Please wait a minute...
 
气候变化研究进展  2018, Vol. 14 Issue (6): 583-592    DOI: 10.12006/j.issn.1673-1719.2018.067
  气候变化影响 本期目录 | 过刊浏览 | 高级检索 |
全球升温1.5℃和2.0℃情景下淮河上游干流径流量研究
查芊郁1,2,高超2,杨茹1,刘悦3,阮甜1,李鹏4
1 安徽师范大学地理与旅游学院,芜湖 241000
2 宁波大学地理与空间信息技术系,宁波 315211
3 河海大学水文水资源学院,南京 210029
4 河南省驻马店水文水资源勘测局,驻马店 450003
Study on runoff under global warming of 1.5℃ and 2.0℃ in main stream of upper reaches of the Huaihe River
Qian-Yu ZHA1,2,Chao GAO2,Ru YANG1,Yue LIU3,Tian RUAN1,Peng LI4
1 College of Geography and Tourism, Anhui Normal University, Wuhu 241000, China
2 Department of Geography & Spatial Information Techniques, Ningbo University, Ningbo 315211, China;
3 College of Hydrology and Water Resources, Hohai University, Nanjing 210029, China
4 Zhumadian Hydrology and Water Resources Survey Bureau, Zhumadian 450003, China
下载:  HTML ( 7 )   PDF (7166KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

基于ISI-MIP(The Inter-Sectoral Impact Model Inter-comparison Project)推荐使用的5个全球气候模式数据(HadGEM2-ES,GFDL-ESM2M,MIROC-ESM-CHEM,Nor-ESM1-M,IPSL-CM5ALR),驱动SWIM(Soil and Water Integrated Model)水文模型,研究全球升温1.5℃和2.0℃情景下淮河上游干流径流量变化,得出结论:(1)淮河上游干流径流量年际变化在2种升温情景下均呈先减小后增加趋势。全球升温1.5℃时年径流量较基准期(1986—2005年)增长9.5%,而升温2.0℃情景下涨幅更明显,高达17%。(2) 4个季节径流量在2种升温情景下较基准期均有增长,其中春季涨幅最明显,达24.4%,夏、秋、冬季涨幅分别为7.1%、16.1%、13.5%。全球升温2.0℃时淮河上游干流径流量在4个季节较基准期增长率均大于全球升温1.5℃时。(3)不同气候模式输出日径流量最大值相差较大而平均值相差较小。未来2种升温情景日径流量超过王家坝闸设计流量的日次较基准期均有增加,尤其升温2.0℃情景较基准期增多22次,较升温1.5℃情景多5.8次,表明未来升温2.0℃情景下淮河上游出现极端径流事件的可能性进一步增大。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
查芊郁
高超
杨茹
刘悦
阮甜
李鹏
关键词:  升温1.5℃  升温2.0℃  全球气候模式  SWIM水文模型  淮河上游  径流量    
Abstract: 

Based on five global climate model data recommended by The Inter-Sectoral Impact Model Inter-comparison Project (ISI-MIP) and Soil and Water Integrated Model (SWIM), the changes of river discharge under global warming of 1.5℃ and 2.0℃ in main stream of upper reaches of the Huaihe River were analyzed. The research results show as follows: the interannual variation of the runoff in the upper reaches of the Huaihe River decreased first and then increased under global warming of 1.5℃ and 2.0℃. The annual runoff at the global warming of 1.5℃ will increase by 9.5% relative to the reference period (1986-2005), while the increase under global warming of 2.0℃ is even more pronounced, reaching 17%. Secondly runoff in four seasons has an increase compared to the reference period under global warming of 1.5℃ and 2.0℃, and the spring runoff rises the most, reaching 24.4%, and the summer, autumn, and winter gains are 7.1%, 16.1%, and 13.5%, respectively. Under global warming of 2.0℃, the rate of increase of runoff in mainstream of the upper reaches of the Huaihe River in the four seasons is larger than under the global warming of 1.5℃. Finally, the maximum daily runoff of different global climate models differs greatly from each other while the average difference is small. Under global warming of 1.5℃ and 2.0℃, the number of days with daily flow exceeding the design flow of the Wangjiaba sluice, increases compared with the reference period, especially under global warming of 2.0℃, which is 22 times more than the reference period and 5.8 times more than under global warming of 1.5℃.

Key words:  Global warming of 1.5℃    Global warming of 2.0℃    Global climate model    SWIM hydrological model    Upstream of Huaihe River    Stream flow
收稿日期:  2018-05-07      修回日期:  2018-07-10           出版日期:  2018-11-30      发布日期:  2018-11-30      期的出版日期:  2018-11-30
基金资助: 国家自然科学基金项目(41571018);国家自然科学基金项目(51679144);河南省水利科技与攻关计划项目(GG201713)
通讯作者:  高超   
作者简介:  查芊郁,女,硕士研究生,zhaqiany@126.com;
引用本文:    
查芊郁,高超,杨茹,刘悦,阮甜,李鹏. 全球升温1.5℃和2.0℃情景下淮河上游干流径流量研究[J]. 气候变化研究进展, 2018, 14(6): 583-592.
Qian-Yu ZHA,Chao GAO,Ru YANG,Yue LIU,Tian RUAN,Peng LI. Study on runoff under global warming of 1.5℃ and 2.0℃ in main stream of upper reaches of the Huaihe River. Climate Change Research, 2018, 14(6): 583-592.
链接本文:  
http://www.climatechange.cn/CN/10.12006/j.issn.1673-1719.2018.067  或          http://www.climatechange.cn/CN/Y2018/V14/I6/583
图1  研究区地理位置图
图2  5个全球气候模式输出气温相对工业化前(1850—1900年)升温达到1.5 ℃ (a)和2.0℃(b)时间曲线
图3  率定期(1959—1978年)(a)与验证期(1979—1998年)(b) 淮河上游干流日径流量序列模拟结果
图4  全球升温1.5℃ (a)和2.0℃(b)情景下淮河上游干流年径流量
图5  全球升温1.5℃和2.0℃情景下淮河上游干流径流量相对基准期(1986—2005年)变化率
图6  全球升温1.5℃ (a)和2.0℃(b)情景下不同季节淮河上游干流径流量较基准期变化率
图7  全球升温1.5℃和2.0℃情景下淮河上游干流最大日流量 (a)及日径流量箱线图(b)
Table 1  The number of daily runoff more than 1626 m3/s in main stream of upper reaches of the Huaihe River under global warming of 1.5℃and 2.0℃
[1] IPCC. Climate change 2013: the physical science basis: working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 2013
[2] IPCC. Summary for policymakers [M]//Stocker T, Qin D, Plattner G K , et al. Climate change 2013: the physical science basis, contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013: 1-100
[3] Held I M, Soden B J . Robust responses of the hydrological cycle to global warming[J]. Journal of Climate, 2005,19(21):5686-5699
[4] Schleussner C F, Lissner T K, Fischer E M , et al. Differential climate impacts for policy-relevant limits to global warming: the case of 1.5℃ and 2℃[J]. Earth System Dynamics, 2016,6(2):2447-2505
[5] 徐影, 周波涛, 吴婕 , 等. 1.5~4℃升温阈值下亚洲地区气候变化预估[J]. 气候变化研究进展, 2017,13(4):306-315
[6] Liu L L, Xu H M, Wang Y , et al. Impacts of 1.5 and 2℃ global warming on water availability and extreme hydrological events in Yiluo and Beijiang River catchments in China[J]. Climatic Change, 2017,145(10):1-14
doi: 10.1007/s10584-017-2067-0
[7] Sun H M, Wang Y J, Zhao N , et al. Exposure of population to droughts in the Haihe River Basin under global warming of 1.5 and 2.0℃ scenarios[J]. Quaternary International, 2017,453:74-78
doi: 10.1016/j.quaint.2017.05.005
[8] 王艳君, 景丞, 曹丽格 , 等. 全球升温控制在1.5℃和2.0℃时中国分省人口格局[J]. 气候变化研究进展, 2017,13(4):327-336
[9] 王安乾, 苏布达, 王艳君 , 等. 全球升温1.5℃与2.0℃情景下中国极端低温事件变化与耕地暴露度研究[J]. 气象学报, 2017,75(3):415-428
[10] Zhan M, Li X, Sun H , et al. Changes in extreme maximum temperature events and population exposure in China under global warming scenarios of 1.5 and 2.0℃: analysis using the regional climate model COSMO-CLM[J]. Journal of Meteorological Research, 2018,32(1):99-112
doi: 10.1007/s13351-018-7016-y
[11] Chen J, Gao C, Zeng X F , et al. Assessing changes of river discharge under global warming of 1.5℃ and 2℃ in the upper reaches of the Yangtze River Basin: approach by using multiple-GCMs and hydrological models[J]. Quaternary International, 2017,453:63-73
doi: 10.1016/j.quaint.2017.01.017
[12] Su B D, Huang J L, Zeng X F , et al. Impacts of climate change on streamflow in the upper Yangtze River Basin[J]. Climatic Change, 2017,141:1-14
doi: 10.1007/s10584-017-1920-5
[13] Su B, Jian D, Li X , et al. Projection of actual evapotranspiration using the COSMO-CLM regional climate model under global warming scenarios of 1.5℃ and 2.0℃ in the Tarim River Basin, China[J]. Atmospheric Research, 2017,196:119-128
doi: 10.1016/j.atmosres.2017.06.015
[14] 金君良, 何健, 贺瑞敏 , 等. 气候变化对淮河流域水资源及极端洪水事件的影响[J]. 地理科学, 2017,37(8):1226-1233
[15] 刘春蓁 . 气候变化对我国水文水资源的可能影响[J]. 水科学进展, 1997,8(3):220-225
[16] 赵宗慈 . 为IPCC第五次评估报告提供的全球气候模式预估[J]. 气候变化研究进展, 2009,5(4):241-243
doi: 10.3969/j.issn.1673-1719.2009.04.010
[17] Kim H M, Webster P J, Curry J A . Evaluation of short-term climate change prediction in multi-model CMIP5 decadal hindcasts[J]. Geophysical Research Letters, 2012,39(10):10701
doi: 10.1029/2012GL051644
[18] 祁晓凡, 李文鹏, 李海涛 , 等. 基于CMIP5模式的干旱内陆河流域未来气候变化预估[J]. 干旱区地理, 2017,40(5):987-996
[19] Tian H, Lan Y C, Wen J , et al. Evidence for a recent warming and wetting in the source area of the Yellow River (SAYR) and its hydrological impacts[J]. Journal of Geographical Sciences, 2015,25(6):643-668
doi: 10.1007/s11442-015-1194-7
[20] 胡芩, 姜大膀, 范广洲 . 青藏高原未来气候变化预估: CMIP5模式结果[J]. 大气科学, 2015,39(2):260-270
doi: 10.3878/j.issn.1006-9895.1406.13325
[21] 淮河水利委员会. 中国江河防洪丛书: 淮河卷[M]. 北京: 中国水利水电出版社, 1996
[22] 杨志勇, 袁喆, 马静 , 等. 近50年来淮河流域的旱涝演变特征[J]. 自然灾害学报, 2013,22(4):32-40
[23] 陆苗, 高超, 苏布达 , 等. 淮河流域极端降水空间分布及概率特征[J]. 自然灾害学报, 2015 ( 5):160-168
[24] Vuuren D P V, Edmonds J, Kainuma M , et al. The representative concentration pathways: an overview[J]. Climatic Change, 2011,109(1-2):5-31
doi: 10.1007/s10584-011-0148-z
[25] 沈永平, 王国亚 . IPCC第一工作组第五次评估报告对全球气候变化认知的最新科学要点[J]. 冰川冻土, 2013,35(5):1068-1076
doi: 10.7522/j.issn.1000-0240.2013.0120
[26] 王绍武, 罗勇, 赵宗慈 , 等. 新一代温室气体排放情景[J]. 气候变化研究进展, 2012,8(4):305-307
[27] Thomson A M, Calvin K V, Smith S J , et al. RCP4.5: a pathway for stabilization of radiative forcing by 2100[J]. Climatic Change, 2011,109(1-2):77
doi: 10.1007/s10584-011-0151-4
[28] Krysanova V, Wechsung F, Arnold F, et al. SWIM模型使用指南[M]. 北京: 气象出版社, 2011
[29] Yang Z Y, Gao C, Zang S Y , et al. Applicability evaluation of the SWIM at river basins of the black soil region in Northeast China: a case study of the upper and middle Wuyuer River Basin[J]. Journal of Geographical Sciences, 2017,27(7):817-834
doi: 10.1007/s11442-017-1408-2
[30] 周一飞, 陈慧颖, 张淑兰 , 等. 基于SWIM模型模拟气候变化对青海湖布哈河流域水文过程的影响[J]. 北京师范大学学报: 自然科学版, 2017,53(2):208-214
doi: 10.16360/j.cnki.jbnuns.2017.02.016
[31] 高超, 金高洁 . SWIM水文模型的DEM尺度效应[J]. 地理研究, 2012,31(3):399-408
doi: 10.1007/s11783-011-0280-z
[32] Hesse C, Krysanova V . Modeling climate and management change impacts on water quality and in-stream processes in the Elbe River Basin[J]. Water, 2016,8(2):1-31
[33] Nash J E, Sutcliffe J V . River flow forecasting through conceptual models part I: a discussion of principles[J]. Journal of Hydrology, 1970,10(3):282-290
doi: 10.1016/0022-1694(70)90255-6
[34] 张颖 . 统计学中回归分析及相关内容的教改思考:兼介绍LOESS回归[J]. 统计与信息论坛, 2000 ( 2):35-37
[35] Gao C, Yao M T, Wang Y J , et al. Hydrological model comparison and assessment: criteria from catchment scales and temporal resolution[J]. International Association of Scientific Hydrology Bulletin, 2016,61(10):1941-1951
doi: 10.1080/02626667.2015.1057141
[36] Chen X, Zhou T . Uncertainty in crossing time of 2℃ warming threshold over China[J]. Science Bulletin, 2016,61(18):1451-1459
doi: 10.1007/s11434-016-1166-z
[37] King A D, Karoly D J, Henley B J . Australian climate extremes at 1.5℃ and 2℃ of global warming[J]. Nature Climate Change, 2017,7(6):412-418
doi: 10.1038/nclimate3296
[38] 李秀萍, 徐宗学, 程华琼 . 多模式集合预估21世纪淮河流域气候变化情景[J]. 高原气象, 2012,31(6):1622-1635
[39] 高超, 陆苗, 姚梦婷 , 等. SWIM水文模型在王家坝地区的适用性评估[J]. 水土保持通报, 2018,38(1):152-159
[1] 郝莹,马京津,安晶晶,王元,许红梅. 全球1.5℃和2.0℃升温下潮白河流域气候和径流量变化预估[J]. 气候变化研究进展, 2018, 14(3): 237-246.
[2] 徐影 周波涛 吴婕 韩振宇 张永香 吴佳. 1.5~4℃升温阈值下亚洲地区气候变化预估[J]. 气候变化研究进展, 2017, 13(4): 306-315.
[3] 王艳君 景丞 曹丽格 姜彤 孙赫敏 黄金龙 翟建青 陶辉 高超 苏布达. 全球升温控制在1.5℃和2.0℃时中国分省人口格局[J]. 气候变化研究进展, 2017, 13(4): 327-336.
[4] 张艳武, 张莉, 徐影. CMIP5模式对中国地区气温模拟能力评估与预估[J]. 气候变化研究进展, 2016, 12(1): 10-19.
[5] 陈晓晨, 徐影, 许崇海, 姚遥. CMIP5全球气候模式对中国地区降水模拟能力的评估[J]. 气候变化研究进展, 2014, 10(3): 217-225.
[6] 张利平 于松延 段尧彬 闪丽洁 陈心池 徐宗学. 气候变化和人类活动对永定河流域径流变化影响定量研究[J]. 气候变化研究进展, 2013, 9(6): 391-397.
[7] 高超;曾小凡;苏布达;闻余华;朱进;吴必文. 2010-2100年淮河径流量变化情景预估[J]. 气候变化研究进展, 2010, 6(01): 15-21.
[8] 张天宇;王勇;程炳岩;唐红玉;刘晓冉;向波. 21世纪重庆最大连续5d降水的预估分析[J]. 气候变化研究进展, 2009, 5(03): 139-144.
[9] 蔡新玲;孙娴;乔秋文;姜创业;毛明策. 气候变化对汉江上游径流的影响[J]. 气候变化研究进展, 2008, 4(004): 220-224.
[1] . A New Method to Construct Anomaly Series of Climatic Energy Consumption for Urban Residential Heating in Jilin Province[J]. Climate Change Research, 2008, 04(001): 32 -36 .
[2] . Analysis of Factors Impacting China's CO2 Emissions During 1971-2005[J]. Climate Change Research, 2008, 04(001): 42 -47 .
[3] Cao Guoliang;Zhang Xiaoye; Wang Yaqiang;et al.. Inventory of Black Carbon Emission from China[J]. Climate Change Research, 2007, 03(00): 75 -81 .
[4] . Dryness/Wetness Changes in Qinghai Province During 1959-2003[J]. Climate Change Research, 2007, 03(06): 356 -361 .
[5] Xu Xiaobin;Lin Weili; Wang Tao;et al.. Long-term Trend of Tropospheric Ozone over the Yangtze Delta Region of China[J]. Climate Change Research, 2007, 03(00): 60 -65 .
[6] Gao Qingxian; Du Wupeng; Lu Shiqing;et al.. Methane Emission from Municipal Solid Waste Treatments in China[J]. Climate Change Research, 2007, 03(00): 70 -74 .
[7] . Guide to Authors[J]. Climate Change Research, 2006, 02(00): 84 .
[8] . Granger Causality Test for Detection and Attribution of Climate Change[J]. Climate Change Research, 2008, 04(001): 37 -41 .
[9] . AIntra-annual Inhomogeneity Characteristics of Precipitation over Northwest China[J]. Climate Change Research, 2007, 03(05): 276 -281 .
[10] . Projection of Future Precipitation Extremes in the Yangtze River Basin for 2001-2050[J]. Climate Change Research, 2007, 03(06): 340 -344 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备10018055-1号
版权所有 © 《气候变化研究进展》编辑部
地址:北京市海淀区中关村南大街46号 邮编:100081 电话/传真:(010)58995171 E-mail:accr@cma.gov.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn