|
Climate Change Research ›› 2022, Vol. 18 ›› Issue (6): 653-669.doi: 10.12006/j.issn.1673-1719.2021.277
• Changes in Climate System • Previous Articles Next Articles
MEI Mei(), HOU Wei, ZHOU Xing-Yan()
Received:
2021-12-13
Revised:
2022-01-27
Online:
2022-11-30
Published:
2022-07-13
Contact:
ZHOU Xing-Yan
E-mail:meimei@cma.gov.cn;zxingyan@cma.gov.cn
MEI Mei, HOU Wei, ZHOU Xing-Yan. The difference between new and old climate states and its impact on the assessment of climate and extreme event in China[J]. Climate Change Research, 2022, 18(6): 653-669.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.climatechange.cn/EN/10.12006/j.issn.1673-1719.2021.277
Fig. 1 The differences of the 30-year mean temperatures between the new and old climate states over China. (a) Mean temperature, (b) maximum temperature, (c) minimum temperature. (The dotted areas indicate that the differences between the two periods exceeded the 95% confidence level of t test)
Fig. 2 The differences of the annual variables between the new and old climate states over China. (a) Precipitation, (b) relative humidity, (c) average wind speed, (d) sunshine hours
Fig. 3 The differences of the seasonal average temperatures (a-d), maximum temperatures (e-h), minimum temperatures (i-l) between the new and old climate states over China. (a, e, i) Spring, (b, f, j) summer, (c, g, k) autumn, (d, h, l) winter
Fig. 4 The relative changes of the seasonal precipitation between the old and new climate states over China. (a) Spring, (b) summer, (c) autumn, (d) winter
Fig. 5 The differences of the seasonal relative humidity between the new and old climate states over China. (a) Spring, (b) summer, (c) autumn, (d) winter
Fig. 6 The differences of the seasonal average wind speed between the new and old climate states over China. (a) Spring, (b) summer, (c) autumn, (d) winter
Fig. 7 The differences of the seasonal sunshine hours between the new and old climate states over China. (a) Spring, (b) summer, (c) autumn, (d) winter
Fig. 8 The differences in probabilities of extreme high (a, c, e) and low (b, d, f) temperatures years between the new and old climate states over China during 1961-2020. (a, b) Mean temperature, (c, d) maximum temperature, (e, f) minimum temperature
Fig. 9 The differences in probabilities of extreme more (a, c, e) and less (b, d, f) precipitation seasons between the new and old climate states over China during 1961-2020. (a, b) Summer, (c, d) winter
Fig. 10 The differences of daily extreme high (a), low (b) temperatures and heavy precipitation (c) thresholds and their probability densities (d, e, f) between the new and old climate states at the meteorological observation stations over China
Fig. 11 The differences of daily extreme high (a), low (b) temperatures and heavy precipitation (c) frequency between the new and old climate states over China during 1961-2020
[1] | WMO. WMO guidelines on the calculation of climate normals (WMO-No. 1203)[Z]. Geneva: WMO, 2017 |
[2] | 翟盘茂, 周佰铨, 陈阳, 等. 气候变化科学方面的几个最新认知[J]. 气候变化研究进展, 2021, 17 (6): 629-635. |
Zhai P M, Zhou B Q, Chen Y, et al. Several new understandings in the climate change science[J]. Climate Change Research, 2021, 17 (6): 629-635 (in Chinese) | |
[3] | 中国气象局气候变化中心. 中国气候变化蓝皮书(2021)[M]. 北京: 气象出版社, 2021. |
Climate Change Center of China Meteorological Administration. Blue book on climate change in China 2021[M]. Beijing: China Meteorological Press, 2021 (in Chinese) | |
[4] | 许艳, 唐国利, 张强. 基于均一化格点资料的全球变暖趋缓期中国气温变化特征分析[J]. 气候变化研究进展, 2017, 13 (6): 569-577. |
Xu Y, Tang G L, Zhang Q. Analysis of the variation of the air temperature over China during the global warming hiatus period[J]. Climate Change Research, 2017, 13 (6): 569-577 (in Chinese) | |
[5] |
Li Q, Yang S, Xu W, et al. China experiencing the recent warming hiatus[J]. Geophysical Research Letters, 2015, 42 (3): 889-898
doi: 10.1002/2014GL062773 URL |
[6] |
Xie Y K, Huang J P, Liu Y Z. From accelerated warming to warming hiatus in China[J]. International Journal of Climatology, 2016, 37 (4): 1758-1773
doi: 10.1002/joc.4809 URL |
[7] | 林婧婧, 张强. 我国南北方气温和降水气候态变化特征及其对气候检测结果的影响[J]. 气候变化研究进展, 2015, 11 (4): 281-287. |
Lin J J, Zhang Q. Characteristics of temperature and precipitation climate state change in the South and the North of China and its influence of climate monitoring[J]. Climate Change Research, 2015, 11 (4): 281-287 (in Chinese) | |
[8] | 周波涛, 钱进. IPCC AR6报告解读:极端天气气候事件变化[J]. 气候变化研究进展, 2021, 17 (6): 713-718. |
Zhou B T, Qian J. Changes of weather and climate extremes in the IPCC AR6[J]. Climate Change Research, 2021, 17 (6): 713-718 (in Chinese) | |
[9] | 王国复, 叶殿秀, 张颖娴, 等. 2017年我国区域性高温过程特征及异常大气环流成因分析[J]. 气候变化研究进展, 2018, 14 (4): 341-349. |
Wang G F, Ye D X, Zhang Y X, et al. Characteristics and abnormal atmospheric circulation of regional high temperature process in 2017 over China[J]. Climate Change Research, 2018, 14 (4): 341-349 (in Chinese) | |
[10] | 赵威, 孙军. 2021年7月大气环流和天气分析[J]. 气象, 2021, 47 (10): 1289-1296. |
Zhao W, Sun J. Analysis of the July 2021 atmospheric circulation and weather[J]. Meteorological Monthly, 2021, 47 (10): 1289-1296 (in Chinese) | |
[11] | 朱万林, 李清泉, 王遵娅, 等. 近60年中国冷空气过程的气候变率分析[J]. 气象, 2022, 48 (1): 1-13. |
Zhu W L, Li Q Q, Wang Z Y, et al. Climatological variability of cold air processes over China in recent 60 years[J]. Meteorological Monthly, 2022, 48 (1): 1-13 (in Chinese) | |
[12] |
Zhang Y X, Liu Y J, Ding Y H. Identification of winter long-lasting regional extreme low-temperature events in Eurasia and their variation during 1948-2017[J]. Advances in Climate Change Research, 2021, 12: 353-362
doi: 10.1016/j.accre.2021.05.005 URL |
[13] |
Zheng F, Yuan Y, Ding Y H, et al. The 2020/21 extremely cold winter in China influenced by the synergistic effect of La Niña and warm Arctic[J]. Advances in Atmospheric Sciences, 2022, 39: 546-552
doi: 10.1007/s00376-021-1033-y URL |
[14] | 任福民, 高辉, 刘绿柳, 等. 极端天气气候事件监测与预测研究进展及其应用综述[J]. 气象, 2014, 40 (70): 860-874. |
Ren F M, Gao H, Liu L L, et al. Research progresses on extreme weather and climate events and their operational applications in climate monitoring and prediction[J]. Meteorological Monthly, 2014, 40 (70): 860-874 (in Chinese) | |
[15] | 王永光. 多年平均值的改变对中国气候业务的影响[J]. 气象, 2002, 28 (8): 41-43. |
Wang Y G. The influences of normals change upon climate operation of China[J]. Meteorological Monthly, 2002, 28 (8): 41-43 (in Chinese) | |
[16] | 王秀文, 李月安. 新气候平均值在中期预报业务中的应用[J]. 气象, 2003, 29 (1): 43-45. |
Wang X W, Li Y A. Application of new normals to med-range forecast operation[J]. Meteorological Monthly, 2003, 29 (1): 43-45 (in Chinese) | |
[17] |
林婧婧, 张强. 中国气候态变化特征及其对气候变化分析的影响[J]. 高原气象, 2015, 34 (6): 1593-1600.
doi: 10.7522/j.issn.1000-0534.2014.00092 |
Lin J J, Zhang Q. Characteristics of China climate states changes and its impact on the analysis of climate change[J]. Plateau Meteorology, 2015, 34 (6): 1593-1600 (in Chinese) | |
[18] | 房一禾, 赵春雨, 王颖, 等. 新、旧气候态的差异及对东北地区气候业务的影响[J]. 气候变化研究进展, 2016, 12 (3): 193-201. |
Fang Y H, Zhao C Y, Wang Y, et al. The difference between new and old climatic stage and its influence on climatic operation in the Northeast China[J]. Climate Change Research, 2016, 12 (3): 193-201 (in Chinese) | |
[19] | 晏红明, 袁媛, 王永光. 气候变暖背景下气候平均值更替对中国气候业务的影响[J]. 气象, 2022, 48 (3): 284-298. |
Yan H M, Yuan Y, Wang Y G. Influence of climatological mean value change on climate operation in China under the global warming[J]. Meteorological Monthly, 2022, 48 (3): 248-298 (in Chinese) | |
[20] | 中国气象局. 气象地理区划规范[S]. 北京: 中国气象局, 2021. |
China Meteorological Administration. Rules for the meteorological geographic regionalization[S]. Beijing: China Meteorological Administration, 2021 (in Chinese) | |
[21] | 高荣, 邹旭恺, 王遵娅, 等. 极端高温监测指标: QX/T 280—2015[S]. 北京: 气象出版社, 2015. |
Gao R, Zou X K, Wang Z Y, et al. Monitoring indices of high temperature extremes[S]. Beijing: China Meteorological Press, 2015 (in Chinese) | |
[22] | 王遵娅, 邹旭恺, 高荣. 极端低温和降温监测指标: GB/T 34293—2017[S]. 北京: 气象出版社, 2017. |
Wang Z Y, Zou X K, Gao R. Monitoring indices of low temperature extremes and temperature drop extremes[S]. Beijing: China Meteorological Press, 2017 (in Chinese) | |
[23] | 邹旭恺, 高荣, 王遵娅, 等. 极端降水监测指标: GB/T 33669—2017[S]. 北京: 气象出版社, 2017. |
Zou X K, Gao R, Wang Z Y, et al. Monitoring indices of precipitation extremes[S]. Beijing: China Meteorological Press, 2017 (in Chinese) | |
[24] | Wu P, Ding Y H, Liu Y J, et al. The characteristics of moisture recycling and its impact on regional precipitation against the background of climate warming over Northwest China[J]. International Journal of Climatology, 2019, 39: 5254-5255 |
[25] |
Wang Y, Zhou B T, Qin D H, et al. Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: observation and projection[J]. Advances in Atmospheric Sciences, 2017, 34: 289-305
doi: 10.1007/s00376-016-6160-5 URL |
[26] | 孔锋, 孙劭, 王鹏. 1961—2018 年中国风速均值和极端值的时空演变特征[J]. 灾害学, 2021, 36 (2): 89-96. |
Kong F, Sun S, Wang P. Temporal and spatial evolution characteristics of mean and extreme wind speed in China during 1961-2018[J]. Journal of Catastrophology, 2021, 36 (2): 89-96 (in Chinese) | |
[27] | 朱蓉, 王阳, 向洋, 等. 中国风能资源气候特征和开发潜力研究[J]. 太阳能学报, 2021, 42 (6): 409-418. |
Zhu R, Wang Y, Xiang Y, et al. Study on climate characteristics and development potential of wind energy resources in China[J]. Acta Energiae Solaris Sinica, 2021, 42 (6): 409-418 (in Chinese) | |
[28] | 周扬, 吴文祥, 胡莹, 等. 西北地区太阳能资源空间分布特征及资源潜力评估[J]. 自然资源学报, 2010, 25 (10): 1738-1749. |
Zhou Y, Wu W X, Hu Y, et al. The temporal-spatial distribution and evaluation of potential solar energy resources in Northwest China[J]. Journal of Natural Resources, 2010, 25 (10): 1738-1749 (in Chinese) | |
[29] | 丁一汇, 李霄, 李巧萍. 气候变暖背景下中国地面风速变化研究进展[J]. 应用气象学报, 2020, 31 (1): 1-12. |
Ding Y H, Li X, Li Q P. Advances of surface wind speed changes over China under global warming[J]. Journal of Applied Meteorological Science, 2020, 31 (1): 1-12 (in Chinese) | |
[30] | 袁媛, 高辉, 柳艳菊. 2016年夏季我国东部降水异常特征及成因简析[J]. 气象, 2017, 43 (1): 115-121. |
Yuan Y, Gao H, Liu Y J. Analysis of the characteristics and causes of precipitation anomalies over eastern China in the summer of 2016[J]. Meteorological Monthly, 2017, 43 (1):115-121 (in Chinese) | |
[31] | 郑志海, 王永光. 2017年夏季北半球大气环流特征及对我国天气气候的影响[J]. 气象, 2018, 44 (1): 199-205. |
Zheng Z H, Wang Y G. Northern Hemisphere atmospheric circulation characteristics in summer 2017 and its impact on weather and climate in China[J]. Meteorological Monthly, 2018, 44 (1): 199-205 (in Chinese) | |
[32] | 顾薇, 陈丽娟. 2018年夏季海洋大气特征及对我国气候的影响[J]. 气象, 2019, 45 (1): 126-134. |
Gu W, Chen L J. Characteristics of atmospheric and oceanic condition and their influences on summer climate of China in 2018[J]. Meteorological Monthly, 2019, 45 (1): 126-134 (in Chinese) | |
[33] | 刘芸芸, 王永光, 柯宗建. 2020年夏季我国气候异常特征及成因分析[J]. 气象, 2021, 47 (1): 117-126. |
Liu Y Y, Wang Y G, Ke Z J. Characteristics and possible causes for the climate anomalies over China in summer 2020[J]. Meteorological Monthly, 2021, 47 (1): 117-126 (in Chinese) | |
[34] |
Lu E, Zhao W, Zou X K, et al. Temporal-spatial monitoring of an extreme precipitation event: determining simultaneously the time period it lasts and the geographic region it affects[J]. Journal of Climate, 2017, 30: 6123-6132
doi: 10.1175/JCLI-D-17-0105.1 URL |
[35] | 史培军, 孙劭, 汪明, 等. 中国气候变化区划(1961—2010 年)[J]. 中国科学: 地球科学, 2014, 44: 2294-2306. |
Shi P J, Sun S, Wang M, et al. Climate change regionalization in China (1961-2010)[J]. Science China: Earth Sciences, 2014, 44: 2294-2306 (in Chinese) |
[1] | WANG Yu-Jie, LIN Xin. A review of climate change and its impact and adaptation in Beijing-Tianjin-Hebei urban agglomeration [J]. Climate Change Research, 2022, 18(6): 743-755. |
[2] | GAO Mei-Xun, CHEN Min-Peng, TENG Fei. Technology Needs Assessment for adaptation to climate change in the Belt and Road countries [J]. Climate Change Research, 2022, 18(6): 731-742. |
[3] | ZHANG Xi, CHEN Min-Peng. Adaptation and green recovery: synergistic responses to the COVID-19 pandemic and climate compounding risks [J]. Climate Change Research, 2022, 18(6): 720-730. |
[4] | ZHANG Hua, LI Wen-Li, LI Xue-Min, DONG Lin, YANG You-Tian, ZHANG Guo-Ming, XU Ying-Jun. Analysis of urban and rural population scenarios and exposure characteristics in China in the future for the prevention of earthquake risk [J]. Climate Change Research, 2022, 18(6): 707-719. |
[5] | JIANG Han-Ying, GAO Xiang, WANG Can. Progress and evaluation of international climate change cooperation [J]. Climate Change Research, 2022, 18(5): 591-604. |
[6] | BAI Quan, HU Shan, GU Li-Jing. Interpretation of IPCC AR6 on buildings [J]. Climate Change Research, 2022, 18(5): 557-566. |
[7] | WANG Zhuo-Ni, YUAN Jia-Shuang, PANG Bo, HUANG Lei. The interpretation and highlights on mitigation of climate change in IPCC AR6 WGIII report [J]. Climate Change Research, 2022, 18(5): 531-537. |
[8] | MA Li-Juan, XIAO Cun-De, KANG Shi-Chang. Characteristics, and similarities and differences of climate change in major high mountains in the world—comprehensive interpretation of IPCC AR6 WGI report and SROCC [J]. Climate Change Research, 2022, 18(5): 605-621. |
[9] | LIU Junguo, MENG Ying, ZHANG Xue-Jing. Interpretation of IPCC AR6 report: groundwater [J]. Climate Change Research, 2022, 18(4): 414-421. |
[10] | DUAN Ju-Qi, YUAN Jia-Shuang, XU Xin-Wu, JU Hui. Interpretation of the IPCC AR6 report on agricultural systems [J]. Climate Change Research, 2022, 18(4): 422-432. |
[11] | ZHANG Bai-Chao, PANG Bo, QIN Yun, HAN Zhen-Yu, LU Bo. Interpretation of Climate Resilient Development in IPCC AR6 WGII [J]. Climate Change Research, 2022, 18(4): 460-467. |
[12] | ZHOU Jian-Qin, HUANG Wei, LI Meng, ZHENG Jian-Meng, LUO Meng, FU Rui. Dry-wet climate evolution feature and projection of future changes based on CMIP6 models in early summer over Yunnan province, China [J]. Climate Change Research, 2022, 18(4): 482-491. |
[13] | WANG Lei, ZHANG Bai-Chao, SHI Ying, HAN Zhen-Yu, LU Bo. Interpretation of the IPCC AR6 on the impacts and risks of climate change [J]. Climate Change Research, 2022, 18(4): 389-394. |
[14] | QIN Yun, XU Xin-Wu, WANG Lei, HAN Zhen-Yu, LU Bo. Interpretation of the IPCC AR6 on adaptation options of climate change [J]. Climate Change Research, 2022, 18(4): 452-459. |
[15] | WANG Jun-Neng, QIN Nian-Xiu, JIANG Tong, SU Bu-Da. Interpretation of IPCC AR6: impacts and adaptations of climate change on cities, settlements and key infrastructure [J]. Climate Change Research, 2022, 18(4): 433-441. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
|