[1] | 胡玉厚, 邱忠恩, 陈明华 . 长江上游水资源开发与中下游经济、社会、环境发展的关系[J]. 人民长江, 1993,24(6):12-16. | [1] | Hu Y H, Qiu Z E, Chen M H . Relationship between water resources development in the upper reaches and economic, social and environmental development in the middle and lower reaches of the Yangtze River[J]. Yangtze River, 1993,24(6):12-16 (in Chinese) | [2] | 丁毅, 傅巧萍 . 长江上游梯级水库群蓄水方式初步研究[J]. 人民长江, 2013,44(10):72-75. | [2] | Ding Y, Fu Q P . Preliminary research on water storage mode of cascade reservoirs in upper Yangtze River[J]. Yangtze River, 2013,44(10):72-75 (in Chinese) | [3] | Xiong L H, Guo S L . Trend test and change-point detection for the annual discharge series of the Yangtze River at the Yichang hydrological station[J]. Hydrological Sciences Journal, 2004,49(1):99-112 | [4] | 郭海晋, 陈玺 . 长江上游径流持续偏枯地区贡献度及成因研究[J]. 水资源研究, 2017,6(4):309-316. | [4] | Guo H J, Chen X . Spatial contribution and cause analysis for runoff decreasing in the upstream of Yangtze River[J]. Journal of Water Resources Research, 2017,6(4):309-316 (in Chinese) | [5] | 郭乐, 鲍正风 . 长江三峡水库建库以来来水变化及原因分析[J]. 水电与新能源, 2016 ( 5):34-36. | [5] | Guo L, Bao Z F . On the inflow change of the Three Gorges reservoir since its completion[J]. Hydropower and New Energy, 2016 ( 5):34-36 (in Chinese) | [6] | 夏军, 王渺林 . 长江上游流域径流变化与分布式水文模拟[J]. 资源科学, 2008,30(7):962-967. | [6] | Xia J, Wang M L . Runoff changes and distributed hydrologic simulation in the upper reaches of Yangtze River[J]. Resources Science, 2008,30(7):962-967 (in Chinese) | [7] | 王艳君, 姜彤, 施雅风 . 长江上游流域1961—2000年气候及径流变化趋势[J]. 冰川冻土, 2005,27(5):709-714. | [7] | Wang Y J, Jiang T, Shi Y F . Changing trends of climate and runoff over the upper reaches of the Yangtze River in 1961-2000[J]. Journal of Glaciology and Geocryology, 2005,27(5):709-714 (in Chinese) | [8] | Liu L L, Du J J . Documented changes in annual runoff and attribution since the 1950s within selected rivers in China[J]. Advances in Climate Change Research, 2017,8(1):37-47 | [9] | Zhang Y, Zhong P A, Wang M L , et al. Changes identification of the Three Gorges reservoir inflow and the driving factors quantification[J]. Quaternary International, 2016,475:28-41 | [10] | 曹丽娟, 董文杰, 张勇 . 未来气候变化对黄河和长江流域极端径流影响的预估研究[J]. 大气科学, 2013,37(3):634-644. | [10] | Cao L J, Dong W J, Zhang Y . Estimation of the effect of climate change on extreme streamflow over the Yellow River and Yangtze River basins[J]. Chinese Journal of Atmospheric Sciences, 2013,37(3):634-644 (in Chinese) | [11] | Wang Y, Liao W, Ding Y , et al. Water resource spatiotemporal pattern evaluation of the upstream Yangtze River corresponding to climate changes [J]. Quaternary International. 2015, 380-381:187-196 | [12] | Su B, Huang J, Zeng X , et al. Impacts of climate change on streamflow in the upper Yangtze River basin[J]. Climatic Change, 2017,141(3):1-14 | [13] | Birkinshaw S J, Guerreiro S B, Nicholson A , et al. Climate change impacts on Yangtze River discharge at the Three Gorges dam[J]. Hydrology and Earth System Sciences, 2017,21(4):1911-1927 | [14] | 周新春, 许银山, 冯宝飞 . 长江上游干流梯级水库群防洪库容互用性初探[J]. 水科学进展, 2017,28(3):421-428. | [14] | Zhou X C, Xu Y S, Feng B F . An exploration on the interoperability of the flood control capacities of cascade reservoir groups in the upper reaches of Yangtze River[J]. Advances in Water Science, 2017,28(3):421-428 (in Chinese) | [15] | Arnold J G, Srinivasan R, Muttiah R S , et al. Large area hydrologic modeling and assessment part Ι: model development[J]. Journal of the American Water Resources Association, 1998,34(1):73-89 | [16] | 陆桂华, 杨烨, 吴志勇 , 等. 未来气候情景下长江上游区域积雪时空变化分析: 基于CMIP5多模式集合数据[J]. 水科学进展, 2014,25(4):484-493. | [16] | Lu G H, Yang Y, Wu Z Y , et al. Temporal and spatial variations of snow depth in regions of the upper reaches of Yangtze River under future climate change scenarios: a study based on CMIP5 multi-model ensemble projections[J]. Advances in Water Science, 2014,25(4):484-493 (in Chinese) | [17] | 孟现勇, 吉晓楠, 刘志辉 , 等. SWAT模型融雪模块的改进与应用研究[J]. 自然资源学报, 2014 (3):528-539. | [17] | Meng X Y, Ji X N, Liu Z H , et al. Research on improvement and application of snowmelt module in SWAT[J]. Journal of Natural Resources, 2014 ( 3):528-539 (in Chinese) | [18] | Zhang N, He H M, Zhang S F , et al. Influence of reservoir operation in the upper reaches of the Yangtze River (China) on the inflow and outflow regime of the TGR: based on the improved SWAT model[J]. Water Resources Management, 2012,26(3):691-705 | [19] | 吴佳, 高学杰 . 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013,56(4):1102-1111. | [19] | Wu J, Gao X J . A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013,56(4):1102-1111 (in Chinese) | [20] | Hempel S, Frieler K, Warszawski L , et al. A trend-preserving bias correction: the ISI-MIP approach[J]. Earth System Dynamics, 2013,4(2):219-236 | [21] | Mohammed K, Islam A S, Islam G T , et al. Extreme flows and water availability of the Brahmaputra River under 1.5 and 2℃ global warming scenarios[J]. Climatic Change, 2017: 1-17 | [22] | Liu L L, Xu H M, Wang Y , et al. Impacts of 1.5 and 2℃ global warming on water availability and extreme hydrological events in Yiluo and Beijiang River catchments in China[J]. Climatic Change, 2017,145(10):1-14 | [23] | 刘苏峡, 丁文浩, 莫兴国 , 等. 澜沧江和怒江流域的气候变化及其对径流的影响[J]. 气候变化研究进展, 2017,13(4):356-365. | [23] | Liu S X, Ding W H, Mo X G , et al. Climate change and its impact on runoff in Lancang and Nujiang River basins[J]. Climate Change Research, 2017,13(4):356-365 (in Chinese) | [24] | 王胜, 许红梅, 高超 , 等. 基于SWAT模型分析淮河流域中上游水量平衡要素对气候变化的响应[J]. 气候变化研究进展, 2015,11(6):402-411. | [24] | Wang S, Xu H M, Gao C , et al. Water balance response of the climatic change based on SWAT model in the upper-middle reach of Huaihe River basin[J]. Progressus Inquisitiones de Mutatione Climatis, 2015,11(6):402-411 (in Chinese) | [25] | Chen J, Gao C, Zeng X , et al. Assessing changes of river discharge under global warming of 1.5℃ and 2℃ in the upper reaches of the Yangtze River basin: approach by using multiple-GCMs and hydrological models[J]. Quaternary International, 2017,453:63-73 | [26] | Carvajal P E, Anandarajah G, Mulugetta Y , et al. Assessing uncertainty of climate change impacts on long-term hydropower generation using the CMIP5 ensemble: the case of Ecuador[J]. Climatic Change, 2017,144(4):611-624 | [27] | Iizumi T, Takikawa H, Hirabayashi Y , et al. Contributions of different bias-correction methods and reference meteorological forcing data sets to uncertainty in projected temperature and precipitation extremes[J]. Journal of Geophysical Research: Atmospheres, 2017,122(15):7800-7819 | [28] | 郝莹, 马京津, 安晶晶 , 等. 全球1.5℃和2.0℃升温下潮白河流域气候和径流量变化预估[J]. 气候变化研究进展, 2018,14(3):237-246. | [28] | Hao Y, Ma J J, An J J , et al . Projected changes in climate and river discharge in the Chaobai River basin under 1.5℃ and 2.0℃ global warming[J]. Climate Change Research, 2018,14(3):237-246 (in Chinese) | [29] | Qin P C, Xu H M, Liu M , et al. Climate change impacts on Three Gorges Reservoir impoundment and hydropower generation[J]. Journal of Hydrology, 2019. DOI:https://doi.org/10.1016/j.jhydrol.2019.123922 |
|