鹏. 北京市快速城市化对短时间尺度降水时空特征影响及成因[J]. 地理学报, 2018, 73 (11): 2086-2104.
doi: 10.11821/dlxb201811004 |
Zhu X D, Zhang Q, Sun P. Effects of urbanization on spatio-temporal distribution of precipitations in Beijing and its related causes[J]. Acta Geographica Sinica, 2018, 73 (11): 2086-2104 (in Chinese)
doi: 10.11821/dlxb201811004 |
|
[49] |
郑祚芳, 高华, 王在文, 等. 北京地区降水空间分布及城市效应分析[J]. 高原气象, 2014, 33 (2): 522-529.
doi: 10.7522/j.issn.1000-0534.2012.00193 |
Zheng Z F, Gao H, Wang Z W, et al. Analysis on spatial distribution of precipitation in Beijing and its city effect[J]. Plateau Meteorology, 2014, 33 (2): 522-529 (in Chinese)
doi: 10.7522/j.issn.1000-0534.2012.00193 |
|
[50] |
Hu H. Spatiotemporal characteristics of rainstorm-induced hazards modified by urbanization in Beijing[J]. Journal of Applied Meteorology and Climatology, 2015, 54 (7): 1496-1509. DOI: 10.1175/JAMC-D-14-0267.1
doi: 10.1175/JAMC-D-14-0267.1 URL |
[51] |
Williams D S, Manez Costa M, Sutherland C, et al. Vulnerability of informal settlements in the context of rapid urbanization and climate change[J]. Environment and Urbanization, 2019, 31 (1): 157-176. DOI: 10.1177/0956247818819694
doi: 10.1177/0956247818819694 |
[52] | 杜吴鹏, 权维俊, 轩春怡, 等. 京津冀城市群高温灾害风险区划研究[J]. 南京大学学报: 自然科学, 2014, 50 (6): 829-837. |
Du W P, Quan W J, Xuan C Y, et al. The study of high temperature disaster risk zoning in Beijing-Tianjing-Hebei urban agglomeration[J]. Journal of Nanjing University: Natural Science, 2014, 50 (6): 829-837 (in Chinese) | |
[53] | 牛彦麟, 杨军, 林华亮, 等. 高温热浪对北京市居民死亡影响的附加效应[J]. 中国公共卫生, 2022, 38 (3): 7. |
Niu Y L, Yang J, Lin H L, et al. Additional effects of high temperature and heat wave on death of residents in Beijing[J]. Public Health in China, 2022, 38 (3): 7 (in Chinese) | |
[54] | 栾桂杰, 李湉湉, 殷鹏, 等. 2010年北京市高温热浪对居民死亡的影响[J]. 环境卫生学杂志, 2015, 5 (6): 525-529. |
Luan G J, Li T T, Yin P, et al. Heat wave impact on mortality in Beijing in 2010[J]. Journal of Environmental Hygiene, 2015, 5 (6): 525-529 (in Chinese) | |
[55] | 陈莎, 向翩翩, 姜克隽, 等. 北京市能源系统气候变化脆弱性分析与适应建议[J]. 气候变化研究进展, 2017, 13 (6): 614-622. |
Chen S, Xiang P P, Jiang K J, et al. Analysis of climate change vulnerability and adaptive suggestions in energy system in Beijing city[J]. Climate Change Research, 2017, 13 (6): 614-622 (in Chinese) | |
[56] |
Wang Y J, Song L C, Han Z Y, et al. Climate-related risks in the construction of Xiong’an New Area, China[J]. Theoretical and Applied Climatology, 2020, 141: 1301-1311. DOI: 10.1007/s00704-020-03277-2
doi: 10.1007/s00704-020-03277-2 URL |
[57] |
Li X, Zhou W, Ouyang Z, et al. Spatial pattern of greenspace affects land surface temperature: evidence from the heavily urbanized Beijing metropolitan area, China[J]. Landscape Ecology, 2012, 27 (6): 887-898. DOI: 10.1007/s10980-012-9731-6
doi: 10.1007/s10980-012-9731-6 URL |
[58] |
Xiao R B, Ouyang Z Y, Zheng H, et al. Spatial pattern of impervious surfaces and their impacts on land surface temperature in Beijing, China[J]. Journal of Environmental Sciences, 2007, 19 (2): 250-256. DOI: 10.1016/S1001-0742(07)60041-2
doi: 10.1016/S1001-0742(07)60041-2 URL |
[59] | 张稼乐, 潘志华, 匡文慧, 等. 1984—2014年北京地区不透水地表的时空变化及其温度效应研究[J]. 气候变化研究进展, 2020, 16 (3): 296-305. |
Zhang J L, Pan Z H, Kuang W H, et al. Spatial-temporal change features of impervious surface and its effect on land surface temperature from 1984 to 2014 in Beijing[J]. Climate Change Research, 2020, 16 (3): 296-305 (in Chinese) | |
[60] | 王光朋, 刘连友, 胡子瑛. 京津冀都市圈格网尺度洪涝灾害风险评价研究[J]. 灾害学, 2020, 35 (3): 186-193. |
Wang G P, Liu L Y, Hu Z Y. Risk assessment of rainstorm and flood disasters at grid-scale in Beijing-Tianjin-Hebei metropolitan area[J]. Journal of Catastrophology, 2020, 35 (3): 186-193 (in Chinese) | |
[61] |
Yang L, Tian F Q, Smith J, et al. Urban signatures in the spatial clustering of summer heavy rainfall events over the Beijing metropolitan region[J]. Journal of Geophysical Research Atmospheres, 2014, 119 (3): 1203-1217. DOI: 10.1002/2013JD020762
doi: 10.1002/2013JD020762 URL |
[62] | 高均海. 京津冀平原城市洪涝综合治理的若干问题研究[J]. 自然灾害学报, 2020, 29 (4): 1-7. |
Gao J H. Research on several issues of comprehensive flooding control in Beijing-Tianjin-Hebei Plain[J]. Journal of Natural Disasters, 2020, 29 (4): 1-7 (in Chinese) | |
[63] | 任玲. 京津冀地区洪水风险诊断与规避对策研究[D]. 天津: 天津大学, 2020. |
Ren L. Study on flood risk diagnosis and countermeasures in Beijing-Tianjin-Hebei region[D]. Tianjin: Tianjin University, 2020 (in Chinese) | |
[64] |
Yao L, Chen L, Wei W. Exploring the linkage between urban flood risk and spatial patterns in small urbanized catchments of Beijing, China[J]. International Journal of Environmental Research and Public Health, 2017, 14 (3): 239. DOI: 10.3390/ijerph14030239
doi: 10.3390/ijerph14030239 URL |
[65] | 蔡殿卿, 于磊, 潘兴瑶, 等. 北京海绵城市试点区建设实践[J]. 建设科技, 2019, 2: 92-95. |
Cai D Q, Yu L, Pan X Y, et al. Construction practice of Beijing sponge city pilot area[J]. Construction Science and Technology, 2019, 2: 92-95 (in Chinese) | |
[66] | 李其军, 潘兴瑶, 杨默远. 北京海绵城市建设中的关键问题探讨[J]. 北京水务, 2020, 3: 10-13. |
Li Q J, Pan X Y, Yang M Y. Discussion on the key problems of sponge city construction in Beijing[J]. Beijing Water, 2020, 3: 10-13 (in Chinese) | |
[67] |
Cheng X, Chen L, Sun R, et al. Identification of regional water resource stress based on water quantity and quality: a case study in a rapid urbanization region of China[J]. Journal of Cleaner Production, 2019, 209: 216-223. DOI: 10.1016/j.jclepro.2018.10.175
doi: 10.1016/j.jclepro.2018.10.175 |
[68] | 杨永辉, 任丹丹, 杨艳敏, 等. 海河流域水资源演变与驱动机制[J]. 中国生态农业学报, 2018, 26 (10): 1443-1453. |
Yang Y H, Ren D D, Yang Y M, et al. Advances in clarification of the driving forces of water shortage in Haihe River catchment[J]. Chinese Journal of Eco-Agriculture, 2018, 26 (10): 1443-1453 (in Chinese) | |
[69] |
Tang Q, Oki T, Kanae S, et al. Hydrological cycles change in the Yellow River basin during the last half of the twentieth century[J]. Journal of Climate, 2008, 21 (8): 1790-1806. DOI: 10.1175/2007JCLI1854.1
doi: 10.1175/2007JCLI1854.1 URL |
[70] |
Zhang Z, Chen X, Xu C, et al. Evaluating the non-stationary relationship between precipitation and streamflow in nine major basins of China during the past 50 years[J]. Journal of Hydrology, 2011, 409: 81-93. DOI: 10.1016/j.jhydrol.2011.07.041
doi: 10.1016/j.jhydrol.2011.07.041 URL |
[71] | 张利茹, 贺永会, 唐跃平, 等. 海河流域径流变化趋势及其归因分析[J]. 水利水运工程学报, 2017, 4: 59-66. |
Zhang L R, He Y H, Tang Y P, et al. Analysis of runoff change trend and its attribution in Haihe River basin[J]. Hydro-Science and Engineering, 2017, 4: 59-66 (in Chinese) | |
[72] | 游珍, 杨艳昭. 中国主要城市群水土资源条件与限制研究: 以京津冀、长三角、珠三角为例[J]. 地域研究与开发, 2018, 37 (4): 138-142. |
You Z, Yang Y Z. Condition and restriction of water and land resources in major urban agglomerations in China: a case of Jing-Jin-Ji, Yangtze River delta and Pearl River delta[J]. Areal Research and Development, 2018, 37 (4): 138-142 (in Chinese) | |
[73] | 李林汉, 田卫民, 岳一飞. 基于层次分析法的京津冀地区水资源承载能力评价[J]. 科学技术与工程, 2018, 18 (24): 139-148. |
Li L H, Tian W M, Yue Y F. Evaluation of water resources carrying capacity in Beijing-Tianjin-Hebei region based on analytic hierarchy process[J]. Science Technology and Engineering, 2018, 18 (24): 139-148 (in Chinese) | |
[74] | 洪思扬, 程涛. 京津冀地区干旱事件时空聚集性特征分析[J]. 水资源保护, 2022, 38 (5): 87-95. |
Hong S Y, Cheng T. Analysis on temporal and spatial clustering characteristics of drought events in Beijing-Tianjin-Hebei region[J]. Water Resource Protection, 2022, 38 (5): 87-95 (in Chinese) | |
[75] | 张丽艳, 杨东, 马露. 京津冀地区气象干旱特征及其成因分析[J]. 水力发电学报, 2017, 36 (12): 28-38. |
Zhang L Y, Yang D, Ma L. Characteristics of meteorological drought in Jing-Jin-Ji area and cause analysis[J]. Journal of Hydroelectric Engineering, 2017, 36 (12): 28-38 (in Chinese) | |
[76] |
He J, Yang X H, Li J Q, et al. Spatiotemporal variation of meteorological droughts based on the daily comprehensive drought index in the Haihe River basin, China[J]. Natural Hazards, 2015, 75 (2): 199-217. DOI: 10.1007/s11069-014-1158-8
doi: 10.1007/s11069-014-1158-8 URL |
[77] | 严登华, 袁喆, 杨志勇, 等. 1961年以来海河流域干旱时空变化特征分析[J]. 水科学进展, 2013, 24 (1): 34-41. |
Yan D H, Yuan Z, Yang Z Y, et al. Spatial and temporal changes in drought since 1961 in Haihe River basin[J]. Advances in Water Science, 2013, 24 (1): 34-41 (in Chinese) | |
[78] |
韩雁, 张士锋, 吕爱锋. 外调水对京津冀水资源承载力影响研究[J]. 资源科学, 2018, 40 (11): 2236-2246.
doi: 10.18402/resci.2018.11.10 |
Han Y, Zhang S F, Lv A F. Research of effect on water resources carrying capacity in Beijing-Tianjin-Hebei region by water transfer[J]. Resources Science, 2018, 40 (11): 2236-2246 (in Chinese)
doi: 10.18402/resci.2018.11.10 |
|
[79] | 张恒, 陶胜利, 唐志尧, 等. 近30年京津冀地区湖泊面积的变化[J]. 北京大学学报: 自然科学版, 2020, 56 (2): 324-330. |
Zhang H, Tao S L, Tang Z Y, et al. Lake area changes in Jing-Jin-Ji region in recent 30 years[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56 (2): 324-330 (in Chinese) | |
[80] | 金君良, 王国庆, 刘翠善, 等. 气候变化下海河流域未来水资源演变趋势[J]. 华北水利水电大学学报:自然科学版, 2016, 37 (5): 1-6. |
Jing J L, Wang G Q, Liu C S, et al. Future evolution trends of water resources in Haihe River basin under the climate change[J]. Journal of North China University of Water Resources and Electric Power: Natural Science Edition, 2016, 37 (5): 1-6 (in Chinese) | |
[81] | 韩振宇, 徐影, 吴佳, 等. 多区域气候模式集合对中国径流深的模拟评估和未来变化预估[J]. 气候变化研究进展, 2022, 18 (3): 305-318. |
Han Z Y, Xu Y, Wu J, et al. Evaluation the simulated runoff in China and future change projection based on multiple regional climate models[J]. Climate Change Research, 2022, 18 (3): 305-318 (in Chinese) | |
[82] |
Guan X, Zhang J, Bao Z, et al. Past variations and future projection of runoff in typical basins in 10 water zones, China[J]. Science of The Total Environment, 2021, 798: 149-277. DOI: 10.1016/j.scitotenv.2021.149277
doi: 10.1016/j.scitotenv.2021.149277 |
[83] |
Sun H M, Wang Y J, Chen J, et al. Exposure of population to droughts in the Haihe River basin under global warming of 1.5 and 2.0℃ scenarios[J]. Quaternary International, 2017, 453: 74-84. DOI: 10.1016/j.quaint.2017.05.005
doi: 10.1016/j.quaint.2017.05.005 URL |
[84] |
Luo J, Shen Y Q, Zhang Y, et al. Evaluating water conservation effects due to cropping system optimization on the Beijing-Tianjin-Hebei plain, China[J]. Agricultural Systems, 2018, 159: 32-41. DOI: 10.1016/j.agsy.2017.10.002
doi: 10.1016/j.agsy.2017.10.002 URL |
[85] | 崔秋利. 1957—2017年京津冀主要作物水分利用效率及节水潜力分析[J]. 灌溉排水学报, 2020, 39 (2): 93-98. |
Cui Q L. Analysis of WUE for main crops and water-saving potential in the Beijing-Tianjin-Hebei region in 1957-2015[J]. Journal of Irrigation and Drainage, 2020, 39 (2): 93-98 (in Chinese) | |
[86] |
Zhao Y, Zhang X, Bai Y, et al. Does land use change affect green space water use? An analysis of the Haihe River basin[J]. Forests, 2019, 10 (7): 545. DOI: 10.3390/f10070545
doi: 10.3390/f10070545 URL |
[87] | 王慧, 刘秋林, 李欢, 等. 海平面变化研究进展[J]. 海洋信息, 2018, 3: 19-24. |
Wang H, Liu Q L, Li H, et al. Latest research and progress on sea level change[J]. Ocean Information, 2018, 3: 19-24 (in Chinese) | |
[88] | 常乐, 孙文科. 全球及中国近海海平面变化趋势研究进展及展望[J]. 地球与行星物理论评, 2021, 52 (3): 266-279. |
Chang L, Sun W K. Progress and prospect of sea level changes of global and China nearby seas[J]. Reviews of Geophysics and Planetary Physics, 2021, 52 (3): 266-279 (in Chinese) | |
[89] |
Guo J, Hu Z, Wang J, et al. Sea level changes of China seas and neighboring ocean based on satellite altimetry missions from 1993 to 2012[J]. Journal of Coastal Research, 2015, 73 (S): 17-22. DOI: 10.2112/SI73-004.1
doi: 10.2112/SI73-004.1 |
[90] | 李响, 段晓峰, 刘克修, 等. 津冀沿海地区海平面上升的风险评估研究[J]. 灾害学, 2014, 29 (3): 108-114. |
Li X, Duan X F, Liu K X, et al. The risk assessment research on the sea level rise of Tianjin and Hebei coastal areas[J]. Journal of Catastrophology, 2014, 29 (3): 108-114 (in Chinese) | |
[91] | 董美玲, 井晶晶, 邵杰, 等. 河北省黄骅沿海海平面变化分析及预测[J]. 海洋湖沼通报, 2020, 3: 31-38. |
Dong M L, Jing J J, Shao J, et al. Analysis and prediction of the changes in sea level in Huanghua coastal area of Hebei province[J]. Transaction of Oceanology and Limnology, 2020, 3: 31-38 (in Chinese) | |
[92] | 自然资源部. 2020年中国海平面公报[EB/OL]. 2021 [2022-01-24]. http://gi.mnr.gov.cn/202104/P020210426570276410847.pdf. |
Ministry of Natural Resources. China sea level bulletin 2020[EB/OL]. 2021 [2022-01-24]. http://gi.mnr.gov.cn/202104/P020210426570276410847.pdf (in Chinese) | |
[93] | 段丽瑶, 赵玉洁, 王彦, 等. 气候变化和人类活动对天津海岸带影响综述[J]. 灾害学, 2012, 27 (2): 119-123, 129. |
Duan L Y, Zhao Y J, Wang Y, et al. Review on the impacts of climate changes and human activities on the costal zone of Tianjin[J]. Journal of Catastrophology, 2012, 27 (2): 119-123, 129 (in Chinese) | |
[94] | 李杰, 陈燕珍, 牛福新, 等. 天津海平面变化影响调查研究[J]. 天津航海, 2018, 2: 69-71. |
Li J, Chen Y Z, Niu F X, et al. Study on the impact of sea level change in Tianjin[J]. Tianjin Maritime, 2018, 2: 69-71 (in Chinese) | |
[95] | 庄圆, 纪棋严, 左军成, 等. 海平面上升对中国沿海地区极值水位重现期的影响[J]. 海洋科学进展, 2021, 39 (1): 20-29. |
Zhuang Y, Ji Q Y, Zuo J C, et al. Effects of sea-level rise on the recurrence period of extreme water levels in coastal areas of China[J]. Advances in Marine Science, 2021, 39 (1): 20-29 (in Chinese) | |
[96] |
Wang F, Li J, Shi P, et al. The impact of sea-level rise on the coast of Tianjin-Hebei, China[J]. China Geology, 2019, 2 (1): 26-39. DOI: 10.31035/cg2018061
doi: 10.31035/cg2018061 URL |
[97] | 沈文周. 中国近海空间地理[M]. 北京: 海洋出版社, 2006: 370-398. |
Shen W Z. Spatial geography of China’s offshore waters[M]. Beijing: Ocean Press, 2006: 370-398 (in Chinese) | |
[98] | 王静爱, 王珏, 叶涛. 中国城市水灾危险性与可持续发展[J]. 北京师范大学学报: 社会科学版, 2004 (3): 138-142. |
Wang J A, Wang J, Ye T. Hazard assessment of urban flood disaster and sustainable development in China[J]. Journal of Beijing Normal University: Social Sciences, 2004 (3): 138-142 (in Chinese) | |
[99] |
Liang C, Oliver W F. Impacts of urbanization on future climate in China[J]. Climate Dynamics, 2016, 47: 345-357. DOI: 10.1007/s00382-015-2840-6
doi: 10.1007/s00382-015-2840-6 URL |
[100] | 董锁成, 陶澍, 杨旺舟, 等. 气候变化对中国沿海地区城市群的影响[J]. 气候变化研究进展, 2010, 6 (4): 284-289. |
Dong S C, Tao S, Yang W Z, et al. Impacts of climate change on urban agglomerations in coastal region of China[J]. Climate Change Research, 2010, 6 (4): 284-289 (in Chinese) | |
[101] | 鲍文. 气候变化适应型城市发展战略研究[J]. 中国名城, 2020: 4-9. |
Bao W. Urban development strategies for adapting to climate change[J]. Chinese Famous City, 2020: 4-9 (in Chinese) | |
[102] | 朱潜挺, 刘镇萌, 唐景烨, 等. 京津冀气候变化适应性指标体系构建与评价[J]. 创新科技, 2020, 20 (1): 53-61. |
Zhu Q T, Liu Z M, Tang J Y, et al. Construction and evaluation of climate change adaptation index system in Beijing, Tianjin and Hebei[J]. Innovation Science and Technology, 2020, 20 (1): 53-61 (in Chinese) | |
[103] |
Santamouris M. Cooling the cities: a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments[J]. Solar Energy, 2014, 103: 682-703. DOI: 10.1016/j.solener.2012.07.003
doi: 10.1016/j.solener.2012.07.003 URL |
[104] |
Zonato A, Martilli A, Gutierrez E, et al. Exploring the effects of rooftop mitigation strategies on urban temperatures and energy consumption[J]. Earth and Space Science, 2021. DOI: 10.1002/essoar.10506675.1
doi: 10.1002/essoar.10506675.1 |
[105] |
Ahilan S, Guan M, Sleigh A, et al. The influence of floodplain restoration on flow and sediment dynamics in an urban river[J]. Journal of Flood Risk Management, 2018, 11 (S): 986-1001. DOI: 10.1111/jfr3.12251
doi: 10.1111/jfr3.12251 |
[106] |
Hong C Y, Chan H. Residents’ perception of flood risk and urban stream restoration using multi-criteria decision analysis[J]. River Research and Applications, 2020, 36 (10): 2078-2088. DOI: 10.1002/rra.3728
doi: 10.1002/rra.3728 URL |
[107] |
Moore T, Gulliver J S, Stack L, et al. Stormwater management and climate change: vulnerability and capacity for adaptation in urban and suburban contexts[J]. Climatic Change, 2016, 138 (3): 491-504. DOI: 10.1007/s10584-016-1766-2
doi: 10.1007/s10584-016-1766-2 URL |
[108] |
Keeler B L, Hamel P, McPhearson T, et al. Social-ecological and technological factors moderate the value of urban nature[J]. Nature Sustainability, 2019, 2 (1): 29-38
doi: 10.1038/s41893-018-0202-1 URL |
[109] |
Oral H V, Carvalho P, Gajewska M, et al. A review of Nature-based Solutions for urban water management in European circular cities: a critical assessment based on case studies and literature[J]. Blue-Green Systems, 2020, 2 (1): 112-136. DOI: 10.2166/bgs.2020.932
doi: 10.2166/bgs.2020.932 URL |
[1] | GAO Mei-Xun, CHEN Min-Peng, TENG Fei. Technology Needs Assessment for adaptation to climate change in the Belt and Road countries [J]. Climate Change Research, 2022, 18(6): 731-742. |
[2] | MEI Mei, HOU Wei, ZHOU Xing-Yan. The difference between new and old climate states and its impact on the assessment of climate and extreme event in China [J]. Climate Change Research, 2022, 18(6): 653-669. |
[3] | ZHANG Xi, CHEN Min-Peng. Adaptation and green recovery: synergistic responses to the COVID-19 pandemic and climate compounding risks [J]. Climate Change Research, 2022, 18(6): 720-730. |
[4] | ZHANG Hua, LI Wen-Li, LI Xue-Min, DONG Lin, YANG You-Tian, ZHANG Guo-Ming, XU Ying-Jun. Analysis of urban and rural population scenarios and exposure characteristics in China in the future for the prevention of earthquake risk [J]. Climate Change Research, 2022, 18(6): 707-719. |
[5] | JIANG Han-Ying, GAO Xiang, WANG Can. Progress and evaluation of international climate change cooperation [J]. Climate Change Research, 2022, 18(5): 591-604. |
[6] | BAI Quan, HU Shan, GU Li-Jing. Interpretation of IPCC AR6 on buildings [J]. Climate Change Research, 2022, 18(5): 557-566. |
[7] | WANG Zhuo-Ni, YUAN Jia-Shuang, PANG Bo, HUANG Lei. The interpretation and highlights on mitigation of climate change in IPCC AR6 WGIII report [J]. Climate Change Research, 2022, 18(5): 531-537. |
[8] | ZHANG Ning, PANG Jun. The economic impacts of introducing CCER trading and offset mechanism into the national carbon market of China [J]. Climate Change Research, 2022, 18(5): 622-636. |
[9] | MA Li-Juan, XIAO Cun-De, KANG Shi-Chang. Characteristics, and similarities and differences of climate change in major high mountains in the world—comprehensive interpretation of IPCC AR6 WGI report and SROCC [J]. Climate Change Research, 2022, 18(5): 605-621. |
[10] | LIU Junguo, MENG Ying, ZHANG Xue-Jing. Interpretation of IPCC AR6 report: groundwater [J]. Climate Change Research, 2022, 18(4): 414-421. |
[11] | LIU Junguo, CHEN He, TIAN Zhan. Interpretation of IPCC AR6: climate change and water security [J]. Climate Change Research, 2022, 18(4): 405-413. |
[12] | DUAN Ju-Qi, YUAN Jia-Shuang, XU Xin-Wu, JU Hui. Interpretation of the IPCC AR6 report on agricultural systems [J]. Climate Change Research, 2022, 18(4): 422-432. |
[13] | ZHANG Bai-Chao, PANG Bo, QIN Yun, HAN Zhen-Yu, LU Bo. Interpretation of Climate Resilient Development in IPCC AR6 WGII [J]. Climate Change Research, 2022, 18(4): 460-467. |
[14] | HU Yi-Lun, JI Guo-Xu, LI Ji-Hong, HASBAGAN Ganjurjav, HU Guo-Zheng, GAO Qing-Zhu. Interpretation of IPCC AR6: terrestrial and freshwater ecosystems and their services [J]. Climate Change Research, 2022, 18(4): 395-404. |
[15] | ZHOU Jian-Qin, HUANG Wei, LI Meng, ZHENG Jian-Meng, LUO Meng, FU Rui. Dry-wet climate evolution feature and projection of future changes based on CMIP6 models in early summer over Yunnan province, China [J]. Climate Change Research, 2022, 18(4): 482-491. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|