Please wait a minute...
 
气候变化研究进展  2019, Vol. 15 Issue (1): 1-11    DOI: 10.12006/j.issn.1673-1719.2018.004
  气候系统变化 本期目录 | 过刊浏览 | 高级检索 |
BCC_CSM1.1气候模式年代际试验对北极涛动季节回报能力的初步评估
伍丽泉1,2,李清泉1,2,丁一汇2,王黎娟1,辛晓歌2,魏敏3
1 南京信息工程大学气象灾害教育部重点实验室/气候与环境变化国际合作联合实验室/气象灾害预报预警与评估协同创新中心,南京 210044
2 国家气候中心 中国气象局气候研究开放实验室,北京 100081
3 中国气象局国家气象信息中心,北京 100081
Preliminary assessment on the seasonal hindcast skill of the Arctic Oscillation with decadal experiment by BCC_CSM1.1 climate model
Li-Quan WU1,2,Qing-Quan LI1,2,Yi-Hui DING2,Li-Juan WANG1,Xiao-Ge XIN2,Min WEI3
1 Key Laboratory of Meteorological Disaster, Ministry of Education/Joint International Research Laboratory of Climate and Environment Change/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science &Technology (NUIST), Nanjing 210044, China;
2 Laboratory for Climate Studies, National Climate Center, China Meteorological Administration, Beijing 100081, China
3 National Meteorological Information Center, China Meteorological Administration, Beijing 100081, China;
下载:  HTML ( 7 )   PDF (1791KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

本文基于国家气候中心气候系统模式BCC_CSM1.1自1960—2004年每年起报的年代际预测试验结果,初步评估了该模式对北极涛动(AO)的预报技巧。同时,把该模式年代际预测结果与历史试验模拟比较,分析了气候模式初始化对年代际试验预测季节尺度AO及其年际变化的贡献。结果表明,年代际试验和历史试验均能反映出AO模态是北半球中高纬大气变率第一模态的特征,其中年代际预测试验回报的AO模态与观测的空间相关系数高于历史试验。两组试验基本能再现AO指数冬季最强、夏季最弱的特征。与历史试验相比,年代际预测试验回报月和冬季AO指数与观测的相关系数更高,特别是年代际试验与观测的月AO指数相关系数达到了0.1的显著性水平。年代际试验回报月、春季AO指数的变化周期更接近观测结果。因此,年代际试验中初始状态使用海温资料进行初始化,在一定程度上可以提高AO的回报能力。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
伍丽泉
李清泉
丁一汇
王黎娟
辛晓歌
魏敏
关键词:  BCC_CSM1.1  气候模式  年代际  北极涛动(AO)  季节回报    
Abstract: 

This study assesses projection skill of Arctic Oscillation (AO) in initialized decadal experiment with the Beijing Climate Center Climate System Model (BCC_CSM1.1). As compared with the observations and uninitialized historical experiment, the contribution of climate model initialization to predict the seasonal scale AO and its interannual variations is estimated. Results show that the spatial correlation coefficient of AO mode, which depicts the dominant mode of the extra-tropical atmospheric variability, simulated by the decadal experiment is higher than that in the historical experiment. The two groups of experiments can basically reproduce the characteristics of the strongest winter AO index and the weakest summer index. Compared with historical experiment, the correlation coefficient of the monthly and winter AO index is higher in the decadal experiment. In particular, the correlation coefficient of the monthly AO index between the decadal simulations and the observation reached 0.1 significant level. Furthermore, the periodicity of the monthly and spring AO index are achieved only in the decadal experiment. Hence, the hindcast skill of AO is robust when the initial state is initialized by sea surface temperature data.

Key words:  BCC_CSM1.1    Climate model    Decadal    Arctic Oscillation (AO)    Seasonal hindcast
收稿日期:  2018-01-12      修回日期:  2018-04-13           出版日期:  2019-01-30      发布日期:  2019-01-30      期的出版日期:  2019-01-30
基金资助: 资助项目:国家自然科学基金项目(41790471);国家重点基础研究发展计划(2016YFA0602200);国家重点基础研究发展计划(2012CB955203);国家重点基础研究发展计划(2013CB430202)
作者简介:  伍丽泉,女,硕士研究生;王黎娟(通信作者),女,教授,wljfw@163.com
引用本文:    
伍丽泉,李清泉,丁一汇,王黎娟,辛晓歌,魏敏. BCC_CSM1.1气候模式年代际试验对北极涛动季节回报能力的初步评估[J]. 气候变化研究进展, 2019, 15(1): 1-11.
Li-Quan WU,Qing-Quan LI,Yi-Hui DING,Li-Juan WANG,Xiao-Ge XIN,Min WEI. Preliminary assessment on the seasonal hindcast skill of the Arctic Oscillation with decadal experiment by BCC_CSM1.1 climate model. Climate Change Research, 2019, 15(1): 1-11.
链接本文:  
http://www.climatechange.cn/CN/10.12006/j.issn.1673-1719.2018.004  或          http://www.climatechange.cn/CN/Y2019/V15/I1/1
图1  1962—2005年北半球热带外SLP距平的EOF分解第一模态
图2  1962—2005年四季AO指数时间序列 注:黑实线为9年滑动平均曲线。
图3  1962—2005年四季AO指数滑动T检验 注:黑虚线为0.05显著性水平临界值。
表1  1962—2005年观测、年代际和历史试验的四季AO指数的线性趋势
表2  1962—2005年年代际和历史试验模拟的月及四季AO指数与观测的相关系数
表3  1962—2005年观测和模拟的不同季节AO指数的相关系数
表4  1962—2005年观测、年代际和历史试验的四季AO指数方差
图4  1962—2005年月AO指数的功率谱
图5  1962—2005年四季AO指数的功率谱
[1] Cohen J, Screen J A, Furtado J C , et al. Recent Arctic amplification and extreme mid-latitude weather[J]. Nature Geoscience, 2014,7(9):627-637
doi: 10.1038/ngeo2234
[2] Thompson D W J, Wallace J M . The Arctic Oscillation signature in the wintertime geopotential height and temperature fields[J]. Geophysical Research Letters, 1998,25(9):1297-1300
doi: 10.1029/98GL00950
[3] Thompson D W, Wallace J M . Regional climate impacts of the Northern Hemisphere annular mode[J]. Science, 2001,293:85-89
doi: 10.1126/science.1058958
[4] 龚道溢, 王绍武 . 近百年北极涛动对中国冬季气候的影响[J]. 地理学报, 2003,58(4):559-568
doi: 10.3321/j.issn:0375-5444.2003.04.010
[5] 梁苏洁, 丁一汇, 赵南 , 等. 近50年中国大陆冬季气温和区域环流的年代际变化研究[J]. 大气科学, 2014,38(5):974-992
doi: 10.3878/j.issn.1006-9895.1401.13234
[6] 所玲玲, 黄嘉佑, 谭本馗 . 北极涛动对我国冬季同期极端气温的影响研究[J]. 热带气象学报, 2008,24(2):163-168
doi: 10.3969/j.issn.1004-4965.2008.02.008
[7] 琚建华, 吕俊梅, 任菊章 . 北极涛动年代际变化对华北地区干旱化的影响[J]. 高原气象, 2006,25(1):74-81
doi: 10.3321/j.issn:1000-0534.2006.01.010
[8] He S P, Gao Y Q, Li F , et al. Impact of Arctic Oscillation on the East Asian climate: a review[J]. Earth-Science Reviews, 2017,164:48-62
doi: 10.1016/j.earscirev.2016.10.014
[9] Miller R L, Schmidt G A, Shindell D T . Forced annular variations in the 20th century Intergovernmental Panel on Climate Change Fourth Assessment Report models[J]. Journal of Geophysical Research Atmospheres, 2006,111, D18101
doi: 10.1029/2005JD006323
[10] 辛晓歌, 周天军, 宇如聪 . 气候系统模式对北极涛动的模拟[J]. 地球物理学报, 2008,51(2):337-351
doi: 10.3321/j.issn:0001-5733.2008.02.006
[11] Cattiaux J, Cassou C . Opposite CMIP3/CMIP5 trends in the wintertime Northern Annular Mode explained by combined local sea ice and remote tropical influences[J]. Geophysical Research Letters, 2013,40(14):3682-3687
doi: 10.1002/grl.50643
[12] Zuo J Q, Li W J, Ren H L . Representation of the Arctic Oscillation in the CMIP5 models[J]. Advances in Climate Change Research, 2013,4(4):242-249
doi: 10.3724/SP.J.1248.2013.242
[13] Gong H N, Wang L, Chen W , et al. Biases of the wintertime Arctic Oscillation in CMIP5 models[J]. Environmental Research Letters, 2017,12, 014001
doi: 10.1088/1748-9326/12/1/014001
[14] Sun J, Ahn J . Dynamical seasonal predictability of the Arctic Oscillation using a CGCM[J]. International Journal of Climatology, 2015,35(7):1342-1353
doi: 10.1002/joc.4060
[15] Stockdale T N, Molteni F, Ferranti L . Atmospheric initial conditions and the predictability of the Arctic Oscillation[J]. Geophysical Research Letters, 2015,42(4):1173-1179
doi: 10.1002/2014GL062681
[16] Dunstone N, Smith D, Scaife A , et al. Skilful predictions of the winter North Atlantic Oscillation one year ahead[J]. Nature Geoscience, 2016,9(11):809-814
doi: 10.1038/ngeo2824
[17] Ambaum M, Hoskins B J, Stephenson D B . Arctic Oscillation or North Atlantic Oscillation?[J]. Journal of Climate , 2001,14(16):3495-3507
doi: 10.1175/1520-0442(2001)014<3495:AOONAO>2.0.CO;2
[18] Taylor K E, Stouffer R J, Meehl G A . An overview of CMIP5 and the experiment design[J]. Bulletin of the American Meteorological Society, 2012,93(4):485-498
doi: 10.1175/BAMS-D-11-00094.1
[19] Wu T W, Yu R C, Zhang F , et al. The Beijing Climate Center atmospheric general circulation model: description and its performance for the present day climate[J]. Climate Dynamics, 2010,34(1):123-147
doi: 10.1007/s00382-008-0487-2
[20] LI Q Q, Tan J, Wang L N , et al. Simulation of the natural distribution of carbon and nutrients in the ocean based on the global ocean carbon cycle model MOM4_L40[J]. Chinese Journal of Geophysics, 2015,58(1):1-19
doi: 10.1002/cjg2.20151
[21] Wu T W, Li W P, Ji J J , et al. Global carbon budgets simulated by the Beijing Climate Center climate system model for the last century[J]. Journal of Geophysical Research Atmospheres, 2013,118(10):4326-4347
doi: 10.1002/jgrd.50320
[22] 辛晓歌, 吴统文, 张洁 . BCC气候系统模式开展的CMIP5试验介绍[J]. 气候变化研究进展, 2012,8(5):378-382
doi: 10.3969/j.issn.1673-1719.2012.05.010
[23] Carton J A, Giese B S . A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA)[J]. Monthly Weather Review, 2008,136:2999-3017
doi: 10.1175/2007MWR1978.1
[24] Allan R, Ansell T . A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850-2004[J]. Journal of Climate, 2006,19:5816-5842
doi: 10.1175/JCLI3937.1
[25] Thompson D W J, Wallace J M . Annular modes in the extratropical circulation. Part I month-to-month variability[J]. Journal of Climate, 2000,13:1000-1016
doi: 10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2
[26] García-Serrano J, Doblas-Reyes F J . On the assessment of near-surface global temperature and North Atlantic multi-decadal variability in the ensembles decadal hindcast[J]. Climate Dynamics, 2012,39:2025-2040
doi: 10.1007/s00382-012-1413-1
[27] Goddard L, Kumar A, Solomon A , et al. A verification framework for interannual-to-decadal predictions experiments[J]. Climate Dynamics, 2013,40:245-272
doi: 10.1007/s00382-012-1481-2
[28] Wei M, Li Q Q, Xin X G , et al. Improved decadal climate prediction in the North Atlantic using EnOI-assimilated initial condition[J]. Science Bulletin, 2017,62:1142-1147
doi: 10.1016/j.scib.2017.08.012
[29] Xin X G, Gao F, Wei M , et al. Decadal prediction skill of BCC-CSM1.1 model in East Asia[J]. International journal of Climatology, 2018,38:584-592
doi: 10.1002/joc.5195
[30] 朱献, 董文杰, 郭彦 . CMIP3及CMIP5模式对冬季和春季北极涛动变率模拟的比较[J]. 气候变化研究进展, 2013,9(3):165-172
doi: 10.3969/j.issn.1673-1719.2013.03.002
[31] 左金清, 李维京, 任宏利 . CMIP5模式对北极涛动的模拟评估[J]. 气候变化研究进展, 2013,9(3):157-164
doi: 10.3969/j.issn.1673-1719.2013.03.001
[32] Jadin E A . Arctic Oscillation and interannual variations of the sea surface temperature in the Atlantic and Pacific[J]. Russian Meteorology and Hydrology, 2001,18:28-40
[1] 郭恒,肖子牛. 东北5月降水在21世纪初的年代际变化及可能成因[J]. 气候变化研究进展, 2019, 15(1): 12-22.
[2] 王书霞,张利平,李意,佘敦先. 气候变化情景下澜沧江流域极端洪水事件研究[J]. 气候变化研究进展, 2019, 15(1): 23-32.
[3] 查芊郁,高超,杨茹,刘悦,阮甜,李鹏. 全球升温1.5℃和2.0℃情景下淮河上游干流径流量研究[J]. 气候变化研究进展, 2018, 14(6): 583-592.
[4] 韩振宇,童尧,高学杰,徐影. 分位数映射法在RegCM4中国气温模拟订正中的应用[J]. 气候变化研究进展, 2018, 14(4): 331-340.
[5] 郝莹,马京津,安晶晶,王元,许红梅. 全球1.5℃和2.0℃升温下潮白河流域气候和径流量变化预估[J]. 气候变化研究进展, 2018, 14(3): 237-246.
[6] 周梦子,周广胜,吕晓敏,周莉,汲玉河. 基于CMIP5耦合气候模式的1.5℃和2℃升温阈值出现时间研究[J]. 气候变化研究进展, 2018, 14(3): 221-227.
[7] 袁瑞强, 王亚楠, 王鹏, 王仕琴, 陈宇宏. 降水集中度的变化特征及影响因素分析——以山西为例[J]. 气候变化研究进展, 2018, 14(1): 11-20.
[8] 徐影 周波涛 吴婕 韩振宇 张永香 吴佳. 1.5~4℃升温阈值下亚洲地区气候变化预估[J]. 气候变化研究进展, 2017, 13(4): 306-315.
[9] 谭红建, 蔡榕硕, 黄荣辉. 中国近海海表温度对气候变暖及暂缓的显著响应[J]. 气候变化研究进展, 2016, 12(6): 500-507.
[10] 魏麟骁, 辛晓歌, 程炳岩, 吴统文, 郭渠, 李永华. BCC_CSM1.1气候模式年代际试验对中国气候的回报能力评估[J]. 气候变化研究进展, 2016, 12(4): 294-302.
[11] 朱清照, 闻新宇. 中国CMIP5模式对未来北极海冰的模拟偏差[J]. 气候变化研究进展, 2016, 12(4): 276-285.
[12] 徐经纬,徐 敏,蒋 熹,ArmelleReca C. Remedio,Dmitry V. Sein,Nikolay Koldunov,Daniela Jac. 区域气候模式REMO对中国气温和降水模拟能力的评估[J]. 气候变化研究进展, 2016, 12(4): 286-293.
[13] 张艳武, 张莉, 徐影. CMIP5模式对中国地区气温模拟能力评估与预估[J]. 气候变化研究进展, 2016, 12(1): 10-19.
[14] 陈晓晨, 徐影, 许崇海, 姚遥. CMIP5全球气候模式对中国地区降水模拟能力的评估[J]. 气候变化研究进展, 2014, 10(3): 217-225.
[15] 陶辉 黄金龙 翟建青 赖锡军. 长江流域气候变化高分辨率模拟与RCP4.5情景下的预估[J]. 气候变化研究进展, 2013, 9(4): 246-251.
[1] . A New Method to Construct Anomaly Series of Climatic Energy Consumption for Urban Residential Heating in Jilin Province[J]. Climate Change Research, 2008, 04(001): 32 -36 .
[2] . Analysis of Factors Impacting China's CO2 Emissions During 1971-2005[J]. Climate Change Research, 2008, 04(001): 42 -47 .
[3] Cao Guoliang;Zhang Xiaoye; Wang Yaqiang;et al.. Inventory of Black Carbon Emission from China[J]. Climate Change Research, 2007, 03(00): 75 -81 .
[4] . Dryness/Wetness Changes in Qinghai Province During 1959-2003[J]. Climate Change Research, 2007, 03(06): 356 -361 .
[5] Xu Xiaobin;Lin Weili; Wang Tao;et al.. Long-term Trend of Tropospheric Ozone over the Yangtze Delta Region of China[J]. Climate Change Research, 2007, 03(00): 60 -65 .
[6] Gao Qingxian; Du Wupeng; Lu Shiqing;et al.. Methane Emission from Municipal Solid Waste Treatments in China[J]. Climate Change Research, 2007, 03(00): 70 -74 .
[7] . Guide to Authors[J]. Climate Change Research, 2006, 02(00): 84 .
[8] . Granger Causality Test for Detection and Attribution of Climate Change[J]. Climate Change Research, 2008, 04(001): 37 -41 .
[9] . AIntra-annual Inhomogeneity Characteristics of Precipitation over Northwest China[J]. Climate Change Research, 2007, 03(05): 276 -281 .
[10] . Projection of Future Precipitation Extremes in the Yangtze River Basin for 2001-2050[J]. Climate Change Research, 2007, 03(06): 340 -344 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备10018055-1号
版权所有 © 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn