|
Climate Change Research ›› 2024, Vol. 20 ›› Issue (5): 509-518.doi: 10.12006/j.issn.1673-1719.2024.083
Special Issue: 西风-季风协同作用下青藏高原典型水环境变化特征及其对气候变化的响应专栏
• Characteristics of typical water environment changes on the Tibetan Plateau under the synergy of westerly and monsoons and their response to climate change • Previous Articles Next Articles
NIU Zhen-Guo1(), JING Yu-Hang1, ZHANG Dong-Qi2, ZHANG Bo1
Received:
2024-04-26
Revised:
2024-07-03
Online:
2024-09-30
Published:
2024-08-28
NIU Zhen-Guo, JING Yu-Hang, ZHANG Dong-Qi, ZHANG Bo. An overview and the outlook for wetland ecosystems in the Qinghai-Tibetan Plateau under climate change[J]. Climate Change Research, 2024, 20(5): 509-518.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2024.083
[1] | 姚檀栋, 陈发虎, 崔鹏, 等. 从青藏高原到第三极和泛第三极[J]. 中国科学院院刊, 2017, 32 (9): 924-931. |
Yao T D, Chen F H, Cui P, et al. From Tibetan Plateau to Third Pole and Pan-Third Pole[J]. Bulletin of Chinese Academy of Sciences, 2017, 32 (9): 924-931 (in Chinese) | |
[2] | 王闯, 戴长雷, 宋成杰. 青藏高原气候变化的时空分布特征分析[J]. 人民黄河, 2022, 44 (9): 76-82. |
Wang C, Dai C L, Song C J. Analysis of the temporal and spatial distribution characteristics of climate change in the Qinghai-Tibetan Plateau[J]. Yellow River, 2022, 44 (9): 76-82 (in Chinese) | |
[3] | 杨泽粟, 张宇, 张强, 等. 青藏高原蒸散年际变化及其对西风和季风环流的响应[J]. 地球物理学报, 2022, 65 (8): 2813-2827. |
Yang Z S, Zhang Y, Zhang Q, et al. Inter-annual variability of evapotranspiration and its response towestly andmonsoon circulation over the Tibetan Plateau[J]. Chinese Journal of Geophysics, 2022, 65 (8): 2813-2827 (in Chinese) | |
[4] | Ran Y, Li X, Cheng G, et al. Mapping the permafrost stability on the Tibetan Plateau for 2005-2015[J]. Science China Earth Sciences, 2021, 64: 62-79 |
[5] | 白军红, 欧阳华, 徐惠风, 等. 青藏高原湿地研究进展[J]. 地理科学进展, 2004 (4): 1-9. |
Bai J H, Ouyang H, Xu H F, et al. Advances in studies of wetlands in Qinghai-Tibet Plateau[J]. Progress in Geography, 2004 (4): 1-9 (in Chinese)
doi: 10.11820/dlkxjz.2004.04.001 |
|
[6] | 陈桂琛, 黄志伟, 卢学峰, 等. 青海高原湿地特征及其保护[J]. 冰川冻土, 2022, 24 (3): 254-259. |
Chen G C, Huang Z W, Lu X F, et al. Characteristics of wetland and its conservation in the Qinghai Plateau[J]. Journal of Glaciology and Geocryology, 2022, 24 (3): 254-259 (in Chinese) | |
[7] | Zhang Y L, Wang C L, Bai W Q, et al. Alpine wetlands in the Lhasa River basin, China[J]. Journal of Geographical Sciences, 2010. DOI: 10.1007/s11442-010-0375-7 |
[8] |
Zhang Y, Wang G X, Wang Y B. Changes in alpine wetland ecosystems of the Qinghai-Tibetan Plateau from 1967 to 2004[J]. Environmental Monitoring and Assessment, 2011, 180: 189-199
doi: 10.1007/s10661-010-1781-0 pmid: 21140209 |
[9] | 邢宇. 青藏高原32年湿地对气候变化的空间响应[J]. 国土资源遥感, 2015, 27 (3): 99-107. |
Xing Y. Spatial responses of wetland change to climate in 32 years in Qinghai-Tibet Plateau[J]. Remote Sensing for Natural Resources, 2015, 27 (3): 99-107 (in Chinese) | |
[10] | 刘冬, 王涛, 沈渭寿, 等. 近30a雅鲁藏布江流域高寒湿地动态变化及其对气候变化的响应[J]. 生态与农村环境学报, 2016, 32 (2): 243-251. |
Liu D, Wang T, Shen W S, et al. Dynamic of the alpine wetlands and its response to climate change in the Yarlung Zangbo River valley in recent 30 years[J]. Journal of Ecology and Rural Environment, 2016, 32 (2): 243-251 (in Chinese) | |
[11] | Xue Z S, Lyu X, Chen Z K, et al. Spatial and temporal changes of wetlands on the Qinghai-Tibetan Plateau from the 1970s to 2010s[J]. Chinese Geographical Science, 2018, 28: 935-945 |
[12] | 郎芹, 牛振国, 洪孝琪, 等. 青藏高原湿地遥感监测与变化分析[J]. 武汉大学学报(信息科学版), 2021, 46 (2): 230-237. |
Lang Q, Niu Z G, Hong X Q, et al. Remote sensing monitoring and change analysis of wetlands in the Tibetan Plateau[J]. Geomatics and Information Science of Wuhan University, 2021, 46 (2): 230-237 (in Chinese) | |
[13] | 张波. 基于图像变化检测的青藏高原高寒湿地分类研究[D]. 北京: 中国科学院大学, 2023. |
Zhang B. Classification of alpine wetlands on the Qinghai-Tibet Plateau based on image change detection[D]. Beijing: University of Chinese Academy of Sciences, 2023 (in Chinese) | |
[14] |
张帅旗, 周秉荣, 史飞飞, 等. 基于高分一号卫星遥感数据的青藏高原高寒湿地信息提取方法研究: 以玛多县为例[J]. 高原气象, 2020, 39 (6): 1309-1317.
doi: 10.7522/j.issn.1000-0534.2019.00131 |
Zhang S Q, Zhou B R, Shi F F, et al. Study on information extraction method of alpine wetland in Qinghai Xizang Plateau based on remote sensing data of GF-1 satellite: taking Maduo county for example[J]. Plateau Meteorology, 2020, 39 (6): 1309-1317 (in Chinese) | |
[15] | 谢高地, 鲁春霞, 冷允法, 等. 青藏高原生态资产的价值评估[J]. 自然资源学报, 2003 (2): 189-196. |
Xie G D, Lu C X, Leng Y F, et al. Ecological assets valuation of the Tibetan Plateau[J]. Journal of Natural Resources, 2003 (2): 189-196 (in Chinese)
doi: 10.11849/zrzyxb.2003.02.010 |
|
[16] | 鲁春霞, 谢高地, 肖玉, 等. 青藏高原生态系统服务功能的价值评估[J]. 生态学报, 2004 (12): 2749-2755, 3011. |
Lu C X, Xie G D, Xiao Y, et al. Ecosystem diversity and economic valuation of Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica, 2004 (12): 2749-2755, 3011 (in Chinese) | |
[17] | 杨霞, 翟兴礼, 余国莹. 若尔盖高原湿地生物多样性现状及其保护对策[J]. 长春大学学报, 2002 (3): 16-20. |
Yang X, Zhai X L, Yu G Y. Current stuation of Roige Plateau wetlands biodiversity and their conservation countermeasure[J]. Journal of Changchun University, 2002 (3): 16-20 (in Chinese) | |
[18] | 姚檀栋, 邬光剑, 徐柏青, 等. “亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34 (11): 1203-1209. |
Yao T D, Wu G J, Xu B Q, et al. Asian water tower change and its impacts[J]. Bulletin of Chinese Academy of Sciences, 2019, 34 (11): 1203-1209 (in Chinese) | |
[19] | 张建云, 刘九夫, 金君良, 等. 青藏高原水资源演变与趋势分析[J]. 中国科学院院刊, 2019, 34 (11): 1264-1273. DOI: 10.16418/j.issn.1000-3045.2019.11.009. |
Zhang J Y, Liu J F, Jin J L, et al. Evolution and trend of water resources in Qinghai-Tibet Plateau[J]. Bulletin of Chinese Academy of Sciences, 2019, 34 (11): 1264-1273. DOI: 10.16418/j.issn.1000-3045.2019.11.009 (in Chinese) | |
[20] |
陈心盟, 王晓峰, 冯晓明, 等. 青藏高原生态系统服务权衡与协同关系[J]. 地理研究, 2021, 40 (1): 18-34.
doi: 10.11821/dlyj020200399 |
Chen X M, Wang X F, Feng X M, et al. Ecosystem service trade-off and synergy on Qinghai-Tibet Plateau[J]. Geographical Research, 2021, 40 (1): 18-34 (in Chinese) | |
[21] | 张国庆, 王蒙蒙, 周陶, 等. 青藏高原湖泊面积、水位与水量变化遥感监测研究进展[J]. 遥感学报, 2022, 26 (1): 115-125. |
Zhang G Q, Wang M M, Zhou T, et al. Progress in remote sensing monitoring of lake area, water level, and volume changes on the Tibetan Plateau[J]. National Remote Sensing Bulletin, 2022, 26 (1): 115-125 (in Chinese) | |
[22] | Xu F L, Zhang G Q, Woolway R I, et al. Widespread societal and ecological impacts from projected Tibetan Plateau Lake expansion[J]. Nature Geoscience, 2024, 17 (6): 516-523 |
[23] | 张倚浩, 阎建忠, 程先. 气候变化与人类活动对青藏高原湿地的影响研究进展[J]. 生态学报, 2023, 43 (6): 2180-2193. |
Zhang Y H, Yan J Z, Cheng X. Advances in impact of climate change and human activities on wetlands on the Tibetan Plateau[J]. Acta Ecologica Sinica, 2023, 43 (6): 2180-2193 (in Chinese) | |
[24] | 韩倩倩. 全球地表水体动态遥感监测与中国水体时空变化研究[D]. 北京: 中国科学院大学, 2020. |
Han Q Q. Mapping global surface water dynamics and spatio-temporal analysis of China water based on GEE[D]. Beijing: University of Chinese Academy of Sciences, 2020 (in Chinese) | |
[25] | 郭廷锋, 张陆军, 辛元红. 长江源区沼泽湿地退化的地质原因及发展趋势研究[J]. 青海国土经略, 2009 (6): 34-36. |
Guo T F, Zhang L J, Xin Y H. Study on geological causes and development trend of wetland degradation in the headwaters of Yangtze River[J]. Management & Strategy of Qinghai Land & Resources, 2009 (6): 34-36 (in Chinese) | |
[26] | 张瑞江. 青藏高原冰川演变与生态地质环境响应[J]. 中国地质调查, 2016, 3 (2): 46-50. |
Zhang R J. Glacier change and eco-geological environment response in Tibetan Plateau[J]. Geological Survey of China, 2016, 3 (2): 46-50 (in Chinese) | |
[27] | 褚青帅. 环境因素对青藏高原拉萨河流域湿地植物功能性状的影响[D]. 拉萨: 西藏大学, 2021. |
Chu Q S. Effects of environmental factors on functional traits of wetland plants in the Lhasa River basin on the Qinghai Tibet Plateau[D]. Lhasa: Tibet University, 2021 (in Chinese) | |
[28] | 李英年, 赵新全, 赵亮, 等. 祁连山海北高寒湿地气候变化及植被演替分析[J]. 冰川冻土, 2003 (3): 243-249. |
Li Y N, Zhao X Q, Zhao L, et al. Analysis of vegetation succession and climate change in Haibei alpine marsh in the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2003 (3): 243-249 (in Chinese) | |
[29] | Shen X, Shen M, Wu C, et al. Critical role of water conditions in the responses of autumn phenology of marsh wetlands to climate change on the Tibetan Plateau[J]. Global Change Biology, 2023, 30: e17097 |
[30] |
Wang R, Yan X, Niu Z G, et al. Long-term changes in inland water surface temperature across China based on remote sensing data[J]. Journal of Hydrometeorology, 2021, 22 (2): 523-532
doi: 10.1175/JHM-D-20-0104.1 |
[31] |
周思儒, 信忠保. 近20年青藏高原水资源时空变化[J]. 长江科学院院报, 2022, 39 (6): 31-39.
doi: 10.11988/ckyyb.20210212 |
Zhou S R, Xin Z B. Spatial and temporal characteristics of water resources in Qinghai-Tibet Plateau in recent two decades[J]. Journal of Changjiang River Scientific Research Institute, 2022, 39 (6): 31-39 (in Chinese) | |
[32] | 管延龙. 全球气候景观格局变化及其对青藏高原地表水资源影响研究[D]. 北京: 华北电力大学, 2021. |
Guan Y L. Changes of global climate landscape pattern and its lmpact on surface water resource in Qinghai-Tibet Plateau[D]. Beijing: North China Electronic Power University, 2021 (in Chinese) | |
[33] | 韩煜娜, 左德鹏, 王国庆, 等. 变化环境下青藏高原陆地水储量演变格局及归因[J]. 水资源保护, 2023, 39 (2): 199-207, 214. |
Han Y N, Zuo D P, Wang G Q, et al. Evolution pattern and attribution analysis of terrestrial water storage in Tibetan Plateau under changing environment[J]. Water Resources Protection, 2023, 39 (2): 199-207, 214 (in Chinese) | |
[34] | Li M, Weng B, Yan D, et al. Spatiotemporal characteristics of surface water resources in the Tibetan Plateau: based on the produce water coefficient method considering snowmelt[J]. Science of the Total Environment, 2022, 851: 158048 |
[35] | 张强, 王港, 赵佳琪, 等. 亚洲水塔水循环和水资源研究进展与展望[J]. 科学通报, 2023, 68 (36): 4982-4994. |
Zhang Q, Wang G, Zhao J Q, et al. Water circulation and water resources of Asia’s water tower: the past and future[J]. Chinese Science Bulletin, 2023, 68 (36): 4982-4994 (in Chinese) | |
[36] | Chen H, Ju P, Zhu Q, et al. Carbon and nitrogen cycling on the Qinghai-Tibetan Plateau[J]. Nature Reviews Earth & Environment, 2022 (3): 701-716. DOI: 10.1038/s43017-022-00344-2 |
[37] | Ma K, Zhang Y, Tang S, et al. Spatial distribution of soil organic carbon in the Zoige alpine wetland, northeastern Qinghai-Tibet Plateau[J]. Catena, 2016, 144: 102-108 |
[38] | Ma W, Alhassan A R M, Wang Y, et al. Greenhouse gas emissions as influenced by wetland vegetation degradation along a moisture gradient on the eastern Qinghai-Tibet Plateau of North-West China[J]. Nutrient Cycling in Agroecosystem, 2018, 112: 335-354 |
[39] |
王婷, 张永超, 赵之重. 青藏高原退化高寒湿地植被群落结构和土壤养分变化特征[J]. 草业学报, 2020, 29 (4): 9-18.
doi: 10.11686/cyxb2019378 |
Wang T, Zhang Y C, Zhao Z Z. Characteristics of the vegetation community and soil nutrient status in a degraded alpine wetland of Qinghai-Tibet Plateau[J]. Acta Prataculturae Sinica, 2020, 29 (4): 9-18 (in Chinese)
doi: 10.11686/cyxb2019378 |
|
[40] | Wu J, Wang H, Li G, et al. Vertical and seasonal changes in soil carbon pools to vegetation degradation in a wet meadow on the Qinghai-Tibet Plateau[J]. Scientific Reports, 2021, 11 (1): 12268 |
[41] | 董利军, 李金花, 陈珊, 等. 若尔盖湿地高寒草甸退化过程中土壤有机碳含量变化及成因分析[J]. 植物生态学报, 2021, 45: 507-515. |
Dong L J, Li J H, Chen S, et al. Changes in soil organic carbon content and their causes during the degradation of alpine meadows in Roige wetland[J]. Chinese Journal of Plant Ecology, 2021, 45: 507-515 (in Chinese) | |
[42] | Ye C, Li L, Zhao R, et al. Soil organic carbon and its stability after vegetation restoration in Zoige grassland, eastern Qinghai-Tibet Plateau[J]. Restoration Ecology, 2023, 31 (7): e13896 |
[43] | Pu Y, Ye C, Zhang S, et al. Response of the organic carbon fractions and stability of soil to alpine marsh degradation in Zoige, East Qinghai-Tibet Plateau[J]. Journal of Soil Science and Plant Nutrition, 2020, 20: 2145-2155 |
[44] | Shen X, Liu Y, Zhang J, et al. Asymmetric impacts of diurnal warming on vegetation carbon sequestration of marshes in the Qinghai Tibet Plateau[J]. Global Biogeochemical Cycles, 2022, 36 (7): e2022GB007396 |
[45] | Li H, Li T, Sun W, et al. Degradation of wetlands on the Qinghai-Tibetan Plateau causing a loss in soil organic carbon in 1966-2016[J]. Plant and Soil, 2021, 467: 253-265 |
[46] | 汪涛, 朴世龙. 青藏高原陆地生态系统碳汇估算: 进展、挑战与展望[J]. 第四纪研究, 2023, 43 (2): 313-323. |
Wang T, Piao S L. Estimate of terrestrial carbon balance over the Tibetan Plateau: progresses, challenges and perspectives[J]. Quaternary Sciences, 2023, 43 (2): 313-323 (in Chinese) | |
[47] | 张法伟, 刘安花, 李英年, 等. 青藏高原高寒湿地生态系统CO2通量[J]. 生态学报, 2008 (2): 453-462. |
Zhang F W, Liu A H, Li Y N, et al. CO2 flux in alpine wetland ecosystem on the Qinghai-Tibetan Plateau[J]. Acta Ecologica Sinica, 2008 (2): 453-462 (in Chinese) | |
[48] | 张贤, 朱求安, 杨斌, 等. 基于过程模型的青藏高原湿地甲烷排放格局评估[J]. 生态学报, 2020, 40 (9): 3060-3071. |
Zhang X, Zhu Q A, Yang B, et al. Evaluating patterns of wetland methane emissions in Qinghai-Tibet Plateau based on process model[J]. Acta Ecologica Sinica, 2020, 40 (9): 3060-3071 (in Chinese) | |
[49] | Environment and Development Desk Department of Information and International Relations (DIIR), Central Tibetan Administration Dharamshala: 176215. The impacts of climate change on the Tibetan Plateau: a synthesis of recent science and Tibetan research[M]. New Delhi, 2021 |
[50] | Shen D, Li Y, Wang Y, et al. Decadal shifts in Qingzang Plateau lake carbon dynamics (1970-2020): from predominant carbon sources to emerging sinks[J]. Environmental Science and Ecotechnology, 2024, 21: 100389 |
[51] |
徐炜, 马志远, 井新, 等. 生物多样性与生态系统多功能性:进展与展望[J]. 生物多样性, 2016, 24 (1): 55-71.
doi: 10.17520/biods.2015091 |
Xu W, Ma Z Y, Jing X, et al. Biodiversity and ecosystem multifunctionality: advances and perspectives[J]. Biodiversity Science, 2016, 24 (1): 55-71 (in Chinese)
doi: 10.17520/biods.2015091 |
|
[52] | Niu Z G, Zhang H Y, Wang X W, et al. Mapping wetland changes in China between 1978 and 2008[J]. Chinese Science Bulletin, 2012, 57: 2813-2823 |
[53] | Liu X X, Zhao W W, Yao Y, et al. The rising human footprint in the Tibetan Plateau threatens the effectiveness of ecological restoration on vegetation growth[J]. Journal of Environmental Management, 2024, 351: 119963 |
[1] | DING Yong-Jian, ZHANG Shi-Qiang, CHEN Ren-Sheng, QIN Jia, ZHAO Qiu-Dong, LIU Jun-Feng, YANG Yong, HE Xiao-Bo, CHANG Ya-Ping, SHANGGUAN Dong-Hui, HAN Tian-Ding, WU Jin-Kui, LI Xiang-Ying. A review of the impacts of climate change on cryospheric hydrological processes [J]. Climate Change Research, 2025, 21(1): 1-21. |
[2] | QIN Zhuo-Fan, LIAO Hong, DAI Hui-Bin. A review of the impacts of climate change on severe air pollution events [J]. Climate Change Research, 2025, 21(1): 56-68. |
[3] | LYU Xue-Du, CHEN Jia-Qi, GE Hui, ZHU Yi-Dan. Development of climate finance: practices and prospects [J]. Climate Change Research, 2025, 21(1): 78-90. |
[4] | CHEN Deliang, TAN Xian-Chun, PENG Zhe, YAN Hong-Shuo, CHENG Yong-Long. Opportunities and challenges of artificial intelligence in climate research and services [J]. Climate Change Research, 2024, 20(6): 669-681. |
[5] | GAO Xiang. Climate finance in the context of international law [J]. Climate Change Research, 2024, 20(6): 799-807. |
[6] | ZHU Lei, ZHANG Li-Zhong, JIANG Ying, XU Jian-Feng, HUANG Yan, SUN Shu-Xin. Climate adaptation in industry: a review of research progress [J]. Climate Change Research, 2024, 20(6): 721-735. |
[7] | OU YANG Zhi-Yun, ZHANG Guan-Shi, YING Ling-Xiao. Overview of the impacts of climate change on ecosystem distribution and functions across the Tibetan Plateau [J]. Climate Change Research, 2024, 20(6): 699-710. |
[8] | LU Chun-Hui, YUAN Jia-Shuang, HUANG Lei, ZHANG Yong-Xiang. Key scientific issues in the Global Stocktake from the perspective of IPCC and their implications for China [J]. Climate Change Research, 2024, 20(6): 736-746. |
[9] | ZHOU Ze-Yu, WANG Jun-Hua, CAO Ying. Assessment of global climate change adaptation progress and related recommendations [J]. Climate Change Research, 2024, 20(6): 764-772. |
[10] | WU Pei-Ze, CHEN Sha, LIU Ying-Ying, LI Xiao-Tong, DU Zhan-Xia, CUI Shu-Fen, JIANG Ke-Jun. Low Emissions Analysis Platform (LEAP): applications and challenges in addressing climate change [J]. Climate Change Research, 2024, 20(5): 611-623. |
[11] | Deji-Yuzhen , Lhaba , Basang-Wangdui , Baima-Yucuo , Danzeng-Yiga , Pingcuo-Wangdan , Deji-Yangzong . Changes in lakes in the southwest part of Nagqu, Tibet and their response to climate change in the past 50 years [J]. Climate Change Research, 2024, 20(5): 534-543. |
[12] | ZHANG Jing-Yu, CAO Long. Simulated response of the ocean and land carbon cycles to positive and negative CO2 emissions [J]. Climate Change Research, 2024, 20(4): 416-427. |
[13] | PAN Xiao-Bin, LIU Shang-Wen. Research on the path of transition finance legal system of China under the background of addressing climate change [J]. Climate Change Research, 2024, 20(4): 465-474. |
[14] | BAO Wen, DUAN An-Min, YOU Qing-Long, HU Die. Research progress on climate change and its impact on water resources over the Tibetan Plateau [J]. Climate Change Research, 2024, 20(2): 158-169. |
[15] | FAN Xing, LI Lu, GAO Xiang, CHEN Zhi-Hua. The analysis of COP28 Global Stocktake outcome and global climate governance prospects [J]. Climate Change Research, 2024, 20(2): 253-260. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|