|
Climate Change Research ›› 2024, Vol. 20 ›› Issue (5): 534-543.doi: 10.12006/j.issn.1673-1719.2024.106
Special Issue: 西风-季风协同作用下青藏高原典型水环境变化特征及其对气候变化的响应专栏
• Characteristics of typical water environment changes on the Tibetan Plateau under the synergy of westerly and monsoons and their response to climate change • Previous Articles Next Articles
Deji-Yuzhen 1(), Lhaba 2, Basang-Wangdui 3, Baima-Yucuo 4, Danzeng-Yiga 1, Pingcuo-Wangdan 1, Deji-Yangzong 1(
)
Received:
2024-05-21
Revised:
2024-07-26
Online:
2024-09-30
Published:
2024-09-04
Deji-Yuzhen , Lhaba , Basang-Wangdui , Baima-Yucuo , Danzeng-Yiga , Pingcuo-Wangdan , Deji-Yangzong . Changes in lakes in the southwest part of Nagqu, Tibet and their response to climate change in the past 50 years[J]. Climate Change Research, 2024, 20(5): 534-543.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2024.106
[1] | IPCC. Climate change 2013: the physical science basis[M]. Cambridge: Cambridge University Press, 2014 |
[2] | 马荣华, 杨桂山, 段洪涛, 等. 中国湖泊的数量、面积与空间分布[J]. 中国科学: 地球科学, 2011, 41 (3): 394-401. |
Ma R H, Yang G S, Duan H T, et al. The quantity, area and spatial distribution of lakes in China[J]. Scientia Sinica (Terrae), 2011, 41 (3): 394-401 (in Chinese) | |
[3] | 潘保田, 李吉均. 青藏高原: 全球气候变化的驱动机与放大器. III. 青藏高原隆起对气候变化的影响[J]. 兰州大学学报(自然科学版), 1996, 32 (1): 108-115. |
Pan B T, Li J J. Qinghai-Tibetan Plateau: a driver and amplifier of the global climatic change. III. The effects of the uplift of Qinghai-Tibetan Plateau on climatic change[J]. Journal of Lanzhou University (Natural Sciences), 1996, 32 (1): 108-115 (in Chinese) | |
[4] | 张拥军, 康世昌, 秦大河, 等. 青藏高原格拉丹东冰芯记录的季节气温变化[J]. 地理学报, 2007, 62 (5): 501-509. |
Zhang Y J, Kang S C, Qin D H, et al. Seasonal air temperature variations retrieved from a Geladaindong ice core, Tibetan Plateau[J]. Acta Geographica Sinica, 2007, 62 (5): 501-509 (in Chinese) | |
[5] | 马耀明, 姚檀栋, 张越. 青藏高原能量和水循环试验研究: GAMP/Tibet与CAMP/Tibet研究进展[J]. 高原气象, 2006, 25 (2): 344-351. |
Ma Y M, Yao T D, Zhang Y. Experimental study of energy and water cycle in Tibetan Plateau: the progress introduction on the study of GAME/Tibet and CAMP/Tibet[J]. Scientia Sinica (Terrae), 2006, 25 (2): 344-351 (in Chinese) | |
[6] | 刘震, 赵钟楠, 王介民, 等. 中国主要湖泊演变及趋势分析[J]. 长江科学院, 2022, 3 (2): 18-22. |
Liu Z, Zhao Z N, Wang J M, et al. Trend and causes of the evolution of major lakes in China[J]. Journal of Changjiang River Scientific Research Institute, 2022, 3 (2): 18-22 (in Chinese) | |
[7] | 谭志强, 李云良, 张奇, 等. 湖泊湿地水文过程研究进展[J]. 湖泊科学, 2022, 34 (1): 18-37. |
Tan Z Q, Li Y L, Zhang Q, et al. Progress of hydrological process researches in lake wetland: a review[J]. Journal of Lake Sciences, 2022, 34 (1): 18-37 (in Chinese) | |
[8] |
张国庆. 青藏高原湖泊变化遥感监测及其对气候变化的响应研究进展[J]. 地理科学进展, 2018, 37 (2): 214-223.
doi: 10.18306/dlkxjz.2018.02.004 |
Zhang G Q. Changes in lakes on the Tibetan Plateau observed from satellite data and their responses to climate variations[J]. Progress in Geography, 2018, 37 (2): 214-223 (in Chinese)
doi: 10.18306/dlkxjz.2018.02.004 |
|
[9] | 董斯扬, 彭飞. 近40年青藏高原湖泊面积变化遥感分析[J]. 湖泊科学, 2014, 26 (4): 535-544. |
Dong S Y, Peng F. Remote sensing monitoring of the lake area changes in the Qinghai-Tibet Plateau in recent 40 years[J]. Journal of Lake Sciences, 2014, 26 (4): 535-544 (in Chinese) | |
[10] | Zhang G Q, Yao T, Shum C K, et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin[J]. Geophysical Research Letters, 2017, 44: 5550-5560 |
[11] |
李东昇, 张仁勇, 崔步礼, 等. 1986—2015年青藏高原哈拉湖湖泊动态对气候变化的响应[J]. 自然资源学报, 2021, 36 (2): 501-512.
doi: 10.31497/zrzyxb.20210218 |
Li D S, Zhang R Y, Cui B L, et al. Response of lake dynamics to climate change in the Hala Lake basin of Tibetan Plateau from 1986 to 2015[J]. Journal of Natural Resources, 2021, 36 (2): 501-512 (in Chinese) | |
[12] | 葛少侠, 宗嘎. 关于那曲地区西部部分湖泊水位上涨初步调查情况及思考[J]. 西藏科技, 2005 (4): 14-18. |
Ge S X, Zong G. Preliminary investigation situations and thinking about the water level of some lakes in west of Nagqu rising[J]. Xizang Science and Technology, 2005 (4): 14-18 (in Chinese) | |
[13] | 边多, 杨志刚, 李林, 等. 近30年来西藏那曲地区湖泊变化对气候波动的响应[J]. 地理学报, 2006 (5): 510-518. |
Bian D, Yang Z G, Li L, et al. The response of lake area change to climate variations in North Tibetan Plateau during last 30 years[J]. Acta Geographica Sinica, 2006 (5): 510-518 (in Chinese)
doi: 10.11821/xb200605007 |
|
[14] | 李兴东, 龙笛, 黄琦, 等. 青藏高原高时间分辨率湖泊水位及水量变化数据集(2000—2017年)[DB]. 国家青藏高原科学数据中心, 2019. DOI: 10.1594/PANGAEA.898411. |
Li X D, Long D, Huang Q, et al. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000-2017[DB]. National Tibetan Plateau/Third Pole Environment Data Center, 2019. DOI: 10.1594/PANGAEA.898411 (in Chinese) | |
[15] | 孙琳, 宋爱红, 高文秀. 基于最大似然法和SVM法的太湖流域HJ-1B分类[J]. 测绘信息与工程, 2012, 37 (3): 30-33. |
Sun L, Song A H, Gao W X. HJ-1B classification of Taihu basin based on maximum likelihood method and SVM method[J]. Mapping Information and Engineering, 2012, 37 (3): 30-33 (in Chinese) | |
[16] | 周鹏, 谢元礼, 胡李发, 等. 遥感影像水体信息提取研究进展[J]. 遥感信息, 2020, 35 (5): 9-18. |
Zhou P, Xie Y L, Hu L F, et al. Advances on water body information extraction from remote sensing imagery[J]. Remote Sensing Information, 2020, 35 (5): 9-18 (in Chinese) | |
[17] | 王秋燕, 陈仁喜, 徐佳, 等. 环境一号卫星影像中水体信息提取方法研究[J]. 科学技术与工程, 2012, 12 (13): 3051-3056. |
Wang Q Y, Chen R X, Xu J, et al. Research on methods for extracting water body information from HJ-1A/B Data[J]. Science Technology and Engineering, 2012, 12 (13): 3051-3056 (in Chinese) | |
[18] | 缪启龙, 江志红, 陈海山, 等. 现代气候学[M]. 北京: 气象出版社, 2018: 304-305. |
Miu Q L, Jiang Z H, Chen H S, et al. Modern climatology[M]. Beijing: China Meteorological Press, 2018: 304-305 (in Chinese) | |
[19] | 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 2007: 55-56. |
Wei F Y. Modern climate statistical diagnosis and prediction technology[M]. Beijing: China Meteorological Press, 2007: 55-56 (in Chinese) | |
[20] | Wan W, Xiao P, Feng X, et al. Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data[J]. Chinese Science Bulletin, 2014, 59: 1021-1035 |
[21] | Zhang R, Zhu L P, Ma Q F, et al. The consecutive lake group water storage variations and their dynamic response to climate change in the central Tibetan Pleteau[J]. Journal of Hydrology, 2021, 601: 126-615 |
[22] | Cheng W M, Zhao S M, Zhou C H, et al. Simulation of the decadal permafrost distribution on the Qinghai-Tibet Plateau (China) over the past 50 years[J]. Permafrost and Periglacial Processes, 2012, 23: 292-300 |
[23] | Guo D L, Wang H J. Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981—2010[J]. Journal of Geophysical Research: Atmospheres, 2013, 118: 5216-5230 |
[24] | 关志华, 陈传友, 区裕雄, 等. 西藏河流与湖泊[M]. 北京: 科学出版社, 1984. |
Guan Z H, Chen C Y, Qu Y X, et al. Rivers and lakes of Tibet[M]. Beijing: Science Press, 1984 (in Chinese) | |
[25] | 王苏民. 中国湖泊志[M]. 北京: 科学出版社, 1998. |
Wang S M. Annals of lakes in China[M]. Beijing: Science Press, 1998 (in Chinese) |
[1] | DING Yong-Jian, ZHANG Shi-Qiang, CHEN Ren-Sheng, QIN Jia, ZHAO Qiu-Dong, LIU Jun-Feng, YANG Yong, HE Xiao-Bo, CHANG Ya-Ping, SHANGGUAN Dong-Hui, HAN Tian-Ding, WU Jin-Kui, LI Xiang-Ying. A review of the impacts of climate change on cryospheric hydrological processes [J]. Climate Change Research, 2025, 21(1): 1-21. |
[2] | QIN Zhuo-Fan, LIAO Hong, DAI Hui-Bin. A review of the impacts of climate change on severe air pollution events [J]. Climate Change Research, 2025, 21(1): 56-68. |
[3] | LYU Xue-Du, CHEN Jia-Qi, GE Hui, ZHU Yi-Dan. Development of climate finance: practices and prospects [J]. Climate Change Research, 2025, 21(1): 78-90. |
[4] | CHEN Deliang, TAN Xian-Chun, PENG Zhe, YAN Hong-Shuo, CHENG Yong-Long. Opportunities and challenges of artificial intelligence in climate research and services [J]. Climate Change Research, 2024, 20(6): 669-681. |
[5] | GAO Xiang. Climate finance in the context of international law [J]. Climate Change Research, 2024, 20(6): 799-807. |
[6] | ZHU Lei, ZHANG Li-Zhong, JIANG Ying, XU Jian-Feng, HUANG Yan, SUN Shu-Xin. Climate adaptation in industry: a review of research progress [J]. Climate Change Research, 2024, 20(6): 721-735. |
[7] | OU YANG Zhi-Yun, ZHANG Guan-Shi, YING Ling-Xiao. Overview of the impacts of climate change on ecosystem distribution and functions across the Tibetan Plateau [J]. Climate Change Research, 2024, 20(6): 699-710. |
[8] | LU Chun-Hui, YUAN Jia-Shuang, HUANG Lei, ZHANG Yong-Xiang. Key scientific issues in the Global Stocktake from the perspective of IPCC and their implications for China [J]. Climate Change Research, 2024, 20(6): 736-746. |
[9] | ZHOU Ze-Yu, WANG Jun-Hua, CAO Ying. Assessment of global climate change adaptation progress and related recommendations [J]. Climate Change Research, 2024, 20(6): 764-772. |
[10] | NIU Zhen-Guo, JING Yu-Hang, ZHANG Dong-Qi, ZHANG Bo. An overview and the outlook for wetland ecosystems in the Qinghai-Tibetan Plateau under climate change [J]. Climate Change Research, 2024, 20(5): 509-518. |
[11] | WU Pei-Ze, CHEN Sha, LIU Ying-Ying, LI Xiao-Tong, DU Zhan-Xia, CUI Shu-Fen, JIANG Ke-Jun. Low Emissions Analysis Platform (LEAP): applications and challenges in addressing climate change [J]. Climate Change Research, 2024, 20(5): 611-623. |
[12] | ZHANG Jing-Yu, CAO Long. Simulated response of the ocean and land carbon cycles to positive and negative CO2 emissions [J]. Climate Change Research, 2024, 20(4): 416-427. |
[13] | PAN Xiao-Bin, LIU Shang-Wen. Research on the path of transition finance legal system of China under the background of addressing climate change [J]. Climate Change Research, 2024, 20(4): 465-474. |
[14] | BAO Wen, DUAN An-Min, YOU Qing-Long, HU Die. Research progress on climate change and its impact on water resources over the Tibetan Plateau [J]. Climate Change Research, 2024, 20(2): 158-169. |
[15] | FAN Xing, LI Lu, GAO Xiang, CHEN Zhi-Hua. The analysis of COP28 Global Stocktake outcome and global climate governance prospects [J]. Climate Change Research, 2024, 20(2): 253-260. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|