Please wait a minute...
 
气候变化研究进展  2019, Vol. 15 Issue (4): 405-415    DOI: 10.12006/j.issn.1673-1719.2018.168
  气候变化影响 本期目录 | 过刊浏览 | 高级检索 |
气候变化对长江上游径流影响预估
秦鹏程1,刘敏1(),杜良敏1,许红梅2,刘绿柳2,肖潺2
1 武汉区域气候中心,武汉 430074
2 中国气象局国家气候中心,北京 100081
Climate change impacts on runoff in the upper Yangtze River basin
Peng-Cheng QIN1,Min LIU1(),Liang-Min DU1,Hong-Mei XU2,Lyu-Liu LIU2,Chan XIAO2
1 Wuhan Regional Climate Centre, Wuhan 430074, China
2 National Climate Centre, China Meteorological Administration, Beijing 100081, China
下载:  HTML ( 7 )   PDF (7182KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

利用第五次国际耦合模式比较计划(CMIP5)中5个气候模式在3种典型浓度路径(RCPs)下的预估结果驱动SWAT水文模型,预估了21世纪气候变化对长江上游年径流量、季节分配以及极端径流的影响。结果表明:预估的长江上游平均气温呈显著上升趋势,21世纪末较当前(1986—2005年)升高1.5~5.5℃,降水总体呈增加趋势,在21世纪30年代后高于当前气候平均值,21世纪末相对于当前增加5%~15%。流域内气候变化存在明显空间差异,金沙江和岷沱江流域气温升高和降水增加幅度均大于流域平均值。预估的长江上游年径流量及各月平均径流均有增加趋势,在21世纪30年代后高于当前多年平均值,21世纪中期增加4%~8%,21世纪末增加10%~15%。预估的径流年内分布的均匀性有所增加,但年际变化明显增大,极端旱涝事件的频率和强度明显增加。预估的各子流域径流变化对气候变化的响应也存在差异,金沙江和岷沱江流域年径流量、年际变化和年内分布变化小,对气候变化的响应表现为低敏感;嘉陵江流域、乌江流域和长江上游干流径流增加幅度大,同时极端丰枯出现的频率和程度增加显著,是气候变化响应的敏感区域。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
秦鹏程
刘敏
杜良敏
许红梅
刘绿柳
肖潺
关键词:  气候变化  径流  长江上游  SWAT模型    
Abstract: 

To assess the impacts of climate change on river runoff in the upper Yangtze River basin, the climate change and its impacts on spatial-temporal trend of annual, seasonality and extremes of runoff were examined using Soil and Water Assessment Tool (SWAT) model, based on a subset of five global circulation models under three Representative Concentration Pathways (RCP2.6, RCP4.5, RCP8.5). The projected average annual temperature presents a significant upward trend, with an increase of 1.5-5.5℃ by the end of the 21st century relative to the reference period 1986-2005, and the overall precipitation is projected to increase after 2030s, with an increase of 5%-15% by the end of the 21st century. There is considerable spatial variation in the projected changes in annual temperature and precipitation across the upper Yangtze River basin, with the upper sub-basins (Jinsha River and Mintuo River) having a generally warmer and wetter conditions comparing with the whole study area. Changes of climate will result in an increase in the simulated mean annual runoff in the upper Yangtze River basin after 2030s, with an increase of 4%-8% in middle of the 21st century, and 10%-15% increase by the end of the 21st century. Additionally, the intra-annual distribution of monthly runoff is simulated generally more uniform. However, the inter-annual variation of runoff is simulated to increase, which indicates more frequent and severe extreme flood and drought events. With respect to spatial differences in simulated runoff, the sub-basins of Jinsha River and Mintuo River show a relative small change in the annual water availability as well as the inter-annual and intra-annual variability, whereas the sub-basins of Jialing, Wujiang, and mainstream of the upper Yangtze River show a larger increase in water availability and hydrological extremes.

Key words:  Climate change    Runoff    upper Yangtze River basin    Soil and Water Assessment Tool (SWAT) model
收稿日期:  2018-11-28      修回日期:  2018-12-24           出版日期:  2019-07-30      发布日期:  2019-07-30      期的出版日期:  2019-07-30
基金资助: 国家重点研发计划(SQ2018YFE010367);国家重点研发计划(2016YFE0102400);国家重点研发计划(2018YFC1508001);湖北省气象局科技发展基金重点项目(2018Z06);中国气象局气候变化专项(CCSF201911)
通讯作者:  刘敏    E-mail:  liuminccg@sohu.com
作者简介:  秦鹏程,男,高级工程师,qinpengcheng027@163.com
引用本文:    
秦鹏程,刘敏,杜良敏,许红梅,刘绿柳,肖潺. 气候变化对长江上游径流影响预估[J]. 气候变化研究进展, 2019, 15(4): 405-415.
Peng-Cheng QIN,Min LIU,Liang-Min DU,Hong-Mei XU,Lyu-Liu LIU,Chan XIAO. Climate change impacts on runoff in the upper Yangtze River basin. Climate Change Research, 2019, 15(4): 405-415.
链接本文:  
http://www.climatechange.cn/CN/10.12006/j.issn.1673-1719.2018.168  或          http://www.climatechange.cn/CN/Y2019/V15/I4/405
图1  长江上游流域及控制性水文站
图2  各水文站率定期和验证期逐月模拟径流与还原径流的比较
表1  各水文站率定期和验证期径流模拟效果评价结果
图3  3种情景下预估的2006—2099年长江上游流域年平均气温和降水量变化趋势(a,b)和空间分布(c,d)
图4  不同情景下长江上游及各子流域年径流量变化趋势
表2  3种情景下长江上游及各子流域年径流均值和方差变化百分率
图5  不同情景下长江上游各月径流占年径流百分比的变化
图6  不同情景下长江上游各子流域汛期(a)、蓄水期(b)和枯水期(c)Q95枯水极值及Q5丰水极值相对变化
[1] 胡玉厚, 邱忠恩, 陈明华 . 长江上游水资源开发与中下游经济、社会、环境发展的关系[J]. 人民长江, 1993,24(6):12-16.
Hu Y H, Qiu Z E, Chen M H . Relationship between water resources development in the upper reaches and economic, social and environmental development in the middle and lower reaches of the Yangtze River[J]. Yangtze River, 1993,24(6):12-16 (in Chinese)
[2] 丁毅, 傅巧萍 . 长江上游梯级水库群蓄水方式初步研究[J]. 人民长江, 2013,44(10):72-75.
Ding Y, Fu Q P . Preliminary research on water storage mode of cascade reservoirs in upper Yangtze River[J]. Yangtze River, 2013,44(10):72-75 (in Chinese)
[3] Xiong L H, Guo S L . Trend test and change-point detection for the annual discharge series of the Yangtze River at the Yichang hydrological station[J]. Hydrological Sciences Journal, 2004,49(1):99-112
[4] 郭海晋, 陈玺 . 长江上游径流持续偏枯地区贡献度及成因研究[J]. 水资源研究, 2017,6(4):309-316.
Guo H J, Chen X . Spatial contribution and cause analysis for runoff decreasing in the upstream of Yangtze River[J]. Journal of Water Resources Research, 2017,6(4):309-316 (in Chinese)
[5] 郭乐, 鲍正风 . 长江三峡水库建库以来来水变化及原因分析[J]. 水电与新能源, 2016 ( 5):34-36.
Guo L, Bao Z F . On the inflow change of the Three Gorges reservoir since its completion[J]. Hydropower and New Energy, 2016 ( 5):34-36 (in Chinese)
[6] 夏军, 王渺林 . 长江上游流域径流变化与分布式水文模拟[J]. 资源科学, 2008,30(7):962-967.
Xia J, Wang M L . Runoff changes and distributed hydrologic simulation in the upper reaches of Yangtze River[J]. Resources Science, 2008,30(7):962-967 (in Chinese)
[7] 王艳君, 姜彤, 施雅风 . 长江上游流域1961—2000年气候及径流变化趋势[J]. 冰川冻土, 2005,27(5):709-714.
Wang Y J, Jiang T, Shi Y F . Changing trends of climate and runoff over the upper reaches of the Yangtze River in 1961-2000[J]. Journal of Glaciology and Geocryology, 2005,27(5):709-714 (in Chinese)
[8] Liu L L, Du J J . Documented changes in annual runoff and attribution since the 1950s within selected rivers in China[J]. Advances in Climate Change Research, 2017,8(1):37-47
[9] Zhang Y, Zhong P A, Wang M L , et al. Changes identification of the Three Gorges reservoir inflow and the driving factors quantification[J]. Quaternary International, 2016,475:28-41
[10] 曹丽娟, 董文杰, 张勇 . 未来气候变化对黄河和长江流域极端径流影响的预估研究[J]. 大气科学, 2013,37(3):634-644.
doi: 10.3878/j.issn.1006-9895.2012.12023
Cao L J, Dong W J, Zhang Y . Estimation of the effect of climate change on extreme streamflow over the Yellow River and Yangtze River basins[J]. Chinese Journal of Atmospheric Sciences, 2013,37(3):634-644 (in Chinese)
doi: 10.3878/j.issn.1006-9895.2012.12023
[11] Wang Y, Liao W, Ding Y , et al. Water resource spatiotemporal pattern evaluation of the upstream Yangtze River corresponding to climate changes [J]. Quaternary International. 2015, 380-381:187-196
[12] Su B, Huang J, Zeng X , et al. Impacts of climate change on streamflow in the upper Yangtze River basin[J]. Climatic Change, 2017,141(3):1-14
[13] Birkinshaw S J, Guerreiro S B, Nicholson A , et al. Climate change impacts on Yangtze River discharge at the Three Gorges dam[J]. Hydrology and Earth System Sciences, 2017,21(4):1911-1927
[14] 周新春, 许银山, 冯宝飞 . 长江上游干流梯级水库群防洪库容互用性初探[J]. 水科学进展, 2017,28(3):421-428.
Zhou X C, Xu Y S, Feng B F . An exploration on the interoperability of the flood control capacities of cascade reservoir groups in the upper reaches of Yangtze River[J]. Advances in Water Science, 2017,28(3):421-428 (in Chinese)
[15] Arnold J G, Srinivasan R, Muttiah R S , et al. Large area hydrologic modeling and assessment part Ι: model development[J]. Journal of the American Water Resources Association, 1998,34(1):73-89
[16] 陆桂华, 杨烨, 吴志勇 , 等. 未来气候情景下长江上游区域积雪时空变化分析: 基于CMIP5多模式集合数据[J]. 水科学进展, 2014,25(4):484-493.
Lu G H, Yang Y, Wu Z Y , et al. Temporal and spatial variations of snow depth in regions of the upper reaches of Yangtze River under future climate change scenarios: a study based on CMIP5 multi-model ensemble projections[J]. Advances in Water Science, 2014,25(4):484-493 (in Chinese)
[17] 孟现勇, 吉晓楠, 刘志辉 , 等. SWAT模型融雪模块的改进与应用研究[J]. 自然资源学报, 2014 (3):528-539.
Meng X Y, Ji X N, Liu Z H , et al. Research on improvement and application of snowmelt module in SWAT[J]. Journal of Natural Resources, 2014 ( 3):528-539 (in Chinese)
[18] Zhang N, He H M, Zhang S F , et al. Influence of reservoir operation in the upper reaches of the Yangtze River (China) on the inflow and outflow regime of the TGR: based on the improved SWAT model[J]. Water Resources Management, 2012,26(3):691-705
[19] 吴佳, 高学杰 . 一套格点化的中国区域逐日观测资料及与其它资料的对比[J]. 地球物理学报, 2013,56(4):1102-1111.
doi: 10.6038/cjg20130406
Wu J, Gao X J . A gridded daily observation dataset over China region and comparison with the other datasets[J]. Chinese Journal of Geophysics, 2013,56(4):1102-1111 (in Chinese)
doi: 10.6038/cjg20130406
[20] Hempel S, Frieler K, Warszawski L , et al. A trend-preserving bias correction: the ISI-MIP approach[J]. Earth System Dynamics, 2013,4(2):219-236
[21] Mohammed K, Islam A S, Islam G T , et al. Extreme flows and water availability of the Brahmaputra River under 1.5 and 2℃ global warming scenarios[J]. Climatic Change, 2017: 1-17
[22] Liu L L, Xu H M, Wang Y , et al. Impacts of 1.5 and 2℃ global warming on water availability and extreme hydrological events in Yiluo and Beijiang River catchments in China[J]. Climatic Change, 2017,145(10):1-14
[23] 刘苏峡, 丁文浩, 莫兴国 , 等. 澜沧江和怒江流域的气候变化及其对径流的影响[J]. 气候变化研究进展, 2017,13(4):356-365.
Liu S X, Ding W H, Mo X G , et al. Climate change and its impact on runoff in Lancang and Nujiang River basins[J]. Climate Change Research, 2017,13(4):356-365 (in Chinese)
[24] 王胜, 许红梅, 高超 , 等. 基于SWAT模型分析淮河流域中上游水量平衡要素对气候变化的响应[J]. 气候变化研究进展, 2015,11(6):402-411.
doi: 10.3969/j.issn.1673-1719.2015.06.004
Wang S, Xu H M, Gao C , et al. Water balance response of the climatic change based on SWAT model in the upper-middle reach of Huaihe River basin[J]. Progressus Inquisitiones de Mutatione Climatis, 2015,11(6):402-411 (in Chinese)
doi: 10.3969/j.issn.1673-1719.2015.06.004
[25] Chen J, Gao C, Zeng X , et al. Assessing changes of river discharge under global warming of 1.5℃ and 2℃ in the upper reaches of the Yangtze River basin: approach by using multiple-GCMs and hydrological models[J]. Quaternary International, 2017,453:63-73
[26] Carvajal P E, Anandarajah G, Mulugetta Y , et al. Assessing uncertainty of climate change impacts on long-term hydropower generation using the CMIP5 ensemble: the case of Ecuador[J]. Climatic Change, 2017,144(4):611-624
[27] Iizumi T, Takikawa H, Hirabayashi Y , et al. Contributions of different bias-correction methods and reference meteorological forcing data sets to uncertainty in projected temperature and precipitation extremes[J]. Journal of Geophysical Research: Atmospheres, 2017,122(15):7800-7819
[28] 郝莹, 马京津, 安晶晶 , 等. 全球1.5℃和2.0℃升温下潮白河流域气候和径流量变化预估[J]. 气候变化研究进展, 2018,14(3):237-246.
Hao Y, Ma J J, An J J , et al . Projected changes in climate and river discharge in the Chaobai River basin under 1.5℃ and 2.0℃ global warming[J]. Climate Change Research, 2018,14(3):237-246 (in Chinese)
[29] Qin P C, Xu H M, Liu M , et al. Climate change impacts on Three Gorges Reservoir impoundment and hydropower generation[J]. Journal of Hydrology, 2019. DOI:https://doi.org/10.1016/j.jhydrol.2019.123922
doi: 10.1016/j.jhydrol.2019.123922
[1] 杨世莉,董文杰,丑洁明,刘昌新. 对地球系统模式与综合评估模型双向耦合问题的探讨[J]. 气候变化研究进展, 2019, 15(4): 335-342.
[2] 廖要明,陈德亮,刘秋锋. 中国地气温差时空分布及变化趋势[J]. 气候变化研究进展, 2019, 15(4): 374-384.
[3] 李彩瑛,阎建忠,花晓波,张镱锂. 农户生计对气候变化的敏感性研究综述[J]. 气候变化研究进展, 2019, 15(3): 290-300.
[4] 宋臻,史兴民,李欢娟,陈谢扬,高莹. 樱桃种植户对气候变化及气象灾害的适应行为效能感知研究[J]. 气候变化研究进展, 2019, 15(3): 313-325.
[5] 高帅,李梦宇,段茂盛,王灿. 《巴黎协定》下的国际碳市场机制:基本形式和前景展望[J]. 气候变化研究进展, 2019, 15(3): 222-231.
[6] 陈德亮,秦大河,效存德,苏勃. 气候恢复力及其在极端天气气候灾害管理中的应用[J]. 气候变化研究进展, 2019, 15(2): 167-177.
[7] 章梦杰,郭家力,林伟,郭靖,舒章康,李英海,张静文. 气候变化对水文季节性迁移的影响:以水库汛期分期和极值降水为例[J]. 气候变化研究进展, 2019, 15(2): 158-166.
[8] 郭飞燕,綦东菊,周斌,薛允传. 青岛地区气候变化对动物物候变化的影响研究[J]. 气候变化研究进展, 2019, 15(1): 62-73.
[9] 温作龙,姜玖,曹龙. 太阳辐射管理地球工程对海洋酸化影响的模拟研究[J]. 气候变化研究进展, 2019, 15(1): 41-53.
[10] 王利宁, 杨雷, 陈文颖, 单葆国, 张成龙, 尹硕. 国家自主决定贡献的减排力度评价[J]. 气候变化研究进展, 2018, 14(6): 613-620.
[11] 查芊郁,高超,杨茹,刘悦,阮甜,李鹏. 全球升温1.5℃和2.0℃情景下淮河上游干流径流量研究[J]. 气候变化研究进展, 2018, 14(6): 583-592.
[12] 洪祎君, 崔惠娟, 王芳, 葛全胜. 基于发展中国家自主贡献文件的资金需求评估[J]. 气候变化研究进展, 2018, 14(6): 621-631.
[13] 范志欣,方修琦,苏筠. 全球碳排放格网化格局的变化[J]. 气候变化研究进展, 2018, 14(5): 505-512.
[14] 王正,支蓉,封国林,李淑萍. 典型场选取对多要素气候态相似季节划分的影响[J]. 气候变化研究进展, 2018, 14(4): 350-369.
[15] 许光清,董小琦. 企业气候变化意识及应对措施调查研究[J]. 气候变化研究进展, 2018, 14(4): 429-436.
[1] . A New Method to Construct Anomaly Series of Climatic Energy Consumption for Urban Residential Heating in Jilin Province[J]. Climate Change Research, 2008, 04(001): 32 -36 .
[2] . Analysis of Factors Impacting China's CO2 Emissions During 1971-2005[J]. Climate Change Research, 2008, 04(001): 42 -47 .
[3] Cao Guoliang;Zhang Xiaoye; Wang Yaqiang;et al.. Inventory of Black Carbon Emission from China[J]. Climate Change Research, 2007, 03(00): 75 -81 .
[4] . Dryness/Wetness Changes in Qinghai Province During 1959-2003[J]. Climate Change Research, 2007, 03(06): 356 -361 .
[5] Xu Xiaobin;Lin Weili; Wang Tao;et al.. Long-term Trend of Tropospheric Ozone over the Yangtze Delta Region of China[J]. Climate Change Research, 2007, 03(00): 60 -65 .
[6] Gao Qingxian; Du Wupeng; Lu Shiqing;et al.. Methane Emission from Municipal Solid Waste Treatments in China[J]. Climate Change Research, 2007, 03(00): 70 -74 .
[7] . Guide to Authors[J]. Climate Change Research, 2006, 02(00): 84 .
[8] . Granger Causality Test for Detection and Attribution of Climate Change[J]. Climate Change Research, 2008, 04(001): 37 -41 .
[9] . AIntra-annual Inhomogeneity Characteristics of Precipitation over Northwest China[J]. Climate Change Research, 2007, 03(05): 276 -281 .
[10] . Projection of Future Precipitation Extremes in the Yangtze River Basin for 2001-2050[J]. Climate Change Research, 2007, 03(06): 340 -344 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备11008704号-4
版权所有 © 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn