|
Climate Change Research ›› 2024, Vol. 20 ›› Issue (6): 669-681.doi: 10.12006/j.issn.1673-1719.2024.158
Special Issue: 创刊20周年纪念专栏
• 20th Anniversary of Climate Change Research • Previous Articles Next Articles
CHEN Deliang1,2(), TAN Xian-Chun3,4,5,6(
), PENG Zhe3,4,5, YAN Hong-Shuo3,4,5, CHENG Yong-Long3,4,5
Received:
2024-06-27
Revised:
2024-09-10
Online:
2024-11-30
Published:
2024-09-20
CHEN Deliang, TAN Xian-Chun, PENG Zhe, YAN Hong-Shuo, CHENG Yong-Long. Opportunities and challenges of artificial intelligence in climate research and services[J]. Climate Change Research, 2024, 20(6): 669-681.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2024.158
[1] | 秦大河. 全球气候变化对中国可持续发展的挑战[J]. 中国发展观察, 2007 (4): 38-39. |
Qin D H. The challenge of global climate change to China’s sustainable development[J]. China Development Observation, 2007 (4): 38-39 (in Chinese) | |
[2] | 周波涛, 钱进. IPCC AR6报告解读: 极端天气气候事件变化[J]. 气候变化研究进展, 2021, 17 (6): 713-718. |
Zhou B T, Qian J. Changes of weather and climate extremes in the IPCC AR6[J]. Climate Change Research, 2021, 17 (6): 713-718 (in Chinese) | |
[3] | IPCC. Climate change 2021: the physical science basis[M]. Cambridge: Cambridge University Press, 2021 |
[4] | 谭显春, 顾佰和, 王毅. 气候变化对我国中长期发展的影响分析及对策建议[J]. 中国科学院院刊, 2017, 32 (9): 1029-1035. DOI: 10.16418/j.issn.1000-3045.2017.09.013. |
Tan X C, Gu B H, Wang Y. Impact analysis and countermeasures for climate change on long-term development of China[J]. Bulletin of Chinese Academy of Sciences, 2017, 32 (9): 1029-1035. DOI: 10.16418/j.issn.1000-3045.2017.09.013 (in Chinese) | |
[5] | 秦大河, 陈振林, 罗勇, 等. 气候变化科学的最新认知[J]. 气候变化研究进展, 2007, 3 (2): 63-73. |
Qin D H, Chen Z L, Luo Y, et al. Updated understanding of climate change sciences[J]. Climate Change Research, 2007, 3 (2): 63-73 (in Chinese) | |
[6] | 周天军, 陈梓明, 邹立维, 等. 中国地球气候系统模式的发展及其模拟和预估[J]. 气象学报, 2020, 78 (3): 332-350. |
Zhou T J, Chen Z M, Zou L W, et al. Development of climate and Earth system models in China: past achievements and new CMIP6 results[J]. Acta Meteorologica Sinica, 2020, 78 (3): 332-350 (in Chinese) | |
[7] | 张焓, 戴永久, 张树磊. 区域地球系统模式研究进展[J]. 大气科学学报, 2024, 47 (2): 216-223. DOI: 10.13878/j.cnki.dqkxxb.20240124012. |
Zhang H, Dai Y J, Zhang S L. A review of regional Earth system model development[J]. Transactions of Atmospheric Sciences, 2024, 47 (2): 216-223. DOI: 10.13878/j.cnki.dqkxxb.20240124012 (in Chinese) | |
[8] | Hill C, Deluca C, Balaji V, et al. The architecture of the Earth system modeling framework[J]. Computing in Science & Engineering, 2004, 6 (1): 18-28. DOI: 10.1109/MCISE.2004.1255817 |
[9] | 张仲石, 李双林, 王会军, 等. 浅谈大气科学与地质学的学科交叉[J]. 地球科学, 2022, 47 (10): 3569-3579. |
Zhang Z S, Li S L, Wang H J, et al. Introduction of crossing disciplines between geology and atmospheric science[J]. Earth Science, 2022, 47 (10): 3569-3579 (in Chinese) | |
[10] | 王勇, 刘苏峡, 邵亚平, 等. 简单地球模型的研究进展[J]. 气象科技进展, 2014, 4 (3): 26-31. DOI: 10.3969/j.issn.2095-1973.2014.03.004. |
Wang Y, Liu S X, Shao Y P, et al. Progress in simple Earth models[J]. Advances in Meteorological Science and Technology, 2014, 4 (3): 26-31. DOI: 10.3969/j.issn.2095-1973.2014.03.004 (in Chinese) | |
[11] | Manabe S, Bryan K. Climate calculations with a combined ocean-atmosphere model[J]. Journal of the Atmospheric Sciences, 1969, 26 (4): 786-789 |
[12] | Claussen M, Mysak L, Weaver A, et al. Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models[J]. Climate Dynamics, 2002, 18 (7): 579-586. DOI: 10.1007/s00382-001-0200-1 |
[13] | 周天军, 张文霞, 陈德亮, 等. 2021年诺贝尔物理学奖解读: 从温室效应到地球系统科学[J]. 中国科学: 地球科学, 2022, 52 (4): 579-594. |
Zhou T J, Zhang W X, Chen D, et al. Understanding and building upon the pioneering work of Nobel Prize in physics 2021 laureates Syukuro Manabe and Klaus Hasselmann: from the greenhouse effect to Earth system science and beyond[J]. Scientia Sinica Terrae, 2022, 52 (4): 579-594 (in Chinese) | |
[14] |
Fan J, Han F, Liu H. Challenges of big data analysis[J]. National Science Review, 2014, 1 (2): 293-314. DOI: 10.1093/nsr/nwt032
pmid: 25419469 |
[15] | Li X, Feng M, Ran Y, et al. Big data in Earth system science and progress towards a digital twin[J]. Nature Reviews Earth & Environment, 2023. DOI: 10.1038/s43017-023-00409-w |
[16] | 秦昆, 周扬, 黄静, 等. 地球系统模式理论与技术研究综述[J]. 华南地理学报, 2023, 1 (1): 36-50. DOI: 10.20125/j.2097-2245.202301004. |
Qin K, Zhou Y, Huang J, et al. Review on the theories and technologies of the Earth system model[J]. South China Geographical Journal, 2023, 1 (1): 36-50. DOI: 10.20125/j.2097-2245.202301004 (in Chinese) | |
[17] | Villalba-Pradas A, Tapiador F J. Empirical values and assumptions in the convection of numerical models[J]. Copernicus GmbH, 2021. DOI: 10.5194/gmd-2021-61 |
[18] | 周天军, 李立娟, 李红梅, 等. 气候变化的归因和预估模拟研究[J]. 大气科学, 2008, 32 (4): 906-922. |
Zhou T J, Li L J, Li H M, et al. Progress in climate change attribution and projection studies[J]. Chinese Journal of Atmospheric Sciences, 2008, 32 (4): 906-922 (in Chinese) | |
[19] | 周天军, 张学洪, 王绍武. 大洋温盐环流与气候变率的关系[J]. 科学通报, 2000 (4): 421-425. |
Zhou T J, Zhang X L, Wang S W. Comments on the role of thermohaline circulation in global climate system[J]. Advance in Earth Sciences, 2000 (4): 421-425 (in Chinese) | |
[20] | 谭显春, 戴瀚程, 顾佰和, 等. IPCC AR6报告历史排放趋势和驱动因素核心结论解读[J]. 气候变化研究进展, 2022, 18 (5): 538-545. |
Tan X C, Dai H C, Gu B H, et al. Analysis on the key findings related to emission trends and drivers from the IPCC AR6 report[J]. Climate Change Research, 2022, 18 (5): 538-545 (in Chinese) | |
[21] | 钱诚, 张文霞. CMIP6检测归因模式比较计划(DAMIP)概况与评述[J]. 气候变化研究进展, 2019, 15 (5): 469-475. |
Qian C, Zhang W X. Short commentary on CMIP6 Detection and Attribution Model Intercomparison Project (DAMIP)[J]. Climate Change Research, 2019, 15 (5): 469-475 (in Chinese) | |
[22] | 周天军, 陈梓明, 陈晓龙, 等. IPCC AR6报告解读: 未来的全球气候: 基于情景的预估和近期信息[J]. 气候变化研究进展, 2021, 17 (6): 652-663. |
Zhou T J, Chen Z M, Chen X L, et al. Interpreting IPCC AR6: future global climate based on projection under scenarios and on near-term information[J]. Climate Change Research, 2021, 17 (6): 652-663 (in Chinese) | |
[23] | Pirani A, Fuglestvedt J S, Byers E, et al. Scenarios in IPCC assessments: lessons from AR6 and opportunities for AR7[J]. NPJ Climate Action, 2024, 3 (1): 1-7. DOI: 10.1038/s44168-023-00082-1 |
[24] | 谭显春, 郭雯, 樊杰, 等. 碳达峰、碳中和政策框架与技术创新政策研究[J]. 中国科学院院刊, 2022, 37 (4): 435-443. |
Tan X C, Guo W, Fan J, et al. Policy framework and technology innovation policy of carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37 (4): 435-443 (in Chinese) | |
[25] | 赵宗慈, 罗勇, 黄建斌. 极端天气与气候事件受到全球变暖影响吗?[J]. 气候变化研究进展, 2014, 10 (5): 388-390. |
Zhao Z C, Luo Y, Huang J B. Are extreme weather and climate events affected by global warming?[J]. Climate Change Research, 2014, 10 (5): 388-390 (in Chinese) | |
[26] |
范雪薇, 缪驰远, 苟娇娇, 等. 国际耦合模式比较计划及其模拟能力研究进展[J]. 地理科学进展, 2023, 42 (6): 1204-1215.
doi: 10.18306/dlkxjz.2023.06.015 |
Fan X W, Miao C Y, Gou J J, et al. Coupled Model Intercomparison Project and its research progress in simulation performance[J]. Progress in Geography, 2023, 42 (6): 1204-1215 (in Chinese)
doi: 10.18306/dlkxjz.2023.06.015 |
|
[27] | Yao S L, Luo J J, Huang G. Internal variability-generated uncertainty in East Asian climate projections estimated with 40 CCSM3 ensembles[J]. Plos One, 2016, 11 (3): e0149968. DOI: 10.1371/journal.pone.0149968 |
[28] | 穆穆, 陈博宇, 周菲凡, 等. 气象预报的方法与不确定性[J]. 气象, 2011, 37 (1): 1-13. |
Mu M, Chen B Y, Zhou F F, et al. Methods and uncertainties of meteorological forecast[J]. Meteorological Monthly, 2011, 37 (1): 1-13 (in Chinese) | |
[29] | Palmer T N, Hagedorn R. Predictability of weather and climate[M]. Cambridge: Cambridge University Press, 2006: 157-180 |
[30] | Alizadeh O. Advances and challenges in climate modeling[J]. Climatic Change, 2022, 170 (1): 18. DOI: 10.1007/s10584-021-03298-4 |
[31] | 丑纪范. 为什么要动力-统计相结合?兼论如何结合?[J]. 高原气象, 5 (4): 367-372. |
Chou J F. Why do we need to combine dynamics and statistics? How to combine them?[J]. Plateau Meteorology, 5 (4): 367-372 (in Chinese) | |
[32] | 栾贻花, 俞永强, 郑伟鹏. 全球高分辨率气候系统模式研究进展[J]. 地球科学进展, 2016, 31 (3): 258-268. DOI: 10.11867/j.issn.1001-8166.2016.03.0258. |
Luan Y H, Yu Y Q, Zheng W P. Review of development and application of high resolution global climate system model[J]. Advances in Earth Science, 2016, 31 (3): 258-268. DOI: 10.11867/j.issn.1001-8166.2016.03.0258 (in Chinese) | |
[33] | 刘永和, 郭维栋, 冯锦明, 等. 气象资料的统计降尺度方法综述[J]. 地球科学进展, 2011, 26 (8): 837-847. |
Liu Y H, Guo W D, Feng J M, et al. A summary of methods for statistical downscaling of meteorological data[J]. Advances in Earth Science, 2011, 26 (8): 837-847 (in Chinese) | |
[34] | Benestad R E, Hanssen-Bauer I, Chen D. Empirical-statistical downscaling[R/OL]. 2008 [2024-01-27]. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2004EO420002 |
[35] | 杨淑贤, 零丰华, 应武杉, 等. 人工智能技术气候预测应用简介[J]. 大气科学学报, 2022, 45 (5): 641-659. |
Yang S X, Ling F H, Ying W S, et al. A brief overview of the application of artificial intelligence to climate prediction[J]. Transactions of Atmospheric Sciences, 2022, 45 (5): 641-659 (in Chinese) | |
[36] | Luo J J, Yuan C, Sasaki W, et al. Current status of intraseasonal-seasonal-to-interannual prediction of the Indo-Pacific climate[R/OL]. 2016 [2024-01-27]. https://www.worldscientific.com/doi/10.1142/9789814696623_0003 |
[37] | Reichstein M, Camps-Valls G, Stevens B, et al. Deep learning and process understanding for data-driven Earth system science[J]. Nature, 2019 (7743). DOI: 10.1038/s41586-019-0912-1 |
[38] | Crevier D. AI: the tumultuous history of the search for artificial intelligence[J]. Science, 1993. DOI: 10.1126/science.261.5125.1186 |
[39] | Dey A. Machine learning algorithms: a review[J]. Computer Science, Mathematics, 2016, 7 (3): 1174-1179 |
[40] | Jones N. How machine learning could help to improve climate forecasts[J]. Nature, 2017, 548 (7668): 379. DOI: 10.1038/548379a |
[41] | Kontokosta C E, Tull C. A data-driven predictive model of city-scale energy use in buildings[J]. Applied Energy, 2017, 197: 303-317. DOI: 10.1016/j.apenergy.2017.04.005 |
[42] | Racah E, Beckham C, Maharaj T, et al. Extreme weather: a large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events[J]. 31st Conference on Neural Information Processing System, 2016. DOI: 10.48550/arXiv.1612.02095 |
[43] | Gagne J D, McGovern, et al. Storm-based probabilistic hail forecasting with machine learning applied to convection-allowing ensembles[J]. Weather and Forecasting, 2017, 32. DOI: 10.1175/WAF-D-17-0010.1 |
[44] | 赵宗慈, 罗勇, 黄建斌, 等. 人工智能应用于地球系统科学[J]. 气候变化研究进展, 2020, 16 (1): 126-129. |
Zhao Z C, Luo Y, Huang J B, et al. Artificial intelligence applies to Earth system science[J]. Climate Change Research, 2020, 16 (1): 126-129 (in Chinese) | |
[45] | 贺洁颖, 唐伟, 周勇, 等. 人工智能在气象科学中应用的机遇和挑战[J]. 中国信息化, 2019 (12): 79-81. |
He J Y, Tang W, Zhou Y, et al. Opportunities and challenges for the application of artificial intelligence in meteorological science[J]. Informatization-Research, 2019 (12): 79-81 (in Chinese) | |
[46] | 李新, 苏建宾. 走向数据善治: 以地球科学数据治理为例[J]. 科学通报, 2024, 69 (9): 1149-1155. |
Li X, Su J B. Towards good governance of data: a case study in geoscience data governance[J]. Science China Press, 2024, 69 (9): 1149-1155 (in Chinese) | |
[47] | Rolnick D, Donti P L, Kaack L H, et al. Tackling climate change with machine learning[J]. Computing Surveys, 2023. DOI: 10.1145/3485128 |
[48] | Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521 (7553): 436. DOI: 10.1038/nature14539 |
[49] | Dengel S, Zona D, Sachs T, et al. Testing the applicability of neural networks as a gap-filling method using CH4 flux data from high latitude wetlands[J]. Biogeosciences, 2013, 10 (12): 8185-8200. DOI: 10.5194/bg-10-8185-2013 |
[50] | Beringer J, Mchugh I, Hutley L B, et al. Technical note: dynamic integrated gap-filling and partitioning for OzFlux (DINGO)[J]. Biogeosciences, 2017, 14 (6): 1-36. DOI: 10.5194/bg-14-1457-2017 |
[51] | 郑欣彤, 边婷婷, 张德强, 等. 基于深度学习的温度观测数据长时间缺失值插补方法[J]. 计算机系统应用, 2022, 31 (4): 221-228. DOI: 10.15888/j.cnki.csa.008493. |
Zheng X T, Bian T T, Zhang D Q, et al. Interpolation of long time missing values of temperature based on deep learning[J]. Computer Systems & Applications, 2022, 31 (4): 221-228. DOI: 10.15888/j.cnki.csa.008493 (in Chinese) | |
[52] | El-Azhari A, Karaoui I, Brahim Y A, et al. Analyses of groundwater level in a data-scarce region based on assessed precipitation products and machine learning[J]. Groundwater for Sustainable Development, 2024, 26. DOI: 10.1016/j.gsd.2024.101299 |
[53] | 王少影, 张宇, 孟宪红, 等. 机器学习算法对涡动相关缺失通量数据的插补研究[J]. 高原气象, 2020, 39 (6): 1348-1360. DOI: 10.7522/j.issn.1000-0534.2019.00142. |
Wang S Y, Zhang Y, Meng X H, et al. Fill the gaps of eddy covariance fluxes using machine learning algorithms[J]. Plateau Meteorology, 2020, 39 (6): 1348-1360. DOI: 10.7522/j.issn.1000-0534.2019.00142 (in Chinese) | |
[54] | Kadow C, Hall D M, Ulbrich U. Artificial intelligence reconstructs missing climate information[J]. Nature Geoscience, 2020 (13): 408-413 |
[55] | Lee Y, Wahba G, Ackerman S A, et al. Cloud classification of satellite radiance data by multicategory support vector machines 1 cloud classification revision[J]. Journal of Atmospheric and Oceanic Technology, 2004: 159-169 |
[56] | 张飞, 闫杰. 基于深度卷积神经网络的云分类算法[J]. 西北工业大学学报, 2020, 38 (4): 740-746. |
Zhang F, Yan J. Cloud image classification method based on deep convolutional neural network[J]. Journal of Northwestern Polytechnical University, 2020, 38 (4): 740-746 (in Chinese) | |
[57] | Liu Y J, Racah E, Prabhat, et al. Application of deep convolutional neural networks for detecting extreme weather in climate datasets[C/OL]. 2016 [2024-01-27]. https://arxiv.org/abs/1605.01156 |
[58] | Toms B A, Barnes E A, Ebert-Uphoff I. Physically interpretable neural networks for the geosciences: applications to Earth system variability[J]. Journal of Advances in Modeling Earth Systems, 2020. DOI: 10.1029/2019MS002002 |
[59] | Lee Y J, Hall D, Stewart J, et al. Machine learning for targeted assimilation of satellite data[R/OL]. 2018 [2024-01-27]. https://dl.acm.org/doi/abs/10.1007/978-3-030-10997-4_4 |
[60] | Huntingford C, Marsh T, Scaife A A, et al. Potential influences on the United Kingdom’s floods of winter 2013/14[J]. Nature Climate Change, 2014, 4 (9): 769-777 |
[61] | Gilbert R C, Trafalis T B, Richman M B, et al. Machine learning methods for data assimilation[M]. US: The American Society of Mechanical Engineers Press, 2010 |
[62] | Arcucci R, Zhu J, Hu S, et al. Deep data assimilation: integrating deep learning with data assimilation[J]. Applied Sciences, 2021, 11 (3): 1114. DOI: 10.3390/app11031114 |
[63] | Wu P, Chang X, Sun J, et al. Fast data assimilation (FDA): data assimilation by machine learning for faster optimize model state[J]. Journal of Computational Science, 2021, 51 (7): 101323. DOI: 10.1016/j.jocs.2021.101323 |
[64] | Stengel K, Glaws A, Hettinger D, et al. Adversarial super-resolution of climatological wind and solar data[J]. Proceedings of the National Academy of Sciences, 2020, 117 (29): 201918964. DOI: 10.1073/pnas.1918964117 |
[65] | Rasp S, Lerch S. Neural networks for post-processing ensemble weather forecasts[J]. Monthly Weather Reviews, 2018, 146 (11): 3885-3900. DOI: 10.1175/mwr-d-18-0187.1 |
[66] | O’Gorman P A, Dwyer J G. Using Machine learning to parameterize moist convection: potential for modeling of climate, climate change, and extreme events[J]. Journal of Advances in Modeling Earth Systems, 2018. DOI: 10.1029/2018MS001351 |
[67] | Yuval J, O’Gorman P A. Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions[J]. Nature Communications, 2020, 11 (1). DOI: 10.1038/s41467-020-17142-3 |
[68] | Chen M, Fu H, Zhang T, et al. ResU-Deep: improving the trigger function of deep convection in tropical regions with deep learning[J]. Journal of Advances in Modeling Earth Systems, 2023, 15 (11): e2022MS003521. DOI: 10.1029/2022MS003521 |
[69] | Zhu Y Z, Zhang R H, Moum J N, et al. Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations[J]. National Science Review, 2022 (8): 8. DOI: 10.1093/nsr/nwac044 |
[70] | Letu H, Ma R, Nakajima, et al. Surface solar radiation compositions observed from Himawari-8/9 and Fengyun-4 series[J]. Bulletin of the American Meteorological Society, 2023, 104 (10): 1772-1789 |
[71] | Chou C, Park J, Chou E. Generating high-resolution climate change projections using super-resolution convolutional LSTM neural networks[C]// IEEE 13th International Conference on Advanced Computational Intelligence, 2021. DOI: 10.1109/ICACI52617.2021.9435890 |
[72] | Ma Y, Liu T, Yu Z, et al. All-weather precipitable water vapor map reconstruction using data fusion and machine learning-based spatial downscaling[J]. Atmospheric Research, 2023, 296: 107068. DOI: 10.1016/j.atmosres.2023.107068 |
[73] | Sahar H P, Shamsuddin S, Chung E S, et al. Model output statistics downscaling using support vector machine for the projection of spatial and temporal changes in rainfall of Bangladesh[J]. Atmospheric Research, 2018, 213: 149-162. DOI: 10.1016/j.atmosres.2018.06.006 |
[74] | Legasa M N, Manzanas R, Calvino A, et al. A posteriori random forests for stochastic downscaling of precipitation by predicting probability distributions[J]. Water Resources Research, 2022 (4): 58. DOI: 10.1029/2021WR030272 |
[75] | Hosseini B A, Norouzi E, Nourani V. Wavelet-based predictor screening for statistical downscaling of precipitation and temperature using the artificial neural network method[J]. Hydrology Research, 2022. DOI: 10.2166/nh.2022.094 |
[76] | Sachindra D A, Ahmed K, Md. Mamunur R, et al. Statistical downscaling of precipitation using machine learning techniques[J]. Atmospheric Research, 2018, 212: 240-258. DOI: 10.1016/j.atmosres.2018.05.022.6 |
[77] | Vandal T, Kodra E, Ganguly S, et al. DeepSD: generating high resolution climate change projections through single image super-resolution[J]. The ACM Digital Library, 2017: 1663-1672. DOI: 10.1145/3097983.3098004 |
[78] | Arcucci R, Zhu J, Hu S, et al. Deep data assimilation: integrating deep learning with data assimilation[J]. Applied Sciences, 2021, 11 (3): 1114. DOI: 10.3390/app11031114 |
[79] | Deo R C, Ahin M. Application of the extreme learning machine algorithm for the prediction of monthly effective drought index in eastern Australia[J]. Atmospheric Research, 2015, 153: 512-525. DOI: 10.1016/j.atmosres.2014.10.016 |
[80] | Ahlem F, Mejda C, Aya F. Spatio-temporal modeling of climate change impacts on drought forecast using generative adversarial network: a case study in Africa[J]. Expert Systems with Applications, 2024, 238: 122211. DOI: 10.1016/j.eswa.2023.122211 |
[81] | Huang G, Wang Y, Ham Y G, et al. Toward a learnable climate model in the artificial intelligence era[J]. Advances in Atmospheric Sciences, 2024, 41 (7): 1281-1288. DOI: 10.1007/s00376-024-3305-9 |
[82] | Chen L, Zhong X, Li H, et al. A machine learning model that outperforms conventional global subseasonal forecast models[J]. Nature Communications, 2024, 15 (1). DOI: 10.1038/s41467-024-50714-1 |
[83] | Kochkov D, Yuval J, Langmore I, et al. Neural general circulation models for weather and climate[J]. Nature, 2024, 632: 1060-1066 |
[84] | Zhu H, Jiang Z, Li L, et al. Intercomparison of multi-model ensemble-processing strategies within a consistent framework for climate projection in China[J]. Science China: Earth Sciences, 2023, 66 (9): 2125-2141. DOI: 10.1007/s11430-022-1154-7 |
[85] | 智协飞, 王田, 季焱. 基于深度学习的中国地面气温的多模式集成预报研究[J]. 大气科学学报, 2020, 43 (3): 435-446. DOI: 10.13878/j.cnki.dqkxxb.20200219003. |
Zhi X F, Wang T, Ji Y. Multimodel ensemble forecasts of surface air temperature over China based on deep learning approach[J]. Transactions of Atmospheric Sciences, 2020, 43 (3): 435-446. DOI: 10.13878/j.cnki.dqkxxb.20200219003 (in Chinese) | |
[86] | Strobach E, Bel G. Improvement of climate predictions and reduction of their uncertainties using learning algorithms[J]. Atmospheric Chemistry and Physics, 2015, 15 (15): 8631-8641 |
[87] | Li T, Jiang Z, Le Treut H, et al. Machine learning to optimize climate projection over China with multi-model ensemble simulations[J]. Environmental Research Letters, 2021, 16 (9): 094028. DOI: 10.1088/1748-9326/ac1d0c |
[88] |
Jose D M, Vincent A M, Dwarakish G S. Improving multiple model ensemble predictions of daily precipitation and temperature through machine learning techniques[J]. Scientific Reports 2022, 12 (1): 4678. DOI: 10.1038/s41598-022-08786-w
pmid: 35304552 |
[1] | DING Yong-Jian, ZHANG Shi-Qiang, CHEN Ren-Sheng, QIN Jia, ZHAO Qiu-Dong, LIU Jun-Feng, YANG Yong, HE Xiao-Bo, CHANG Ya-Ping, SHANGGUAN Dong-Hui, HAN Tian-Ding, WU Jin-Kui, LI Xiang-Ying. A review of the impacts of climate change on cryospheric hydrological processes [J]. Climate Change Research, 2025, 21(1): 1-21. |
[2] | QIN Zhuo-Fan, LIAO Hong, DAI Hui-Bin. A review of the impacts of climate change on severe air pollution events [J]. Climate Change Research, 2025, 21(1): 56-68. |
[3] | LYU Xue-Du, CHEN Jia-Qi, GE Hui, ZHU Yi-Dan. Development of climate finance: practices and prospects [J]. Climate Change Research, 2025, 21(1): 78-90. |
[4] | GAO Xiang. Climate finance in the context of international law [J]. Climate Change Research, 2024, 20(6): 799-807. |
[5] | ZHU Lei, ZHANG Li-Zhong, JIANG Ying, XU Jian-Feng, HUANG Yan, SUN Shu-Xin. Climate adaptation in industry: a review of research progress [J]. Climate Change Research, 2024, 20(6): 721-735. |
[6] | OU YANG Zhi-Yun, ZHANG Guan-Shi, YING Ling-Xiao. Overview of the impacts of climate change on ecosystem distribution and functions across the Tibetan Plateau [J]. Climate Change Research, 2024, 20(6): 699-710. |
[7] | LU Chun-Hui, YUAN Jia-Shuang, HUANG Lei, ZHANG Yong-Xiang. Key scientific issues in the Global Stocktake from the perspective of IPCC and their implications for China [J]. Climate Change Research, 2024, 20(6): 736-746. |
[8] | ZHOU Ze-Yu, WANG Jun-Hua, CAO Ying. Assessment of global climate change adaptation progress and related recommendations [J]. Climate Change Research, 2024, 20(6): 764-772. |
[9] | NIU Zhen-Guo, JING Yu-Hang, ZHANG Dong-Qi, ZHANG Bo. An overview and the outlook for wetland ecosystems in the Qinghai-Tibetan Plateau under climate change [J]. Climate Change Research, 2024, 20(5): 509-518. |
[10] | WU Pei-Ze, CHEN Sha, LIU Ying-Ying, LI Xiao-Tong, DU Zhan-Xia, CUI Shu-Fen, JIANG Ke-Jun. Low Emissions Analysis Platform (LEAP): applications and challenges in addressing climate change [J]. Climate Change Research, 2024, 20(5): 611-623. |
[11] | Deji-Yuzhen , Lhaba , Basang-Wangdui , Baima-Yucuo , Danzeng-Yiga , Pingcuo-Wangdan , Deji-Yangzong . Changes in lakes in the southwest part of Nagqu, Tibet and their response to climate change in the past 50 years [J]. Climate Change Research, 2024, 20(5): 534-543. |
[12] | ZHANG Jing-Yu, CAO Long. Simulated response of the ocean and land carbon cycles to positive and negative CO2 emissions [J]. Climate Change Research, 2024, 20(4): 416-427. |
[13] | PAN Xiao-Bin, LIU Shang-Wen. Research on the path of transition finance legal system of China under the background of addressing climate change [J]. Climate Change Research, 2024, 20(4): 465-474. |
[14] | BAO Wen, DUAN An-Min, YOU Qing-Long, HU Die. Research progress on climate change and its impact on water resources over the Tibetan Plateau [J]. Climate Change Research, 2024, 20(2): 158-169. |
[15] | FAN Xing, LI Lu, GAO Xiang, CHEN Zhi-Hua. The analysis of COP28 Global Stocktake outcome and global climate governance prospects [J]. Climate Change Research, 2024, 20(2): 253-260. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|