[1] | IPCC. Climate change 2013: the physical science basis: working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 2013 | [2] | IPCC. Summary for policymakers [M]//Stocker T, Qin D, Plattner G K , et al. Climate change 2013: the physical science basis, contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013: 1-100 | [3] | Held I M, Soden B J . Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 2005,19(21):5686-5699 | [4] | Schleussner C F, Lissner T K, Fischer E M , et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5℃ and 2℃[J]. Earth System Dynamics, 2016,6(2):2447-2505 | [5] | 徐影, 周波涛, 吴婕 , 等. 1.5~4℃升温阈值下亚洲地区气候变化预估[J]. 气候变化研究进展, 2017,13(4):306-315 | [6] | Liu L L, Xu H M, Wang Y , et al. Impacts of 1.5 and 2℃ global warming on water availability and extreme hydrological events in Yiluo and Beijiang River catchments in China[J]. Climatic Change, 2017,145(10):1-14 | [7] | Sun H M, Wang Y J, Zhao N , et al. Exposure of population to droughts in the Haihe River Basin under global warming of 1.5 and 2.0℃ scenarios[J]. Quaternary International, 2017,453:74-78 | [8] | 王艳君, 景丞, 曹丽格 , 等. 全球升温控制在1.5℃和2.0℃时中国分省人口格局[J]. 气候变化研究进展, 2017,13(4):327-336 | [9] | 王安乾, 苏布达, 王艳君 , 等. 全球升温1.5℃与2.0℃情景下中国极端低温事件变化与耕地暴露度研究[J]. 气象学报, 2017,75(3):415-428 | [10] | Zhan M, Li X, Sun H , et al. Changes in extreme maximum temperature events and population exposure in China under global warming scenarios of 1.5 and 2.0℃: analysis using the regional climate model COSMO-CLM[J]. Journal of Meteorological Research, 2018,32(1):99-112 | [11] | Chen J, Gao C, Zeng X F , et al. Assessing changes of river discharge under global warming of 1.5℃ and 2℃ in the upper reaches of the Yangtze River Basin: approach by using multiple-GCMs and hydrological models[J]. Quaternary International, 2017,453:63-73 | [12] | Su B D, Huang J L, Zeng X F , et al. Impacts of climate change on streamflow in the upper Yangtze River Basin[J]. Climatic Change, 2017,141:1-14 | [13] | Su B, Jian D, Li X , et al. Projection of actual evapotranspiration using the COSMO-CLM regional climate model under global warming scenarios of 1.5℃ and 2.0℃ in the Tarim River Basin, China[J]. Atmospheric Research, 2017,196:119-128 | [14] | 金君良, 何健, 贺瑞敏 , 等. 气候变化对淮河流域水资源及极端洪水事件的影响[J]. 地理科学, 2017,37(8):1226-1233 | [15] | 刘春蓁 . 气候变化对我国水文水资源的可能影响[J]. 水科学进展, 1997,8(3):220-225 | [16] | 赵宗慈 . 为IPCC第五次评估报告提供的全球气候模式预估[J]. 气候变化研究进展, 2009,5(4):241-243 | [17] | Kim H M, Webster P J, Curry J A . Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts[J]. Geophysical Research Letters, 2012,39(10):10701 | [18] | 祁晓凡, 李文鹏, 李海涛 , 等. 基于CMIP5模式的干旱内陆河流域未来气候变化预估[J]. 干旱区地理, 2017,40(5):987-996 | [19] | Tian H, Lan Y C, Wen J , et al. Evidence for a recent warming and wetting in the source area of the Yellow River (SAYR) and its hydrological impacts[J]. Journal of Geographical Sciences, 2015,25(6):643-668 | [20] | 胡芩, 姜大膀, 范广洲 . 青藏高原未来气候变化预估: CMIP5模式结果[J]. 大气科学, 2015,39(2):260-270 | [21] | 淮河水利委员会. 中国江河防洪丛书: 淮河卷[M]. 北京: 中国水利水电出版社, 1996 | [22] | 杨志勇, 袁喆, 马静 , 等. 近50年来淮河流域的旱涝演变特征[J]. 自然灾害学报, 2013,22(4):32-40 | [23] | 陆苗, 高超, 苏布达 , 等. 淮河流域极端降水空间分布及概率特征[J]. 自然灾害学报, 2015 ( 5):160-168 | [24] | Vuuren D P V, Edmonds J, Kainuma M , et al. The representative concentration pathways: an overview[J]. Climatic Change, 2011,109(1-2):5-31 | [25] | 沈永平, 王国亚 . IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土, 2013,35(5):1068-1076 | [26] | 王绍武, 罗勇, 赵宗慈 , 等. 新一代温室气体排放情景[J]. 气候变化研究进展, 2012,8(4):305-307 | [27] | Thomson A M, Calvin K V, Smith S J , et al. RCP4.5: a pathway for stabilization of radiative forcing by 2100[J]. Climatic Change, 2011,109(1-2):77 | [28] | Krysanova V, Wechsung F, Arnold F, et al. SWIM模型使用指南[M]. 北京: 气象出版社, 2011 | [29] | Yang Z Y, Gao C, Zang S Y , et al. Applicability evaluation of the SWIM at river basins of the black soil region in Northeast China: a case study of the upper and middle Wuyuer River Basin[J]. Journal of Geographical Sciences, 2017,27(7):817-834 | [30] | 周一飞, 陈慧颖, 张淑兰 , 等. 基于SWIM模型模拟气候变化对青海湖布哈河流域水文过程的影响[J]. 北京师范大学学报: 自然科学版, 2017,53(2):208-214 | [31] | 高超, 金高洁 . SWIM水文模型的DEM尺度效应[J]. 地理研究, 2012,31(3):399-408 | [32] | Hesse C, Krysanova V . Modeling climate and management change impacts on water quality and in-stream processes in the Elbe River Basin[J]. Water, 2016,8(2):1-31 | [33] | Nash J E, Sutcliffe J V . River flow forecasting through conceptual models part I: a discussion of principles[J]. Journal of Hydrology, 1970,10(3):282-290 | [34] | 张颖 . 统计学中回归分析及相关内容的教改思考:兼介绍LOESS回归[J]. 统计与信息论坛, 2000 ( 2):35-37 | [35] | Gao C, Yao M T, Wang Y J , et al. Hydrological model comparison and assessment: criteria from catchment scales and temporal resolution[J]. International Association of Scientific Hydrology Bulletin, 2016,61(10):1941-1951 | [36] | Chen X, Zhou T . Uncertainty in crossing time of 2℃ warming threshold over China[J]. Science Bulletin, 2016,61(18):1451-1459 | [37] | King A D, Karoly D J, Henley B J . Australian climate extremes at 1.5℃ and 2℃ of global warming[J]. Nature Climate Change, 2017,7(6):412-418 | [38] | 李秀萍, 徐宗学, 程华琼 . 多模式集合预估21世纪淮河流域气候变化情景[J]. 高原气象, 2012,31(6):1622-1635 | [39] | 高超, 陆苗, 姚梦婷 , 等. SWIM水文模型在王家坝地区的适用性评估[J]. 水土保持通报, 2018,38(1):152-159 |
|